1
|
Saha S, Maity S, Samanta B, Ghosh R, Bhattacharyya K, Mondal B. Photo-induced nitroxyl anion/HNO release from a nitrosyl complex of Mn(II)-porphyrinate. Chem Commun (Camb) 2025; 61:2353-2356. [PMID: 39807816 DOI: 10.1039/d4cc06203e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A nitrosyl complex of MnII-porphyrinate, 1 has been synthesized and characterized. It was found to donate a nitroxyl anion (NO-) to suitable acceptors in dichloromethane solution in the presence of visible light. The evolution of N2O and the characteristic reaction with PPh3 in the presence of H+ confirms the NO-/HNO donation.
Collapse
Affiliation(s)
- Shankhadeep Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Sayani Maity
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Bapan Samanta
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Riya Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | | | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Hu B, Lu J, Ding W, Liu Y, Shroyer MH, Schulz CE, Xu W, Wang J, Li J. Crystal Structure and Electron Configuration of {MNO} 8 Heme Complexes. Inorg Chem 2024; 63:18379-18388. [PMID: 39284105 DOI: 10.1021/acs.inorgchem.4c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Although research on nitrosyl (NO) heme complexes and their one-electron reduced form, nitroxyl (or nitroxyl anion, NO-) derivatives, has been going on for decades, there are still disagreements about the electrical configuration of nitroxyl complexes, and the majority of the work on this topic is based on theoretical calculations. Following the initial nitroxyl iron porphyrin crystal structure, we present two further polymorphic forms of [CoCp2][Fe(TFPPBr8)(NO)]. Using the same completely halogenated porphyrin ligand, we also present two polymorphic forms of nitrosyl cobalt(II) complexes, which are another sort of {MNO}8 structure. In addition to the EXANES and EPR studies of these {FeNO}7 and {CoNO}8 complexes, the {FeNO}8 [CoCp2][Fe(TFPPBr8)(NO)] complex is also investigated by temperature-dependent Mössbauer experiments for the first time with the {FeNO}7 precursor as a control sample. The analysis of the Mössbauer and crystal structural parameters between these two types of {MNO}8 (M = Fe or Co) species and previously reported analogous ones allow us to conclude that the electronic configuration of [Fe(TFPPBr8)(NO)]- is best described as an intermediate between low-spin Fe(II)-NO- and Fe(I)-NO•.
Collapse
Affiliation(s)
- Bin Hu
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, P.R. China
| | - Jia Lu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Wei Ding
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, China
- Beijing Spacecrafts Co., Ltd., Beijing 100094, China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mark H Shroyer
- Department of Physics, Knox College, Galesburg, Illinois 61401, United States
| | - Charles E Schulz
- Department of Physics, Knox College, Galesburg, Illinois 61401, United States
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing 100049, P.R. China
| | - Junwen Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jianfeng Li
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, China
| |
Collapse
|
3
|
Wang Z, Zhang H, Zhang P, Di K, Zhao J, Wang B, Qu J, Ye S, Yang D. Stepwise Reduction of Redox Noninnocent Nitrosobenzene to Aniline via a Rare Phenylhydroxylamino Intermediate on a Thiolate-Bridged Dicobalt Scaffold. J Am Chem Soc 2024; 146:19737-19747. [PMID: 39008833 DOI: 10.1021/jacs.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Nitrosobenzene (PhNO) and phenylhydroxylamine (PhNHOH) are of paramount importance because of their involvement as crucial intermediates in the biological metabolism and catalytic transformation of nitrobenzene (PhNO2) to aniline (PhNH2). However, a complete reductive transformation cycle of PhNO to PhNH2 via the PhNHOH intermediate has not been reported yet. In this context, we design and construct a new thiolate-bridged dicobalt scaffold that can accomplish coordination activation and reductive transformation of PhNO. Notably, an unprecedented reversible ligand-based redox sequence PhNO0 ↔ PhNO•- ↔ PhNO2- can be achieved on this well-defined {CoIII(μ-SPh)2CoIII} functional platform. Further detailed reactivity investigations demonstrate that the PhNO0 and PhNO•- complexes cannot react with the usual hydrogen and hydride donors to afford the corresponding phenylhydroxylamino (PhNHO-) species. However, the double reduced PhNO2- complex can readily undergo N-protonation with an uncommon weak proton donor PhSH to selectively yield a stable dicobalt PhNHO- bridged complex with a high pKa value of 13-16. Cyclic voltammetry shows that there are two successive reduction events at E1/2 = -0.075 V and Ep = -1.08 V for the PhNO0 complex, which allows us to determine both bond dissociation energy (BDEN-H) of 59-63 kcal·mol-1 and thermodynamic hydricity (ΔGH-) of 71-75 kcal·mol-1 of the PhNHO- complex. Both values indicate that the PhNO•- complex is not a potent hydrogen abstractor and the PhNO0 complex is not an efficient hydride acceptor. In the presence of BH3 as a combination of protons and electrons, facile N-O bond cleavage of the coordinated PhNHO- group can be realized to generate PhNH2 and a dicobalt hydroxide-bridged complex. Overall, we present the first stepwise reductive sequence, PhNO0 ↔ PhNO•- ↔ PhNO2- ↔ PhNHO- → PhNH2.
Collapse
Affiliation(s)
- Zhijie Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Haoyan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kai Di
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Saha S, Maity S, Mazumdar R, Samanta B, Ghosh R, Guha AK, Mondal B. Sixth Ligand Induced HNO/NO - Release by a Five-Coordinated Cobalt(II) Nitrosyl Complex Having a {CoNO} 8 Configuration. Inorg Chem 2023; 62:17074-17082. [PMID: 37811901 DOI: 10.1021/acs.inorgchem.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Nitroxyl (HNO) and nitroxide (NO-) anion, the one-electron-reduced form of nitric oxide (NO), have been shown to have distinct advantages over NO from pharmacological and therapeutic points of view. However, the role of nitroxyl in chemical biology has not yet been studied as extensively as that of NO. Consequently, only a few examples of HNO donors such as Angeli's salt, Piloty's acid, or acyl- and acyloxynitroso derivatives are known. However, the intrinsic limitations of all of these hinder their widespread utility. Metal nitrosyl complexes, although few examples, could serve as an efficient HNO donor. Here, a cobalt nitrosyl complex of the {CoNO}8 (1) configuration has been reported. This complex in the presence of a sixth ligand [BF4-, DTC- (diethyldithiocarbamate anion), or imidazole] releases/donates HNO/NO-. This has been confirmed using well-known HNO/NO- acceptors like [Fe(TPP)Cl] and [Fe(DTC)3]. The HNO release has been authenticated further by the detection and estimation of N2O using gas chromatography-mass spectroscopy as well as its reaction with PPh3.
