1
|
Salazar Marcano DE, Lentink S, Chen JJ, Anyushin AV, Moussawi MA, Bustos J, Van Meerbeek B, Nyman M, Parac-Vogt TN. Supramolecular Self-Assembly of Proteins Promoted by Hybrid Polyoxometalates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312009. [PMID: 38213017 DOI: 10.1002/smll.202312009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Controlling the formation of supramolecular protein assemblies and endowing them with new properties that can lead to novel functional materials is an important but challenging task. In this work, a new hybrid polyoxometalate is designed to induce controlled intermolecular bridging between biotin-binding proteins. Such bridging interactions lead to the formation of supramolecular protein assemblies incorporating metal-oxo clusters that go from several nanometers in diameter up to the micron range. Insights into the self-assembly process and the nature of the resulting biohybrid materials are obtained by a combination of Small Angle X-ray Scattering (SAXS), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS), along with fluorescence, UV-vis, and Circular Dichroism (CD) spectroscopy. The formation of hybrid supramolecular assemblies is determined to be driven by biotin binding to the protein and electrostatic interactions between the anionic metal-oxo cluster and the protein, both of which also influence the stability of the resulting assemblies. As a result, the rate of formation, size, and stability of the supramolecular assemblies can be tuned by controlling the electrostatic interactions between the cluster and the protein (e.g., through varying the ionic strength of the solution), thereby paving the way toward biomaterials with tunable assembly and disassembly properties.
Collapse
Affiliation(s)
| | - Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jieh-Jang Chen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jenna Bustos
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | | |
Collapse
|
2
|
Shi Z, Luo M, Huang Q, Ding C, Wang W, Wu Y, Luo J, Lin C, Chen T, Zeng X, Mei L, Zhao Y, Chen H. NIR-dye bridged human serum albumin reassemblies for effective photothermal therapy of tumor. Nat Commun 2023; 14:6567. [PMID: 37848496 PMCID: PMC10582160 DOI: 10.1038/s41467-023-42399-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Human serum albumin (HSA) based drug delivery platforms that feature desirable biocompatibility and pharmacokinetic property are rapidly developed for tumor-targeted drug delivery. Even though various HSA-based platforms have been established, it is still of great significance to develop more efficient preparation technology to broaden the therapeutic applications of HSA-based nano-carriers. Here we report a bridging strategy that unfastens HSA to polypeptide chains and subsequently crosslinks these chains by a bridge-like molecule (BPY-Mal2) to afford the HSA reassemblies formulation (BPY@HSA) with enhanced loading capacity, endowing the BPY@HSA with uniformed size, high photothermal efficacy, and favorable therapeutic features. Both in vitro and in vivo studies demonstrate that the BPY@HSA presents higher delivery efficacy and more prominent photothermal therapeutic performance than that of the conventionally prepared formulation. The feasibility in preparation, stability, high photothermal conversion efficacy, and biocompatibility of BPY@HSA may facilitate it as an efficient photothermal agents (PTAs) for tumor photothermal therapy (PTT). This work provides a facile strategy to enhance the loading capacity of HSA-based crosslinking platforms in order to improve delivery efficacy and therapeutic effect.
Collapse
Affiliation(s)
- Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Miaomiao Luo
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chendi Ding
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jingjing Luo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chuchu Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Ting Chen
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
3
|
Zhou T, Yuan S, Qian P, Wu Y. Enzymes in Nanomedicine for Anti-tumor Therapy. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 638] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
5
|
Yu Q, Shi D, Dong W, Chen M. Optimizing the dynamic and thermodynamic properties of hybridization in DNA-mediated nanoparticle self-assembly. Phys Chem Chem Phys 2021; 23:11774-11783. [PMID: 33982700 DOI: 10.1039/d1cp01343b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA-directed nanoparticle (DNA-NP) systems provide various applications in sensing, medical diagnosis, data storage, plasmonics and photovoltaics. Bonding probability and melting properties are helpful to evaluate the selectivity, thermostability and thermosensitivity of these applications. We investigated the influence of temperature, nanoparticle size, DNA chain length and surface grafting density of DNA on one nanoparticle on the DNA dynamic hybridization percentage and melting properties of DNA-NP assembly systems by molecular dynamics simulation. The high degree of consistency of free energy estimations for DNA hybridization via our theoretical deduction and the nearest-neighbor rule generally used in experiments validates reasonably our DNA model. The melting temperature and thermosensitivity parameter are determined by the sigmoidal melting curves based on hybridization percentage versus temperature. The results indicated that the hybridization percentage presents a downward trend with increasing temperature and nanoparticle size. Applications based on DNA-NP systems with bigger nanoparticle size, such as DNA probes, have better selectivity, thermostability and thermosensitivity. There exist optimal DNA chain length and surface grafting density where the hybridization percentage reaches the maximal value. The melting temperature reaches a maximum at the point of optimal grafting density, while the thermosensitivity parameter presents an upward trend with the increase of grafting density. Several physical quantities consisting of the radial density function, root mean square end-to-end distance, contact distance parameter and effective volume fraction are used to analyse DNA chain conformations and DNA-NP packing in the assembly process. Our findings provide the theoretical basis for the improvement and optimization of applications based on DNA-NP systems.