Collapse
Affiliation(s)
- Shankhadeep Saha
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Sayani Maity
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Rakesh Mazumdar
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Bapan Samanta
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Riya Ghosh
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Ankur K Guha
- Advanced Computational Chemistry Center, Department of Chemistry, Cotton University, Guwahati, Assam781001, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Nasybullina EI, Pugachenko IS, Kosmachevskaya OV, Topunov AF. The Influence of Nitroxyl on Escherichia coli Cells Grown under Carbonyl Stress Conditions. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Michalski R, Smulik-Izydorczyk R, Pięta J, Rola M, Artelska A, Pierzchała K, Zielonka J, Kalyanaraman B, Sikora AB. The Chemistry of HNO: Mechanisms and Reaction Kinetics. Front Chem 2022; 10:930657. [PMID: 35864868 PMCID: PMC9294461 DOI: 10.3389/fchem.2022.930657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Azanone (HNO, also known as nitroxyl) is the protonated form of the product of one-electron reduction of nitric oxide (•NO), and an elusive electrophilic reactive nitrogen species of increasing pharmacological significance. Over the past 20 years, the interest in the biological chemistry of HNO has increased significantly due to the numerous beneficial pharmacological effects of its donors. Increased availability of various HNO donors was accompanied by great progress in the understanding of HNO chemistry and chemical biology. This review is focused on the chemistry of HNO, with emphasis on reaction kinetics and mechanisms in aqueous solutions.
Collapse
Affiliation(s)
- Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | | | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Monika Rola
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Adam Bartłomiej Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
- *Correspondence: Adam Bartłomiej Sikora,
| |
Collapse
|
7
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Mazumdar R, Saha S, Samanta B, Mondal B. Can a Nitrosyl of a Mn(II)-Porphyrin Complex Release Nitroxyl/HNO? Inorg Chem 2021; 60:18024-18030. [PMID: 34797639 DOI: 10.1021/acs.inorgchem.1c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In general, the nitrosyl complexes of Mn(II)-porphyrinate having the {Mn(NO)}6 configuration are not considered as HNO or nitroxyl (NO-) donors because of [MnI-NO+] nature. A nitrosyl complex of Mn(II)-porphyrin, [Mn(TMPP2-)(NO)], 1 [TMPPH2 = 5,10,15,20-tetrakis-4-methoxyphenylporphyrin], is shown to release HNO in the presence of HBF4. It is evidenced from the characteristic reaction of HNO with triphenylphosphine and isolation of the [(TMPP2-)MnIII(H2O)2](BF4), 2. This is attributed to the fact that H+ from HBF4 polarizes the NO group whereas the BF4- interacts with metal ion to stabilize the Mn(III) form. These two effects cooperatively result in the release of HNO from complex 1. In addition, complex 1 behaves as a nitroxyl (NO-) donor in the presence of [Fe(dtc)3] (dtc = diethyldithiocarbamate anion) and [Fe(TPP)(Cl)] (TPP = 5,10,15,20-tetraphenylporphyrinate) to result in [Fe(dtc)2(NO)] and [Fe(TPP)(NO)], respectively.
Collapse
Affiliation(s)
- Rakesh Mazumdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Shankhadeep Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Bapan Samanta
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
9
|
Xu S, Yang D, Wang B, Chen Y, Ye S, Qu J. Generation of a Sulfinamide Species from Facile N-O Bond Cleavage of Nitrosobenzene by a Thiolate-Bridged Diiron Complex. J Am Chem Soc 2021; 143:17374-17387. [PMID: 34617736 DOI: 10.1021/jacs.1c03542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The activation of nitrosobenzene promoted by transition-metal complexes has gained considerable interest due to its significance for understanding biological processes and catalytic C-N bond formation processes. Despite intensive studies in the past decades, there are only limited cases where electron-rich metal centers were commonly employed to achieve the N-O or C-N bond cleavage of the coordinated nitrosobenzene. In this regard, it is significant and challenging to construct a suitable functional system for examining its unique reactivity toward reductive activation of nitrosoarene. Herein, we present a {Fe2S2} functional platform that can activate nitrosobenzene via an unprecedented iron-directed thiolate insertion into the N-O bond to selectively generate a well-defined diiron benzenesulfinamide complex. Furthermore, computational studies support a proposal that in this concerted four-electron reduction process of nitrosobenzene the iron center serves as an important electron shuttle. Notably, compared to the intact bridging nitrosoarene ligand, the benzenesulfinamide moiety has priority to convert into aniline in the presence of separate or combined protons and reductants, which may imply the formation of the sulfinamide species accelerates reduction process of nitrosoarene. The reaction pattern presented here represents a novel activation mode of nitrosobenzene realized by a thiolate-bridged diiron complex.
Collapse
Affiliation(s)
- Sunlin Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Yifeng Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P.R. China.,School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China.,State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
10
|
Gallego CM, Mazzeo A, Vargas P, Suárez S, Pellegrino J, Doctorovich F. Azanone (HNO): generation, stabilization and detection. Chem Sci 2021; 12:10410-10425. [PMID: 34447533 PMCID: PMC8356739 DOI: 10.1039/d1sc02236a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
HNO (nitroxyl, azanone), joined the 'biologically relevant reactive nitrogen species' family in the 2000s. Azanone is impossible to store due to its high reactivity and inherent low stability. Consequently, its chemistry and effects are studied using donor compounds, which release this molecule in solution and in the gas phase upon stimulation. Researchers have also tried to stabilize this elusive species and its conjugate base by coordination to metal centers using several ligands, like metalloporphyrins and pincer ligands. Given HNO's high reactivity and short lifetime, several different strategies have been proposed for its detection in chemical and biological systems, such as colorimetric methods, EPR, HPLC, mass spectrometry, fluorescent probes, and electrochemical analysis. These approaches are described and critically compared. Finally, in the last ten years, several advances regarding the possibility of endogenous HNO generation were made; some of them are also revised in the present work.
Collapse
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Paola Vargas
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Sebastián Suárez
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
11
|
Carrone G, Mazzeo A, Marceca E, Pellegrino J, Suárez S, Zarenkiewicz J, Toscano JP, Doctorovich F. Solid-gas reactions for nitroxyl (HNO) generation in the gas phase. J Inorg Biochem 2021; 223:111535. [PMID: 34298305 DOI: 10.1016/j.jinorgbio.2021.111535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023]
Abstract
We present a novel nitroxyl (HNO) generation method, which avoids the need of using a liquid system or extreme experimental conditions. This method consists of the reaction between a gaseous base and an HNO donor (Piloty's acid) in the solid phase, allowing the formation of gaseous HNO in a fast and economical way. Detection of HNO was carried out indirectly, measuring the nitrous oxide (N2O) byproduct of HNO dimerization using infrared spectroscopy, and directly, using mass spectrometry techniques and an electrochemical HNO sensor.
Collapse
Affiliation(s)
- Guillermo Carrone
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Ernesto Marceca
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Sebastián Suárez
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Jessica Zarenkiewicz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
12
|
Updating NO •/HNO interconversion under physiological conditions: A biological implication overview. J Inorg Biochem 2020; 216:111333. [PMID: 33385637 DOI: 10.1016/j.jinorgbio.2020.111333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
Azanone (HNO/NO-), also called nitroxyl, is a highly reactive compound whose biological role is still a matter of debate. A key issue that remains to be clarified regarding HNO and its biological activity is that of its endogenous formation. Given the overlap of the molecular targets and reactivity of nitric oxide (NO•) and HNO, its chemical biology was perceived to be similar to that of NO• as a biological signaling agent. However, despite their closely related reactivity, NO• and HNO's biochemical pathways are quite different. Moreover, the reduction of nitric oxide to azanone is possible but necessarily coupled to other reactions, which drive the reaction forward, overcoming the unfavorable thermodynamic barrier. The mechanism of this NO•/HNO interplay and its downstream effects in different contexts were studied recently, showing that more than fifteen moderate reducing agents react with NO• producing HNO. Particularly, it is known that the reaction between nitric oxide and hydrogen sulfide (H2S) produces HNO. However, this rate constant was not reported yet. In this work, firstly the NO•/H2S effective rate constant was measured as a function of the pH. Then, the implications of these chemical (non-enzymatic), biologically compatible, routes to endogenous HNO formation was discussed. There is no doubt that HNO could be (is?) a new endogenously produced messenger that mediates specific physiological responses, many of which were attributed yet to direct NO• effects.
Collapse
|
13
|
Zsombor-Pindera J, Effaty F, Escomel L, Patrick B, Kennepohl P, Ottenwaelder X. Five Nitrogen Oxidation States from Nitro to Amine: Stabilization and Reactivity of a Metastable Arylhydroxylamine Complex. J Am Chem Soc 2020; 142:19023-19028. [PMID: 33124796 DOI: 10.1021/jacs.0c09300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Redox noninnocent ligands enhance the reactivity of the metal they complex, a strategy used by metalloenzymes and in catalysis. Herein, we report a series of copper complexes with the same ligand framework, but with a pendant nitrogen group that spans five different redox states between nitro and amine. Of particular interest is the synthesis of a unprecedented copper(I)-arylhydroxylamine complex. While hydroxylamines typically disproportionate or decompose in the presence of transition metal ions, the reactivity of this metastable species is arrested by the presence of an intramolecular hydrogen bond. Two-electron oxidation yields a copper(II)-(arylnitrosyl radical) complex that can dissociate to a copper(I) species with uncoordinated arylnitroso. This combination of ligand redox noninnocence and hemilability provides opportunities in catalysis for two-electron chemistry via a one-electron copper(I/II) shuttle, as exemplified with an aerobic alcohol oxidation.
Collapse
Affiliation(s)
- Joseph Zsombor-Pindera
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Farshid Effaty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Léon Escomel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Brian Patrick
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Pierre Kennepohl
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
14
|
B S A, Bhattacharjee R, Gupta S, Ahammad S, Datta A, Kundu S. Deoxygenation of nitrosoarene by N-heterocyclic carbene (NHC): an elusive Breslow-type intermediate bridging carbene and nitrene. Chem Commun (Camb) 2020; 56:12166-12169. [PMID: 32909566 DOI: 10.1039/d0cc05192f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Heterocyclic carbene (NHC) activates and deoxygenates nitrosoarene (ArNO) to afford arylnitrene (ArN), thereby portraying a fundamental route connecting two 6e- species. A combination of spectroscopic and computational studies suggests that the interaction of ArNO with NHC affords a transient 2,2'-diamino imine-N-oxide as a key intermediate in ArNO deoxygenation.
Collapse
Affiliation(s)
- Anju B S
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram - 695551, India.
| | - Rameswar Bhattacharjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur - 700032, Kolkata, India.
| | - Shourya Gupta
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram - 695551, India.
| | - Soniya Ahammad
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram - 695551, India.
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur - 700032, Kolkata, India.
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram - 695551, India.
| |
Collapse
|
15
|
Askari MS, Effaty F, Gennarini F, Orio M, Le Poul N, Ottenwaelder X. Tuning Inner-Sphere Electron Transfer in a Series of Copper/Nitrosoarene Adducts. Inorg Chem 2020; 59:8678-8689. [PMID: 32073833 DOI: 10.1021/acs.inorgchem.9b03175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of copper/nitrosoarene complexes was created that mimics several steps in biomimetic O2 activation by copper(I). The reaction of the copper(I) complex of N,N,N',N'-tetramethypropylenediamine with a series of para-substituted nitrosobenzene derivatives leads to adducts in which the nitrosoarene (ArNO) is reduced by zero, one, or two electrons, akin to the isovalent species dioxygen, superoxide, and peroxide, respectively. The geometric and electronic structures of these adducts were characterized by means of X-ray diffraction, vibrational analysis, ultraviolet-visible spectroscopy, NMR, electrochemistry, and density functional theory (DFT) calculations. The bonding mode of the NO moiety depends on the oxidation state of the ArNO moiety: κN for ArNO, mononuclear η2-NO and dinuclear μ-η2:η1 for ArNO•-, and dinuclear μ-η2:η2 for ArNO2-. 15N isotopic labeling confirms the reduction state by measuring the NO stretching frequency (1392 cm-1 for κN-ArNO, 1226 cm-1 for η2-ArNO•-, 1133 cm-1 for dinuclear μ-η2:η1-ArNO•-, and 875 cm-1 for dinuclear μ-η2:η2 for ArNO2-). The 15N NMR signal disappears for the ArNO•- species, establishing a unique diagnostic for the radical state. Electrochemical studies indicate reduction waves that are consistent with one-electron reduction of the adducts and are compared with studies performed on Cu-O2 analogues. DFT calculations were undertaken to confirm our experimental findings, notably to establish the nature of the charge-transfer transitions responsible for the intense green color of the complexes. In fine, this family of complexes is unique in that it walks through three redox states of the ArNO moiety while keeping the metal and its supporting ligand the same. This work provides snapshots of the reactivity of the toxic nitrosoarene molecules with the biologically relevant Cu(I) ion.