Collapse
Affiliation(s)
- Qiuyan Yu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dongjian Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Obuobi S, Škalko-Basnet N. Nucleic Acid Hybrids as Advanced Antibacterial Nanocarriers. Pharmaceutics 2020; 12:E643. [PMID: 32650506 PMCID: PMC7408145 DOI: 10.3390/pharmaceutics12070643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Conventional antibiotic therapy is often challenged by poor drug penetration/accumulation at infection sites and poses a significant burden to public health. Effective strategies to enhance the therapeutic efficacy of our existing arsenal include the use of nanoparticulate delivery platforms to improve drug targeting and minimize adverse effects. However, these nanocarriers are often challenged by poor loading efficiency, rapid release and inefficient targeting. Nucleic acid hybrid nanocarriers are nucleic acid nanosystems complexed or functionalized with organic or inorganic materials. Despite their immense potential in antimicrobial therapy, they are seldom utilized against pathogenic bacteria. With the emergence of antimicrobial resistance and the associated complex interplay of factors involved in antibiotic resistance, nucleic acid hybrids represent a unique opportunity to deliver antimicrobials against resistant pathogens and to target specific genes that control virulence or resistance. This review provides an unbiased overview on fabricating strategies for nucleic acid hybrids and addresses the challenges of pristine oligonucleotide nanocarriers. We report recent applications to enhance pathogen targeting, binding and control drug release. As multifunctional next-generational antimicrobials, the challenges and prospect of these nanocarriers are included.
Collapse
Affiliation(s)
- Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
| | | |
Collapse
|
7
|
|
8
|
Chen C, Wunderlich K, Mukherji D, Koynov K, Heck AJ, Raabe M, Barz M, Fytas G, Kremer K, Ng DYW, Weil T. Precision Anisotropic Brush Polymers by Sequence Controlled Chemistry. J Am Chem Soc 2020; 142:1332-1340. [PMID: 31829581 PMCID: PMC6978811 DOI: 10.1021/jacs.9b10491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 01/20/2023]
Abstract
The programming of nanomaterials at molecular length-scales to control architecture and function represents a pinnacle in soft materials synthesis. Although elusive in synthetic materials, Nature has evolutionarily refined macromolecular synthesis with perfect atomic resolution across three-dimensional space that serves specific functions. We show that biomolecules, specifically proteins, provide an intrinsic macromolecular backbone for the construction of anisotropic brush polymers with monodisperse lengths via grafting-from strategy. Using human serum albumin as a model, its sequence was exploited to chemically transform a single cysteine, such that the expression of said functionality is asymmetrically placed along the backbone of the eventual brush polymer. This positional monofunctionalization strategy was connected with biotin-streptavidin interactions to demonstrate the capabilities for site-specific self-assembly to create higher ordered architectures. Supported by systematic experimental and computational studies, we envisioned that this macromolecular platform provides unique avenues and perspectives in macromolecular design for both nanoscience and biomedicine.
Collapse
Affiliation(s)
- Chaojian Chen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Ulm
University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Katrin Wunderlich
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Debashish Mukherji
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Stewart
Blusson Quantum Matter Institute, University
of British Columbia, Vancouver V6T 1Z4, Canada
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Astrid Johanna Heck
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marco Raabe
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Ulm
University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Matthias Barz
- Johannes
Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology, P.O. Box
1527, 71110 Heraklion, Greece
| | - Kurt Kremer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David Yuen Wah Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Ulm
University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| |
Collapse
|
9
|
Spaans S, Fransen PPKH, Schotman MJG, van der Wulp R, Lafleur RP, Kluijtmans SGJM, Dankers PYW. Supramolecular Modification of a Sequence-Controlled Collagen-Mimicking Polymer. Biomacromolecules 2019; 20:2360-2371. [PMID: 31050892 PMCID: PMC6560502 DOI: 10.1021/acs.biomac.9b00353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Indexed: 11/29/2022]
Abstract
Structurally and functionally well-defined recombinant proteins are an interesting class of sequence-controlled macromolecules to which different crosslinking chemistries can be applied to tune their biological properties. Herein, we take advantage of a 571-residue recombinant peptide based on human collagen type I (RCPhC1), which we functionalized with supramolecular 4-fold hydrogen bonding ureido-pyrimidinone (UPy) moieties. By grafting supramolecular UPy moieties onto the backbone of RCPhC1 (UPy-RCPhC1), increased control over the polymer structure, assembly, gelation, and mechanical properties was achieved. In addition, by increasing the degree of UPy functionalization on RCPhC1, cardiomyocyte progenitor cells were cultured on "soft" (∼26 kPa) versus "stiff" (∼68-190 kPa) UPy-RCPhC1 hydrogels. Interestingly, increased stress fiber formation, focal adhesions, and proliferation were observed on stiffer compared to softer substrates, owing to the formation of stronger cell-material interactions. In conclusion, a bioinspired hydrogel material was designed by a combination of two well-known natural components, i.e., a protein as sequence-controlled polymer and UPy units inspired on nucleobases.
Collapse
Affiliation(s)
- Sergio Spaans
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter-Paul K. H. Fransen
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maaike J. G. Schotman
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruben van der Wulp
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - René P.
M. Lafleur
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
10
|
Tang Q, Wang J, Jiang Y, Zhang M, Chang J, Xu Q, Mao L, Wang M. Developing chemically modified redox-responsive proteins as smart therapeutics. Chem Commun (Camb) 2019; 55:5163-5166. [PMID: 30984934 DOI: 10.1039/c9cc00519f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The conditional control of protein function in response to the physiological changes of diseased cells is essential to develop smart protein therapeutics. Herein, we report a redox-responsive chemical modification of a protein by conjugating an intracellular glutathione (GSH)-cleavable ligand, NSA, onto a protein residue. We demonstrated that the NSA conjugation of Ribonuclease A (RNase A) enabled the control of the protein function by GSH in an aqueous solution and living cells, with extended applications for targeted cancer therapy using a lipid nanoparticle-based intracellular protein delivery strategy.
Collapse
Affiliation(s)
- Qiao Tang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim YY, Bang Y, Lee AH, Song YK. Multivalent Traptavidin-DNA Conjugates for the Programmable Assembly of Nanostructures. ACS NANO 2019; 13:1183-1194. [PMID: 30654610 DOI: 10.1021/acsnano.8b06170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we explore the extended utility of two important functional biomolecules, DNA and protein, by hybridizing them through avidin-biotin conjugation. We report a simple yet scalable technique of successive magnetic separations to synthesize traptavidin-DNA conjugates with four distinct DNA binding sites that can be used as a supramolecular building block for programmable assembly of nanostructures. Using this nanoassembly platform, we fabricate several different plasmonic nanostructures with various metallic as well as semiconductor nanoparticles in predetermined ways. We also use the platform to construct dendrimer nanostructures using valency-controlled traptavidin-DNA conjugates in a programmable manner. These results suggest that our protein-DNA supramolecular building blocks would make a significant contribution to the assembly of multicomponent and complex nanostructures for numerous contemporary and future applications from molecular imaging to drug delivery.