Collapse
Affiliation(s)
- Mohammad S Askari
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Farshid Effaty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Federica Gennarini
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada.,Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR, CNRS 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Maylis Orio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille 13007, France
| | - Nicolas Le Poul
- Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR, CNRS 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
16
|
Chan SC, Wong CY. Recent developments in ruthenium–nitrosoarene chemistry: Unconventional synthetic strategies, new ligand designs, and exploration of ligands redox non-innocence. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Möller MN, Rios N, Trujillo M, Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J Biol Chem 2019; 294:14776-14802. [PMID: 31409645 PMCID: PMC6779446 DOI: 10.1074/jbc.rev119.006136] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO), and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
18
|
Ferretti E, Dechert S, Meyer F. Reductive Binding and Ligand-Based Redox Transformations of Nitrosobenzene at a Dinickel(II) Core. Inorg Chem 2019; 58:5154-5162. [DOI: 10.1021/acs.inorgchem.9b00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eleonora Ferretti
- Institut für Anorganische Chemie, Universität Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
19
|
Yang Y, Tan F, Xie X, Yang X, Zhou Z, Deng K, Huang H. Enhanced Mimetic Enzyme Activity of Phosphorylated Porphyrin Nanocomposite Induced by Localized Surface Plasmon Resonance for Colorimetric Assay. ANAL SCI 2019; 35:691-699. [PMID: 30853695 DOI: 10.2116/analsci.19p004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plasmon-enhanced light harvesting has been of great interest to enhance the catalytic efficiency of some composites or hybrids. The enhanced peroxidase-like activity of phosphorylated iron(III) porphyrin (TPPFe(III))-based nanocomposite, induced by localized surface plasmon resonance for a colorimetric assay, was developed in this study. Firstly, a phosphate group modification strategy was adopted to synthesize water-soluble iron(III) porphyrin materials. Then, the as-synthesized TPPFe(III) was covalently attached to core-shell gold nanorods (GNRs), GNR@Au2S/AuAgS, to form TPPFe(III)-GNR@Au2S/AuAgS nanocomposite, which shows greatly enhanced peroxidase-like activity compared to TPPFe(III). A mechanism for the enhanced peroxidase-like activity of TPPFe(III)-GNR@Au2S/AuAgS was proposed, which results from a synergic effect of hot electrons excited by localized surface plasmon resonance and photogenerated electrons of the TPPFe(III), verified by experiments. Furthermore, a fast colorimetric assay for the detection of H2O2 and glucose was established based on the unique property of TPPFe(III)-GNR@Au2S/AuAgS. This colorimetric assay was applied to determine practical human serum samples; satisfactory results demonstrate this method has high accuracy. The present study would not only provide some insights into the mechanism of plasmon-activated enzyme-like reactions, but also offer new strategies for improving the catalytic activity of a mimetic enzyme.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology
| | - Fang Tan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology
| | - Xiaoxue Xie
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology
| | - Xiumei Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology
| |
Collapse
|
20
|
Dey S, Wayland BB, Zdilla MJ. Solution and Solid State Properties for Low-Spin Cobalt(II) Dibenzotetramethyltetraaza[14]annulene [(tmtaa)Co II] and the Monopyridine Complex. Inorg Chem 2019; 58:1224-1233. [PMID: 30618250 DOI: 10.1021/acs.inorgchem.8b02644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The single-crystal X-ray structure of solvent-free (tmtaa)CoII reveals three different π-π intermacrocyclic interactions between tmtaa units (tmtaa = dibenzotetramethyltetraaza[14]annulene). Pairs of inequivalent (tmtaa)CoII units in the unit cell link into a one-dimensional π-π stacked array in the solid state. Magnetic susceptibility (χ) studies from 300 to 2 K reveal the effects of intermolecular interactions between (tmtaa)CoII units in the solid state. The effective magnetic moment per CoII center is constant at 2.83 μB from 300 to 100 K and begins to significantly decrease at lower temperatures. The magnetic data are fit to a singlet ( S = 0) ground state with a triplet ( S = 1) excited state that is 13 cm-1 higher in energy (-2 J = 13 cm-1). Toluene solutions of (tmtaa)CoII have 1H nuclear magnetic resonance (NMR) paramagnetic shifts, a solution-phase magnetic moment μeff (295 K) of 2.1 μB, and toluene glass electron paramagnetic resonance spectra that are most consistent with a low-spin ( S = 1/2) CoII with the unpaired electron located in the d yz orbital. Pyridine interacts with (tmtaa)CoII to form a five-coordinate monopyridine complex in which the unpaired electron is in the d z2 orbital. The five-coordinate complex has been structurally characterized by single-crystal X-ray diffraction, and the equilibrium constant for pyridine binding at 295 K has been evaluated by both electronic and 1H NMR spectra. Density functional theory computation using the UB3LYP hybrid functional places the unpaired electron for (tmtaa)CoII in the d yz orbital and that for the monopyridine complex in the d z2 orbital, consistent with spectroscopic observations.
Collapse
Affiliation(s)
- Soumyajit Dey
- Department of Chemistry , Temple University , 1901 Northy 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Bradford B Wayland
- Department of Chemistry , Temple University , 1901 Northy 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Michael J Zdilla
- Department of Chemistry , Temple University , 1901 Northy 13th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
21
|
Shi Y, Zhang Y. Mechanisms of HNO Reactions with Ferric Heme Proteins. Angew Chem Int Ed Engl 2018; 57:16654-16658. [PMID: 30347123 PMCID: PMC6522253 DOI: 10.1002/anie.201807699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Many HNO-scavenging pathways exist to regulate its biological and pharmacological activities. Such reactions often involve ferric heme proteins and form an important basis for HNO probe development. However, mechanisms of HNO reactions with ferric heme proteins are largely unknown. We performed a computational investigation using metmyoglobin and catalase as representative ferric heme proteins with neutral and negatively charged axial ligands to provide the first detailed pathways. The results reproduced experimental barriers well with an average error of 0.11 kcal mol-1 . The rate-limiting step was found to be dissociation of the resting ligand or HNO coordination when there is no resting ligand. For both heme proteins, in contrast to the non-heme case, the reductive nitrosylation step was found to be barrierless proton-coupled electron transfer, which provides the major thermodynamic driving force for the overall reaction. The origin of the difference in reactivity between metmyoglobin and catalase was also revealed.
Collapse
Affiliation(s)
- Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
22
|
Alvarez MA, García ME, García-Vivó D, Ramos A, Ruiz MA, Toyos A. N-O Bond Activation and Cleavage Reactions of the Nitrosyl-Bridged Complexes [M 2Cp 2(μ-PCy 2)(μ-NO)(NO) 2] (M = Mo, W). Inorg Chem 2018; 57:15314-15329. [PMID: 30461277 DOI: 10.1021/acs.inorgchem.8b02647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The title complexes (1a,b) were prepared in two steps by first reacting the hydrides [M2Cp2(μ-H)(μ-PCy2)(CO)4] with [NO](BF4) in the presence of Na2CO3 to give dinitrosyls [M2Cp2(μ-PCy2)(CO)2(NO)2](BF4), which were then fully decarbonylated upon reaction with NaNO2 at 323 K. An isomer of the Mo2 complex having a cisoid arrangement of the terminal ligands ( cis-1a) was prepared upon irradiation of toluene solutions of 1a with visible-UV light at 288 K. The structure of these trinitrosyl complexes was investigated using X-ray diffraction and density functional theory (DFT) calculations, these revealing a genuine pyramidalization of the bridging NO that might be associated in part to an increase of charge at the N atom and anticipated a weakening of the N-O bond upon reaction with bases or reducing reagents. Complexes 1a,b reacted with [FeCp2](BF4) to give first the radicals [M2Cp2(μ-PCy2)(μ-NO)(NO)2](BF4) according to CV experiments, which then underwent H-abstraction to yield the nitroxyl-bridged complexes [M2Cp2(μ-PCy2)(μ-κ1:η2-HNO)(NO)2](BF4), alternatively prepared upon protonation with HBF4·OEt2. The novel coordination mode of the nitroxyl ligand in these products was thermodynamically favored over its tautomeric hydroximido form, according to DFT calculations, and similar nitrosomethane-bridged cations [M2Cp2(μ-PCy2)( μ-κ1:η2-MeNO)(NO)2]+ were prepared by reacting 1a,b with CF3SO3Me or [Me3O]BF4. Complexes 1 reacted with M(Hg) (M = Zn, Na) in tetrahydrofuran to give the amido-bridged derivatives [M2Cp2(μ-PCy2)(μ-NH2)(NO)2] with retention of stereochemistry, a transformation also induced by using mild O atom scavengers such as CO and phosphites in the presence of water. In the absence of water, phosphites accomplished a deoxygenation of the bridging NO of the Mo2 complexes to yield the phosphoraniminato-bridged derivatives [Mo2Cp2(μ-PCy2){μ-NP(OR)3}(NO)2] (R = Et, Ph), also with retention of stereochemistry.
Collapse
Affiliation(s)
- M Angeles Alvarez
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - M Esther García
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Daniel García-Vivó
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Alberto Ramos
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Miguel A Ruiz
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Adrián Toyos
- Departamento de Química Orgánica e Inorgánica/IUQOEM , Universidad de Oviedo , E-33071 Oviedo , Spain
| |
Collapse
|
23
|
|
24
|
Nanoporous platinum electrode grown on anodic aluminum oxide membrane: Fabrication, characterization, electrocatalytic activity toward reactive oxygen and nitrogen species. Anal Chim Acta 2018; 1035:44-50. [PMID: 30224143 DOI: 10.1016/j.aca.2018.06.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
Abstract
A new type of nanoelectrode, nanoporous platinum (NPt) electrode was prepared on aluminum oxide membrane by thermal evaporation deposition. The morphology, conductivity and electrocatalytic activity of NPt electrode were characterized and compared with those of nanofilm-Pt electrode through scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques, respectively. SEM images showed that "nanocavities" observed in NPt electrode were actually 2-dimensional enclosures by linked nanoparticles. It was different from the conventional arrays of "nanocavities" formed on homogeneous metal films. EIS data indicated that NPt electrode possesses higher conductivity. Compared with that on nanofilm-Pt electrode (14.05 Ω·cm2), the impedance spectrum on NPt electrode exhibits a semicircle portion with much smaller diameters (1.24 Ω·cm2 for NPt-100, 1.48 Ω·cm2 for NPt-200). Meanwhile, the response sensitivity of NPt electrode to O2 is 0.85 mA cm-2, which is larger than that of nanofilm-Pt electrode (0.54 mA cm-2). The largest catalytic current for nitric oxide (NO) was obtained in buffer with pH value of 9.4 while for Angeli's salt (AS) was obtained in buffer with pH value of 5.4. Additionally, electrocatalytic mechanisms of NPt electrode toward NO and AS were proposed, which indicating it depended on pH value of buffer solution.
Collapse
|
25
|
Speelman AL, White CJ, Zhang B, Alp EE, Zhao J, Hu M, Krebs C, Penner-Hahn J, Lehnert N. Non-heme High-Spin {FeNO} 6-8 Complexes: One Ligand Platform Can Do It All. J Am Chem Soc 2018; 140:11341-11359. [PMID: 30107126 DOI: 10.1021/jacs.8b06095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heme and non-heme iron-nitrosyl complexes are important intermediates in biology. While there are numerous examples of low-spin heme iron-nitrosyl complexes in different oxidation states, much less is known about high-spin (hs) non-heme iron-nitrosyls in oxidation states other than the formally ferrous NO adducts ({FeNO}7 in the Enemark-Feltham notation). In this study, we present a complete series of hs-{FeNO}6-8 complexes using the TMG3tren coligand. Redox transformations from the hs-{FeNO}7 complex [Fe(TMG3tren)(NO)]2+ to its {FeNO}6 and {FeNO}8 analogs do not alter the coordination environment of the iron center, allowing for detailed comparisons between these species. Here, we present new MCD, NRVS, XANES/EXAFS, and Mössbauer data, demonstrating that these redox transformations are metal based, which allows us to access hs-Fe(II)-NO-, Fe(III)-NO-, and Fe(IV)-NO- complexes. Vibrational data, analyzed by NCA, directly quantify changes in Fe-NO bonding along this series. Optical data allow for the identification of a "spectator" charge-transfer transition that, together with Mössbauer and XAS data, directly monitors the electronic changes of the Fe center. Using EXAFS, we are also able to provide structural data for all complexes. The magnetic properties of the complexes are further analyzed (from magnetic Mössbauer). The properties of our hs-{FeNO}6-8 complexes are then contrasted to corresponding, low-spin iron-nitrosyl complexes where redox transformations are generally NO centered. The hs-{FeNO}8 complex can further be protonated by weak acids, and the product of this reaction is characterized. Taken together, these results provide unprecedented insight into the properties of biologically relevant non-heme iron-nitrosyl complexes in three relevant oxidation states.