Collapse
Affiliation(s)
- Young-Youb Kim
- Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , South Korea
| | - Yongbin Bang
- Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , South Korea
| | - Ah-Hyoung Lee
- Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , South Korea
| | - Yoon-Kyu Song
- Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , South Korea
- Advanced Institutes of Convergence Technology , Suwon , Gyeonggi-do 16229 , South Korea
- Inter-university Semiconductor Research Center (ISRC) , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
12
|
Barkley DA, Han SU, Koga T, Rudick JG. Peptide-Dendron Hybrids that Adopt Sequence-Encoded β-Sheet Conformations. Polym Chem 2018; 9:4994-5001. [PMID: 30923581 PMCID: PMC6433408 DOI: 10.1039/c8py00882e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Rational design rules for programming hierarchical organization and function through mutations of monomers in sequence-defined polymers can accelerate the development of novel polymeric and supramolecular materials. Our strategy for designing peptide-dendron hybrids that adopt predictable secondary and quaternary structures in bulk is based on patterning the sites at which dendrons are conjugated to short peptides. To validate this approach, we have designed and characterized a series of β-sheet-forming peptide-dendron hybrids. Spectroscopic studies of the hybrids in films reveal that the peptide portion of the hybrids adopts the intended secondary structure.
Collapse
Affiliation(s)
- Deborah A. Barkley
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sang Uk Han
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tadanori Koga
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
13
|
Yu Q, Wang R. Effect of Chain Rigidity on the Crystallization of DNA-Directed Nanoparticle System. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiuyan Yu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Weiss PS. Nano in Boston and Beyond. ACS NANO 2018; 12:8833-8834. [PMID: 30249097 DOI: 10.1021/acsnano.8b07025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
15
|
Jia HR, Zhu YX, Xu KF, Wu FG. Turning Toxicants into Safe Therapeutic Drugs: Cytolytic Peptide-Photosensitizer Assemblies for Optimized In Vivo Delivery of Melittin. Adv Healthc Mater 2018; 7:e1800380. [PMID: 29931753 DOI: 10.1002/adhm.201800380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/20/2018] [Indexed: 11/08/2022]
Abstract
Melittin (MEL) is recognized as a highly potent therapeutic peptide for treating various human diseases including cancer. However, the clinical applications of MEL are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity. Here, it is found that MEL can form a stable supramolecular nanocomplex of ≈60 nm with the photosensitizer chlorin e6 (Ce6), which after hyaluronic acid (HA) coating can achieve robust, safe, and imaging-guided tumor ablation. The as-designed nanocomplex (denoted as MEL/Ce6@HA) shows largely reduced hemolysis and selective cytolytic activity toward cancer cells. Upon laser irradiation, the loaded photosensitive Ce6 can synergistically facilitate the membrane-lytic efficiency of melittin and greatly increase the tumor penetration depth of the complexes in multicellular tumor spheroids. In vivo experiments reveal that MEL/Ce6@HA can realize enhanced tumor accumulation, reduced liver deposition, and rapid body clearance, which are beneficial for highly efficient and safe chemo-photodynamic dual therapy. This work develops a unique supramolecular strategy for optimized in vivo delivery of melittin and may have implications for the development of peptide-based theranostics.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
16
|
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 2018; 6:4714-4730. [PMID: 32254299 DOI: 10.1039/c8tb01078a] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, clinical applications have been proposed for various hydrogel products. Hydrogels can be derived from animal tissues, plant extracts and/or adipose tissue extracellular matrices; each type of hydrogel presents significantly different functional properties and may be used for many different applications, including medical therapies, environmental pollution treatments, and industrial materials. Due to complicated preparation techniques and the complexities associated with the selection of suitable materials, the applications of many host-guest supramolecular polymeric hydrogels are limited. Thus, improvements in the design and construction of smart materials are highly desirable in order to increase the lifetimes of functional materials. Here, we summarize different functional hydrogels and their varied preparation methods and source materials. The multifunctional properties of hydrogels, particularly their unique ability to adapt to certain environmental stimuli, are chiefly based on the incorporation of smart materials. Smart materials may be temperature sensitive, pH sensitive, pH/temperature dual sensitive, photoresponsive or salt responsive and may be used for hydrogel wound repair, hydrogel bone repair, hydrogel drug delivery, cancer therapy, and so on. This review focuses on the recent development of smart hydrogels for tissue engineering applications and describes some of the latest advances in using smart materials to create hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China.
| | | |
Collapse
|
17
|
Yu Q, Hu J, Hu Y, Wang R. Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics. SOFT MATTER 2018; 14:2665-2670. [PMID: 29561032 DOI: 10.1039/c7sm02456h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Assembly of nanoparticles (NPs) coated with complementary DNA strands leads to novel crystals with nanosized basic units rather than classic atoms, ions or molecules. The assembly process is mediated by hybridization of DNA via specific base pairing interaction, and is kinetically linked to the disassociation of DNA duplexes. DNA-level physiochemical quantities, both thermodynamic and kinetic, are key to understanding this process and essential for the design of DNA-NP crystals. The melting transition properties are helpful to judge the thermostability and sensitivity of relative DNA probes or other applications. Three different cases are investigated by changing the linker length and the spacer length on which the melting properties depend using the molecular dynamics method. Melting temperature is determined by sigmoidal melting curves based on hybridization percentage versus temperature and the Lindemann melting rule simultaneously. We provide a computational strategy based on a coarse-grained model to estimate the hybridization enthalpy, entropy and free energy from percentages of hybridizations which are readily accessible in experiments. Importantly, the lifetime of DNA bond dehybridization based on temperature and the activation energy depending on DNA bond strength are also calculated. The simulation results are in good agreement with the theoretical analysis and the present experimental data. Our study provides a good strategy to predict the melting temperature which is important for the DNA-directed nanoparticle system, and bridges the dynamics and thermodynamics of DNA-directed nanoparticle systems by estimating the equilibrium constant from the hybridization of DNA bonds quantitatively.
Collapse
Affiliation(s)
- Qiuyan Yu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Yi Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Rong Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Chakrabortty S, Sison M, Wu Y, Ladenburger A, Pramanik G, Biskupek J, Extermann J, Kaiser U, Lasser T, Weil T. NIR-emitting and photo-thermal active nanogold as mitochondria-specific probes. Biomater Sci 2018; 5:966-971. [PMID: 28282092 DOI: 10.1039/c6bm00951d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a bioinspired multifunctional albumin derived polypeptide coating comprising grafted poly(ethylene oxide) chains, multiple copies of the HIV TAT derived peptide enabling cellular uptake as well as mitochondria targeting triphenyl-phosphonium (TPP) groups. Exploring these polypeptide copolymers for passivating gold nanoparticles (Au NPs) yielded (i) NIR-emitting markers in confocal microscopy and (ii) photo-thermal active probes in optical coherence microscopy. We demonstrate the great potential of such multifunctional protein-derived biopolymer coatings for efficiently directing Au NP into cells and to subcellular targets to ultimately probe important cellular processes such as mitochondria dynamics and vitality inside living cells.
Collapse
Affiliation(s)
- Sabyasachi Chakrabortty
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hou Y, Zhou Y, Wang H, Wang R, Yuan J, Hu Y, Sheng K, Feng J, Yang S, Lu H. Macrocyclization of Interferon-Poly(α-amino acid) Conjugates Significantly Improves the Tumor Retention, Penetration, and Antitumor Efficacy. J Am Chem Soc 2018; 140:1170-1178. [PMID: 29262256 DOI: 10.1021/jacs.7b13017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclization and polymer conjugation are two commonly used approaches for enhancing the pharmacological properties of protein drugs. However, cyclization of parental proteins often only affords a modest improvement in biochemical or cell-based in vitro assays. Moreover, very few studies have included a systematic pharmacological evaluation of cyclized protein-based therapeutics in live animals. On the other hand, polymer-conjugated proteins have longer circulation half-lives but usually show poor tumor penetration and suboptimal pharmacodynamics due to increased steric hindrance. We herein report the generation of a head-to-tail interferon-poly(α-amino acid) macrocycle conjugate circ-P(EG3Glu)20-IFN by combining the aforementioned two approaches. We then compared the antitumor pharmacological activity of this macrocycle conjugate against its linear counterparts, N-P(EG3Glu)20-IFN, C-IFN-P(EG3Glu)20, and C-IFN-PEG. Our results found circ-P(EG3Glu)20-IFN to show considerably greater stability, binding affinity, and in vitro antiproliferative activity toward OVCAR3 cells than the three linear conjugates. More importantly, circ-P(EG3Glu)20-IFN exhibited longer circulation half-life, remarkably higher tumor retention, and deeper tumor penetration in vivo. As a result, administration of the macrocyclic conjugate could effectively inhibit tumor progression and extend survival in mice bearing established xenograft human OVCAR3 or SKOV3 tumors without causing severe paraneoplastic syndromes. Taken together, our study provided until now the most relevant experimental evidence in strong support of the in vivo benefit of macrocyclization of protein-polymer conjugates and for its application in next-generation therapeutics.