Collapse
Affiliation(s)
- Amy L Speelman
- Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Corey J White
- Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Bo Zhang
- Department of Chemistry and Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - E Ercan Alp
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jiyong Zhao
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Michael Hu
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James Penner-Hahn
- Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| |
Collapse
|
26
|
Alvarez MA, García ME, García-Vivó D, Ruiz MA, Toyos A. E-H Bond Activation and Insertion Processes in the Reactions of the Unsaturated Hydride [W 2Cp 2(μ-H)(μ-PPh 2)(NO) 2]. Inorg Chem 2018; 57:2228-2241. [PMID: 29411970 DOI: 10.1021/acs.inorgchem.7b03111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of the title complex (1) with different p-block element (E) molecules was examined. Compound 1 reacted with BH3·THF at room temperature to give the trihydride [W2Cp2(μ-H)H2(μ-PPh2)(NO)2], which formally results from hydrogenation of 1, a reaction that actually does not take place when neat dihydrogen is used. Clean E-H bond oxidative addition, however, took place when 1 was reacted with HSnPh3, to give the related dihydride stannyl derivative [W2Cp2(μ-H)H(μ-PPh2)(NO)2(SnPh3)]. In contrast, the reaction of 1 with HSPh involved H2 elimination to give the thiolate-bridged complex [W2Cp2(μ-SPh)(μ-PPh2)(NO)2], while that with (p-tol)C(O)H resulted in insertion of the aldehyde to yield the related alkoxide complex [W2Cp2{μ-OCH2(p-tol)}(μ-PPh2)(NO)2]. Insertion also prevailed in the reactions of 1 with CNtBu, which, however, involved the competitive formation of new C-H or N-H bonds, to give a mixture of formimidoyl and aminocarbyne derivatives, [W2Cp2(μ-κ1:η2-HCNtBu)(μ-PPh2)(NO)2] (W-W = 3.0177(2) Å) and [W2Cp2{μ-C(NHtBu)}(μ-PPh2)(NO)2] (W-W = 2.9010(4) Å), respectively, even though the latter was thermodynamically preferred, according to density functional theory calculations. The former represents the first structurally characterized complex displaying a formimidoyl or iminoacyl ligand in the alkenyl-like μ-κ1:η2 coordination mode. The reaction of 1 with diazomethane proceeded with N2 elimination and C-H coupling to yield the agostic methyl-bridged complex [W2Cp2(μ-κ1:η2-CH3)(μ-PPh2)(NO)2] (calculated W-W = 2.923 Å), whereas the reaction with N2CH(SiMe3) proceeded with insertion of the diazoalkane to give the corresponding hydrazonide complex [W2Cp2{μ-NH(NCHSiMe3)}(μ-PPh2)(NO)2] (W-W = 2.8608(4) Å). The latter was converted under alkaline conditions to the methyldiazenide derivative [W2Cp2{μ-N(NMe)}(μ-PPh2)(NO)2] (W-W = 2.8730(2) Å), in a process involving hydrolysis of the C-Si bond coupled with a 1,3-H shift from N to C.
Collapse
Affiliation(s)
- M Angeles Alvarez
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| | - M Esther García
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| | - Daniel García-Vivó
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| | - Miguel A Ruiz
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| | - Adrián Toyos
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| |
Collapse
|
27
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
28
|
Abucayon EG, Khade RL, Powell DR, Shaw MJ, Zhang Y, Richter-Addo GB. Over or under: hydride attack at the metal versus the coordinated nitrosyl ligand in ferric nitrosyl porphyrins. Dalton Trans 2018; 45:18259-18266. [PMID: 27801456 DOI: 10.1039/c6dt03860c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydride attack at a ferric heme-NO to give an Fe-HNO intermediate is a key step in the global N-cycle. We demonstrate differential reactivity when six- and five-coordinate ferric heme-NO models react with hydride. Although Fe-HNO formation is thermodynamically favored from this reaction, Fe-H formation is kinetically favored for the 5C case.
Collapse
Affiliation(s)
- E G Abucayon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | - R L Khade
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, USA.
| | - D R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | - M J Shaw
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62025, USA
| | - Y Zhang
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, USA.
| | - G B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
| |
Collapse
|
29
|
Effaty F, Zsombor-Pindera J, Kazakova A, Girard B, Askari MS, Ottenwaelder X. Ligand and electronic effects on copper–arylnitroso self-assembly. NEW J CHEM 2018. [DOI: 10.1039/c8nj00894a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The topology and degree of electron transfer in self-assembled redox reactions between copper(i) species and nitrosoarenes are controlled by ligand properties.
Collapse
Affiliation(s)
- F. Effaty
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada
| | - J. Zsombor-Pindera
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada
| | - A. Kazakova
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada
| | - B. Girard
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada
| | - M. S. Askari
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada
| | - X. Ottenwaelder
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada
| |
Collapse
|
30
|
Zink JR, Abucayon EG, Ramuglia AR, Fadamin A, Eilers JE, Richter‐Addo GB, Shaw MJ. Electrochemical Investigation of the Kinetics of Chloride Substitution upon Reduction of [Ru(porphyrin)(NO)Cl] Complexes in Tetrahydrofuran. ChemElectroChem 2017. [DOI: 10.1002/celc.201701001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jeremy R. Zink
- Department of Chemistry Southern Illinois University Edwardsville Box 1652 Edwardsville, Illinois 62026 USA
- Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, Oklahoma 73019 USA
| | - Erwin G. Abucayon
- Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, Oklahoma 73019 USA
| | - Anthony R. Ramuglia
- Department of Chemistry Southern Illinois University Edwardsville Box 1652 Edwardsville, Illinois 62026 USA
| | - Arghavan Fadamin
- Department of Chemistry Southern Illinois University Edwardsville Box 1652 Edwardsville, Illinois 62026 USA
| | - James E. Eilers
- Department of Chemistry Southern Illinois University Edwardsville Box 1652 Edwardsville, Illinois 62026 USA
| | - George B. Richter‐Addo
- Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, Oklahoma 73019 USA
| | - Michael J. Shaw
- Department of Chemistry Southern Illinois University Edwardsville Box 1652 Edwardsville, Illinois 62026 USA
| |
Collapse
|
31
|
Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Med Res Rev 2017; 38:1159-1187. [PMID: 29095519 DOI: 10.1002/med.21461] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
The biological effects attributed to nitric oxide (• NO) and nitroxyl (HNO) have been extensively studied, propelling their array of putative clinical applications beyond cardiovascular disorders toward other age-related diseases, like cancer and neurodegenerative diseases. In this context, the unique properties and reactivity of the N-O bond enabled the development of several classes of compounds with potential clinical interest, among which • NO and HNO donors, nitrones, and nitroxides are of particular importance. Although primarily studied for their application as cardioprotective agents and/or molecular probes for radical detection, continuous efforts have unveiled a wide range of pharmacological activities and, ultimately, therapeutic applications. These efforts are of particular significance for diseases in which oxidative stress plays a key pathogenic role, as shown by a growing volume of in vitro and in vivo preclinical data. Although in its early stages, these efforts may provide valuable guidelines for the development of new and effective N-O-based drugs for age-related disorders. In this report, we review recent advances in the chemistry of NO and HNO donors, nitrones, and nitroxides and discuss its pharmacological significance and potential therapeutic application.