Collapse
Affiliation(s)
- Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Yu Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China , Chengdu 610054, People's Republic of China
| | - Hao Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Ruijue Wang
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities , Chengdu 610041, People's Republic of China
| | - Jingsong Yuan
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Yali Hu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, People's Republic of China
| | - Kai Sheng
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China , Chengdu 610054, People's Republic of China
| | - Shengtao Yang
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities , Chengdu 610041, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
20
|
Ng DYW, Vill R, Wu Y, Koynov K, Tokura Y, Liu W, Sihler S, Kreyes A, Ritz S, Barth H, Ziener U, Weil T. Directing intracellular supramolecular assembly with N-heteroaromatic quaterthiophene analogues. Nat Commun 2017; 8:1850. [PMID: 29185444 PMCID: PMC5707410 DOI: 10.1038/s41467-017-02020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Self-assembly in situ, where synthetic molecules are programmed to organize in a specific and complex environment i.e., within living cells, can be a unique strategy to influence cellular functions. Here we present a small series of rationally designed oligothiophene analogues that specifically target, locate and dynamically self-report their supramolecular behavior within the confinement of a cell. Through the recognition of the terminal alkyl substituent and the amphiphilic pyridine motif, we show that the cell provides different complementary pathways for self-assembly that can be traced easily with fluorescence microscopy as their molecular organization emits in distinct fluorescent bands. Importantly, the control and induction of both forms are achieved by time, temperature and the use of the intracellular transport inhibitor, bafilomycin A1. We showcase the importance of both intrinsic (cell) and extrinsic (stimulus) factors for self-organization and the potential of such a platform toward developing synthetic functional components within living cells.
Collapse
Affiliation(s)
- David Y W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Roman Vill
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yuzhou Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yu Tokura
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Weina Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne Sihler
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Kreyes
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sandra Ritz
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
21
|
Gačanin J, Kovtun A, Fischer S, Schwager V, Quambusch J, Kuan SL, Liu W, Boldt F, Li C, Yang Z, Liu D, Wu Y, Weil T, Barth H, Ignatius A. Spatiotemporally Controlled Release of Rho-Inhibiting C3 Toxin from a Protein-DNA Hybrid Hydrogel for Targeted Inhibition of Osteoclast Formation and Activity. Adv Healthc Mater 2017; 6. [PMID: 28758712 DOI: 10.1002/adhm.201700392] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/10/2017] [Indexed: 12/17/2022]
Abstract
In osteoporosis, bone structure can be improved by the introduction of therapeutic molecules inhibiting bone resorption by osteoclasts. Here, biocompatible hydrogels represent an excellent option for the delivery of pharmacologically active molecules to the bone tissue because of their biodegradability, injectability, and manifold functionalization capacity. The present study reports the preparation of a multifunctional hybrid hydrogel from chemically modified human serum albumin and rationally designed DNA building blocks. The hybrid hydrogel combines advantageous characteristics, including rapid gelation through DNA hybridization under physiological conditions and a self-healing and injectable nature with the possibility of specific loading and spatiotemporally controlled release of active proteins, making it an advanced biomaterial for the local treatment of bone diseases, for example, osteoporosis. The hydrogels are loaded with a recombinant Rho-inhibiting C3 toxin, C2IN-C3lim-G205C. This toxin selectively targets osteoclasts and inhibits Rho-signaling and, thereby, actin-dependent processes in these cells. Application of C2IN-C3lim-G205C toxin-loaded hydrogels effectively reduces osteoclast formation and resorption activity in vitro, as demonstrated by tartrate-resistant acid phosphatase staining and the pit resorption assay. Simultaneously, osteoblast activity, viability, and proliferation are unaffected, thus making C2IN-C3lim-G205C toxin-loaded hybrid hydrogels an attractive pharmacological system for spatial and selective modulation of osteoclast functions to reduce bone resorption.