Collapse
Affiliation(s)
- Catarina Oliveira
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carlos Fernandes
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Tiago Silva
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
32
|
Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus. mSphere 2017; 2:mSphere00082-17. [PMID: 28656172 PMCID: PMC5480029 DOI: 10.1128/msphere.00082-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/02/2017] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species. Staphylococcus aureus is a commensal human pathogen and a major cause of nosocomial infections. As gaseous signaling molecules, endogenous hydrogen sulfide (H2S) and nitric oxide (NO·) protect S. aureus from antibiotic stress synergistically, which we propose involves the intermediacy of nitroxyl (HNO). Here, we examine the effect of exogenous sulfide and HNO on the transcriptome and the formation of low-molecular-weight (LMW) thiol persulfides of bacillithiol, cysteine, and coenzyme A as representative of reactive sulfur species (RSS) in wild-type and ΔcstR strains of S. aureus. CstR is a per- and polysulfide sensor that controls the expression of a sulfide oxidation and detoxification system. As anticipated, exogenous sulfide induces the cst operon but also indirectly represses much of the CymR regulon which controls cysteine metabolism. A zinc limitation response is also observed, linking sulfide homeostasis to zinc bioavailability. Cellular RSS levels impact the expression of a number of virulence factors, including the exotoxins, particularly apparent in the ΔcstR strain. HNO, like sulfide, induces the cst operon as well as other genes regulated by exogenous sulfide, a finding that is traced to a direct reaction of CstR with HNO and to an endogenous perturbation in cellular RSS, possibly originating from disassembly of Fe-S clusters. More broadly, HNO induces a transcriptomic response to Fe overload, Cu toxicity, and reactive oxygen species and reactive nitrogen species and shares similarity with the sigB regulon. This work reveals an H2S/NO· interplay in S. aureus that impacts transition metal homeostasis and virulence gene expression. IMPORTANCE Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species.
Collapse
|
33
|
Rahman MH, Ryan MD. Redox and Spectroscopic Properties of Iron Porphyrin Nitroxyl in the Presence of Weak Acids. Inorg Chem 2017; 56:3302-3309. [DOI: 10.1021/acs.inorgchem.6b02665] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Md. Hafizur Rahman
- Marquette University Chemistry Department, PO Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Michael D. Ryan
- Marquette University Chemistry Department, PO Box 1881, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
34
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
35
|
Carrone G, Pellegrino J, Doctorovich F. Rapid generation of HNO induced by visible light. Chem Commun (Camb) 2017; 53:5314-5317. [DOI: 10.1039/c7cc02186k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first method for HNO controlled generation induced by visible light using a pH-dependent HNO donor activated by a Ru complex is reported.
Collapse
Affiliation(s)
- G. Carrone
- Departamento de Química Inorgánica
- Analítica y Química Física
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - J. Pellegrino
- Departamento de Química Inorgánica
- Analítica y Química Física
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - F. Doctorovich
- Departamento de Química Inorgánica
- Analítica y Química Física
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| |
Collapse
|
36
|
Khade RL, Yang Y, Shi Y, Zhang Y. HNO-Binding in Heme Proteins: Effects of Iron Oxidation State, Axial Ligand, and Protein Environment. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rahul L. Khade
- Department of Biomedical Engineering; Chemistry and Biological Sciences; Stevens Institute of Technology; 1 Castle Point on Hudson Hoboken NJ 07030 USA
| | - Yuwei Yang
- Department of Biomedical Engineering; Chemistry and Biological Sciences; Stevens Institute of Technology; 1 Castle Point on Hudson Hoboken NJ 07030 USA
| | - Yelu Shi
- Department of Biomedical Engineering; Chemistry and Biological Sciences; Stevens Institute of Technology; 1 Castle Point on Hudson Hoboken NJ 07030 USA
| | - Yong Zhang
- Department of Biomedical Engineering; Chemistry and Biological Sciences; Stevens Institute of Technology; 1 Castle Point on Hudson Hoboken NJ 07030 USA
| |
Collapse
|
37
|
Khade RL, Yang Y, Shi Y, Zhang Y. HNO-Binding in Heme Proteins: Effects of Iron Oxidation State, Axial Ligand, and Protein Environment. Angew Chem Int Ed Engl 2016; 55:15058-15061. [PMID: 27797441 DOI: 10.1002/anie.201608539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 11/06/2022]
Abstract
HNO plays significant roles in many biological processes. Numerous heme proteins bind HNO, an important step for its biological functions. A systematic computational study was performed to provide the first detailed trends and origins of the effects of iron oxidation state, axial ligand, and protein environment on HNO binding. The results show that HNO binds much weaker with ferric porphyrins than corresponding ferrous systems, offering strong thermodynamic driving force for experimentally observed reductive nitrosylation. The axial ligand was found to influence HNO binding through its trans effect and charge donation effect. The protein environment significantly affects the HNO hydrogen bonding structures and properties. The predicted NMR and vibrational data are in excellent agreement with experiment. This broad range of results shall facilitate studies of HNO binding in many heme proteins, models, and related metalloproteins.