Collapse
Affiliation(s)
- Jasmina Gačanin
- Institute of Organic Chemistry III; University of Ulm; 89081 Ulm Germany
| | - Anna Kovtun
- Institute of Orthopedic Research and Biomechanics; Trauma Research Center; University of Ulm; 89081 Ulm Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology; University of Ulm; 89081 Ulm Germany
| | - Victoria Schwager
- Institute of Pharmacology and Toxicology; University of Ulm; 89081 Ulm Germany
| | - Johanna Quambusch
- Institute of Organic Chemistry III; University of Ulm; 89081 Ulm Germany
- Max Planck Institute for Polymer Research; 55128 Mainz Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research; 55128 Mainz Germany
| | - Weina Liu
- Institute of Organic Chemistry III; University of Ulm; 89081 Ulm Germany
| | - Felix Boldt
- Institute of Organic Chemistry III; University of Ulm; 89081 Ulm Germany
| | - Chuang Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Yuzhou Wu
- Institute of Organic Chemistry III; University of Ulm; 89081 Ulm Germany
- Max Planck Institute for Polymer Research; 55128 Mainz Germany
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 430074 Wuhan China
| | - Tanja Weil
- Institute of Organic Chemistry III; University of Ulm; 89081 Ulm Germany
- Max Planck Institute for Polymer Research; 55128 Mainz Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology; University of Ulm; 89081 Ulm Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics; Trauma Research Center; University of Ulm; 89081 Ulm Germany
| |
Collapse
|
22
|
Chakrabortty S, Agrawalla BK, Stumper A, Vegi NM, Fischer S, Reichardt C, Kögler M, Dietzek B, Feuring-Buske M, Buske C, Rau S, Weil T. Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications. J Am Chem Soc 2017; 139:2512-2519. [PMID: 28097863 PMCID: PMC5588099 DOI: 10.1021/jacs.6b13399] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Organelle-targeted
photosensitization represents a promising approach
in photodynamic therapy where the design of the active photosensitizer
(PS) is very crucial. In this work, we developed a macromolecular
PS with multiple copies of mitochondria-targeting groups and ruthenium
complexes that displays highest phototoxicity toward several cancerous
cell lines. In particular, enhanced anticancer activity was demonstrated
in acute myeloid leukemia cell lines, where significant impairment
of proliferation and clonogenicity occurs. Finally, attractive two-photon
absorbing properties further underlined the great significance of
this PS for mitochondria targeted PDT applications in deep tissue
cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Reichardt
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) Jena , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | - Benjamin Dietzek
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) Jena , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Michaela Feuring-Buske
- Department of Internal Medicine III, University Hospital Ulm , Albert-Einstein Allee 23, 89081, Ulm, Germany
| | | | | | - Tanja Weil
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
23
|
Kuan SL, Wang T, Weil T. Site-Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome. Chemistry 2016; 22:17112-17129. [PMID: 27778400 PMCID: PMC5600100 DOI: 10.1002/chem.201602298] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 01/06/2023]
Abstract
The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site-directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site-selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tao Wang
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031P.R. China
| | - Tanja Weil
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
24
|
Yu Q, Zhang X, Hu Y, Zhang Z, Wang R. Dynamic Properties of DNA-Programmable Nanoparticle Crystallization. ACS NANO 2016; 10:7485-7492. [PMID: 27409362 DOI: 10.1021/acsnano.6b02067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials.
Collapse
Affiliation(s)
- Qiuyan Yu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Xuena Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Yi Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Zhihao Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Rong Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
25
|
Exploring the Effect of Ligand Structural Isomerism in Langmuir-Blodgett Films of Chiral Luminescent EuIIISelf-Assemblies. Chemistry 2016; 22:9709-23. [DOI: 10.1002/chem.201600560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/07/2022]
|
26
|
Wang Y, Zhang L, Zhang X, Wei X, Tang Z, Zhou S. Precise Polymerization of a Highly Tumor Microenvironment-Responsive Nanoplatform for Strongly Enhanced Intracellular Drug Release. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5833-5846. [PMID: 26889562 DOI: 10.1021/acsami.5b11569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The importance of achieving a high content of responsive groups of drug carriers is well-known for achieving rapid intracellular drug release; however, very little research has been published on this subject. Here, we present an entirely new strategy to synthesize a highly reduction-sensitive polymer-drug conjugate with one disulfide bond corresponding to each resultant copolymer through a precise ring-opening polymerization of ε-caprolactone that is initiated by a monoprotected cystamine. Simultaneously, the anticancer drug doxorubicin is chemically conjugated to the polymer via pH-responsive hydrazone bonds, which effectively prevent premature drug release in the blood circulation. The 3-aminophenylboronic acid (PBA) targeting ligands endow an active-targeting ability that significantly prompts the specific internalization of nanocarriers by tumor cells and thus results in excellent cytotoxicity against tumor cells. The concept of precise polymerization is put forward to achieve multifunctional nanocarriers for the first time. This study is expected to inspire the development of a highly environment-responsive nanoplatform for drug delivery in future clinical applications.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu, Sichuan610031, P.R. China
| | - Lei Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu, Sichuan610031, P.R. China
| | - Xiaobin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu, Sichuan610031, P.R. China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu, Sichuan610031, P.R. China
| | - Zhaomin Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu, Sichuan610031, P.R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu, Sichuan610031, P.R. China
| |
Collapse
|
27
|
Affiliation(s)
| | - David Y. W. Ng
- Institute of Organic Chemistry III, Ulm University, Ulm, Germany
| | - Yuzhou Wu
- Institute of Organic Chemistry III, Ulm University, Ulm, Germany
| | - Tanja Weil
- Institute of Organic Chemistry III, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Abstract
Albumin hydrogels crosslinked by disulfide bonds between the protein's own thiol groups.
Collapse
Affiliation(s)
- Yuling Sun
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yanbin Huang
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
29
|
Wang Y, Li H, Jin Q, Ji J. Intracellular host–guest assembly of gold nanoparticles triggered by glutathione. Chem Commun (Camb) 2016; 52:582-5. [DOI: 10.1039/c5cc07195j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple method to achieve host–guest assembly of gold nanoparticles triggered by intracellular glutathione was demonstrated.
Collapse
Affiliation(s)
- Yin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Huan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
30
|
Design of Self-Assembling Protein-Polymer Conjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:179-214. [PMID: 27677514 DOI: 10.1007/978-3-319-39196-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.
Collapse
|
31
|
Ennen F, Fenner P, Boye S, Lederer A, Komber H, Voit B, Appelhans D. Sphere-Like Protein–Glycopolymer Nanostructures Tailored by Polyassociation. Biomacromolecules 2015; 17:32-45. [DOI: 10.1021/acs.biomac.5b00975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Franka Ennen
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Philipp Fenner
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
32
|
Radaram B, Levine M. Rationally Designed Supramolecular Organic Hosts for Benzo[a]pyrene Binding and Detection. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Kuan SL, Wang T, Raabe M, Liu W, Lamla M, Weil T. Programming Bioactive Architectures with Cyclic Peptide Amphiphiles. Chempluschem 2015; 80:1347-1353. [PMID: 31973290 DOI: 10.1002/cplu.201500218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Indexed: 01/06/2023]
Abstract
We present a versatile approach for the synthesis of cyclic peptide amphiphiles of the hormone somatostatin (SST) with tunable lipophilic tails to program bioactive nanoarchitectures. A novel bis-alkylation reagent is synthesized that facilitates the functionalization of SST with a thiol anchor. Different hydrophobic moieties are introduced inspired by a biomimetic palmitoylation approach which opens access to cyclic peptide amphiphiles that display rich self-organization and cell membrane interactions.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Tao Wang
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Marco Raabe
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Weina Liu
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Markus Lamla
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Tanja Weil
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| |
Collapse
|
34
|
Wang H, Pietropaolo A, Wang W, Chou CY, Hisaki I, Tohnai N, Miyata M, Nakano T. Right-handed 2/1 helical arrangement of benzene molecules in cholic acid crystal established by experimental and theoretical circular dichroism spectroscopy. RSC Adv 2015. [DOI: 10.1039/c5ra20853j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Right handed 2/1 helical arrangement of benzene included in cholic acid (CA) crystals was directly established by experimental and theoretical circular dichroism spectral studies.
Collapse
Affiliation(s)
- Heng Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute
- Università di Catanzaro
- 88100 Catanzaro
- Italy
| | - Wenbin Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Chen-Yi Chou
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Ichiro Hisaki
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Norimitsu Tohnai
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Mikiji Miyata
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Tamaki Nakano
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| |
Collapse
|