Collapse
Affiliation(s)
- Rahul L Khade
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yuwei Yang
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yelu Shi
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
38
|
Zhou Y, Cink RB, Dassanayake RS, Seed AJ, Brasch NE, Sampson P. Rapid Photoactivated Generation of Nitroxyl (HNO) under Neutral pH Conditions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Ruth B. Cink
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Rohan S. Dassanayake
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Nicola E. Brasch
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| |
Collapse
|
39
|
Zhou Y, Cink RB, Dassanayake RS, Seed AJ, Brasch NE, Sampson P. Rapid Photoactivated Generation of Nitroxyl (HNO) under Neutral pH Conditions. Angew Chem Int Ed Engl 2016; 55:13229-13232. [DOI: 10.1002/anie.201605160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/03/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Ruth B. Cink
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Rohan S. Dassanayake
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Nicola E. Brasch
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| |
Collapse
|
40
|
Walter MR, Dzul SP, Rodrigues AV, Stemmler TL, Telser J, Conradie J, Ghosh A, Harrop TC. Synthesis of CoII–NO– Complexes and Their Reactivity as a Source of Nitroxyl. J Am Chem Soc 2016; 138:12459-71. [DOI: 10.1021/jacs.6b05896] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Melody R. Walter
- Department
of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Stephen P. Dzul
- Departments
of Pharmaceutical Sciences, Biochemistry, and Molecular Biology, Wayne State University, Detroit, Michigan 48201, United States
| | - Andria V. Rodrigues
- Departments
of Pharmaceutical Sciences, Biochemistry, and Molecular Biology, Wayne State University, Detroit, Michigan 48201, United States
| | - Timothy L. Stemmler
- Departments
of Pharmaceutical Sciences, Biochemistry, and Molecular Biology, Wayne State University, Detroit, Michigan 48201, United States
| | - Joshua Telser
- Department
of Biological, Chemical, and Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United States
| | - Jeanet Conradie
- Department
of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Abhik Ghosh
- Department
of Chemistry and Center for Theoretical and
Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Todd C. Harrop
- Department
of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
41
|
Alvarez MA, García ME, García-Vivó D, Ruiz MA, Toyos A. The doubly-bonded ditungsten anion [W2Cp2(μ-PPh2)(NO)2](-): an entry to the chemistry of unsaturated nitrosyl complexes. Dalton Trans 2016; 45:13300-3. [PMID: 27476536 DOI: 10.1039/c6dt02319c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Complex [W2Cp2(μ-I)(μ-PPh2)(NO)2] was prepared by reacting [W2Cp2(μ-I)(μ-PPh2)(CO)2] with NO at 233 K followed by decarbonylation in refluxing toluene. It was reduced by Na(Hg) in acetonitrile to give Na[W2Cp2(μ-PPh2)(NO)2], the first anionic nitrosyl complex featuring a metal-metal double bond (computed W-W = 2.580 Å). Reactions of the latter anion with (NH4)PF6 and [AuCl{P(p-tol)3}] gave the hydride [W2Cp2(μ-H)(μ-PPh2)(NO)2] and the cluster [AuW2Cp2(μ-PPh2)(NO)2{P(p-tol)3}] respectively, also featuring multiple W-W bonding (experimental W-W ca. 2.75 Å), and its reaction with S8 yielded the electron-precise derivative Na[W2Cp2(μ-PPh2)(μ-S)(NO)2], which was methylated by Me2SO4 to give the thiolate complex [W2Cp2(μ-PPh2)(μ-SMe)(NO)2].
Collapse
Affiliation(s)
- M Angeles Alvarez
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | | | | | | | | |
Collapse
|
42
|
Vazquez-Lima H, Conradie J, Ghosh A. Metallocorrole Interactions with Carbon Monoxide, Nitric Oxide, and Nitroxyl—A DFT Study of Low-Energy Bound States. Inorg Chem 2016; 55:8248-50. [DOI: 10.1021/acs.inorgchem.6b01189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hugo Vazquez-Lima
- Department of Chemistry
and Center for Theoretical and Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Jeanet Conradie
- Department of Chemistry
and Center for Theoretical and Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Abhik Ghosh
- Department of Chemistry
and Center for Theoretical and Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
43
|
Kundu S, Stieber SCE, Ferrier MG, Kozimor SA, Bertke JA, Warren TH. Redox Non‐Innocence of Nitrosobenzene at Nickel. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subrata Kundu
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - S. Chantal E. Stieber
- Inorganic, Isotope and Actinide Chemistry, Los Alamos National Laboratory Los Alamos NM 87545 USA
- Department of Chemistry and Biochemistry California State Polytechnic University Pomona CA 91768 USA
| | - Maryline G. Ferrier
- Inorganic, Isotope and Actinide Chemistry, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Stosh A. Kozimor
- Inorganic, Isotope and Actinide Chemistry, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Jeffery A. Bertke
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - Timothy H. Warren
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| |
Collapse
|
44
|
Kundu S, Stieber SCE, Ferrier MG, Kozimor SA, Bertke JA, Warren TH. Redox Non‐Innocence of Nitrosobenzene at Nickel. Angew Chem Int Ed Engl 2016; 55:10321-5. [DOI: 10.1002/anie.201605026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Subrata Kundu
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - S. Chantal E. Stieber
- Inorganic, Isotope and Actinide Chemistry, Los Alamos National Laboratory Los Alamos NM 87545 USA
- Department of Chemistry and Biochemistry California State Polytechnic University Pomona CA 91768 USA
| | - Maryline G. Ferrier
- Inorganic, Isotope and Actinide Chemistry, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Stosh A. Kozimor
- Inorganic, Isotope and Actinide Chemistry, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Jeffery A. Bertke
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - Timothy H. Warren
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| |
Collapse
|
45
|
Conradie J, Ghosh A. Metalloporphyrin–Nitroxyl Interactions: The Low-Energy States of Reduced Manganese, Iron, and Cobalt Porphyrin Nitrosyls. J Phys Chem B 2016; 120:4972-9. [DOI: 10.1021/acs.jpcb.6b04983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeanet Conradie
- Department of Chemistry and Center for Theoretical and
Computational Chemistry, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and
Computational Chemistry, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
46
|
|
47
|
Alvarez MA, García ME, García-Vivó D, Ruiz MA, Toyos A. Mild N-O Bond Cleavage Reactions of a Pyramidalized Nitrosyl Ligand Bridging a Dimolybdenum Center. Inorg Chem 2015; 54:10536-8. [PMID: 26529181 DOI: 10.1021/acs.inorgchem.5b02292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complex [Mo2Cp2(μ-PCy2)(μ-NO)(NO)2] (1) was prepared by reacting [Mo2Cp2(μ-H)(μ-PCy2)(CO)4] with 2 equiv of [NO]BF4 and then treating the resulting product [Mo2Cp2(μ-PCy2)(CO)2(NO)2](BF4) with NaNO2 at 323 K, and it was shown to display a bridging nitrosyl ligand with significant pyramidalization at the N atom, a circumstance related to an unusual behavior concerning degradation of the bridging nitrosyl. Indeed, complex 1 reacts with HBF4·OEt2 to give the nitroxyl-bridged derivative [Mo2Cp2(μ-PCy2)(μ-κ(1):η(2)-HNO)(NO)2](BF4), is reduced by Zn(Hg) in the presence of trace H2O to give the amido complex [Mo2Cp2(μ-PCy2)(μ-NH2)(NO)2], and reacts with excess P(OPh)3 to give the phosphoraniminato-bridged derivative [Mo2Cp2(μ-PCy2){μ-NP(OPh)3}(NO)2].
Collapse
Affiliation(s)
- M Angeles Alvarez
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| | - M Esther García
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| | - Daniel García-Vivó
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| | - Miguel A Ruiz
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| | - Adrián Toyos
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo , E-33071 Oviedo, Spain
| |
Collapse
|
48
|
Orzeł Ł, Polaczek J, Procner M. Review: Recent advances in the investigations of NO activation on cobalt and manganese porphyrins: a brief review. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
49
|
|
50
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|