1
|
Bello JLG, Luna TB, Lara Lafargue A, Ciria HMC, Zulueta YA. Bioimpedance formalism: A new approach for accessing the health status of cell and tissues. Bioelectrochemistry 2024; 160:108799. [PMID: 39173547 DOI: 10.1016/j.bioelechem.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
This manuscript describes a novel methodology for studying relaxation dynamics in tissues and cells using characteristic frequency of bioimpedance spectroscopy measurements. The Bioimpedance Formalism allows for the simultaneous study of bioelectrical parameters in the frequency and time domains, providing insight into possible relaxation processes occurring in the tissue or cell of interest. Results from the Cole-Cole analysis showed no multiple relaxation processes associated with heterogeneity, with a visible age group separation in males compared with females. The study of the relaxation dynamic in the time domain revealed that the β parameter can be used to analyse the charge carriers in tissues, cells, or cancer cells, potentially leading to new diagnostic and therapeutic approaches for cancer and other diseases. Overall, this approach presents a promising area of research for gaining insights into the electrical properties of tissues and cells using bioimpedance methods.
Collapse
Affiliation(s)
- Jose Luis García Bello
- Autonomous University of Santo Domingo (UASD), San Francisco de Macorís Campus, Dominican Republic.
| | - Taira Batista Luna
- Autonomous University of Santo Domingo (UASD), UASD Nagua Center, Dominican Republic.
| | - Alcibíades Lara Lafargue
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| | - Héctor Manuel Camué Ciria
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| | - Yohandys A Zulueta
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| |
Collapse
|
2
|
O'Mari O, Yang MY, Goddard W, Vullev VI. How Rigid Are Anthranilamide Molecular Electrets? J Phys Chem B 2024. [PMID: 39564657 DOI: 10.1021/acs.jpcb.4c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
As important as molecular electrets are for electronic materials and devices, conformational fluctuations strongly impact their macrodipoles and intrinsic properties. Herein, we employ molecular dynamics (MD) simulations with the polarizable charge equilibrium (PQEq) method to investigate the persistence length (LP) of molecular electrets composed of anthranilamide (Aa) residues. The PQEq-MD dissipates the accepted static notions about Aa macromolecules, and LP represents the shortest Aa rigid segments. The classical model with a single LP value does not describe these oligomers. Introducing multiple LP values for the same macromolecule follows the observed trends and discerns the enhanced rigidity in their middle sections from the reduced stiffness at their terminal regions. Furthermore, LP distinctly depends on solvent polarity. The Aa oligomers maintain extended conformations in nonpolar solvents with LP exceeding 4 nm, while in polar media, increased conformational fluctuations reduce LP to about 2 nm. These characteristics set key guidelines about the utility of Aa conjugates for charge-transfer systems within organic electronics and energy engineering.
Collapse
Affiliation(s)
- Omar O'Mari
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, California 92521, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Nuomin H, Wu J, Zhang P, Beratan DN. Efficient simulation of open quantum systems coupled to a reservoir through multiple channels. J Chem Phys 2024; 161:124114. [PMID: 39324530 DOI: 10.1063/5.0226183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
It is challenging to simulate open quantum systems that are connected to a reservoir through multiple channels. For example, vibrations may induce fluctuations in both energy gaps and electronic couplings, which represent two independent channels of system-bath couplings. Systems of this kind are ubiquitous in the processes of excited state radiationless decay. Combined with density matrix renormalization group (DMRG) and matrix product states (MPS) methods, we develop an interaction-picture chain mapping strategy for vibrational reservoirs to simulate the dynamics of these open systems, resulting in time-dependent spatially local system-bath couplings in the chain-mapped Hamiltonian. This transformation causes the entanglement generated by the system-bath interactions to be restricted within a narrow frequency window of vibrational modes, enabling efficient DMRG/MPS dynamical simulations. We demonstrate the utility of this approach by simulating singlet fission dynamics using a generalized spin-boson Hamiltonian with both diagonal and off-diagonal system-bath couplings. This approach generalizes an earlier interaction-picture chain mapping scheme, allowing for efficient and exact simulation of systems with multi-channel system-bath couplings using matrix product states, which may further our understanding of nonlocal exciton-phonon couplings in exciton transport and the non-Condon effect in energy and electron transfer.
Collapse
Affiliation(s)
- Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jiaxi Wu
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, California 91125, USA
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
5
|
Parker KA, Beratan DN. Undulating Free Energy Landscapes Buffer Redox Chains from Environmental Fluctuations. J Phys Chem B 2024; 128:8933-8945. [PMID: 39244677 DOI: 10.1021/acs.jpcb.4c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Roller-coaster or undulating free energy landscapes, with alternating high and low potential cofactors, occur frequently in biological redox chains. Yet, there is little understanding of the possible advantages created by these landscapes. We examined the tetraheme subunit associated with Blastochloris viridis reaction centers, comparing the dynamics of the native protein and of hypothetical (in silico) mutants. We computed the variation in the total number of electrons in wild type (WT) and mutant tetrahemes connected to an electron reservoir in the presence of a time-varying potential, as a model for a fluctuating redox environment. We found that roller-coaster free energy landscapes buffer the redox cofactor populations from these fluctuations. The WT roller-coaster landscape slows forward and backward electron transfer in the face of fluctuations, and may offer the advantage of sustaining the reduction of essential cofactors, such as the chlorophyll special pair in photosynthesis, even though an undulating landscape introduces thermodynamically uphill steps in multistep redox chains.
Collapse
Affiliation(s)
- Kelsey A Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Yang T, Chavez MS, Niman CM, Xu S, El-Naggar MY. Long-distance electron transport in multicellular freshwater cable bacteria. eLife 2024; 12:RP91097. [PMID: 39207443 PMCID: PMC11361709 DOI: 10.7554/elife.91097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current-voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope's nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos AngelesUnited States
- Department of Chemistry, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
7
|
Polycarpou G, Skourtis SS. Intra-strand phosphate-mediated pathways in microsolvated double-stranded DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:375301. [PMID: 38848732 DOI: 10.1088/1361-648x/ad559d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
We argue that dry DNA charge transport in molecular junctions, over distances of tens of nanometers, can take place via independent intra-strand pathways involving the phosphate groups. Such pathways explain recent single-molecule experiments that compare currents in intact and nicked 100 base-pair double-stranded DNA. We explore the conditions that favor independent intra-strand transport channels with the participation of the phosphate groups, as opposed to purely base-mediated transport involving the pi-stacked bases and inter-strand transitions. Our computations demonstrate how long-distance transport pathways in DNA are tuned by the degree of solvation, which affects the level of dynamic disorder in the pi-stacking, and the energies of phosphate-group molecular orbitals.
Collapse
|
8
|
Kuan KY, Yeh SH, Yang W, Hsu CP. Excited-State Charge Transfer Coupling from Quasiparticle Energy Density Functional Theory. J Phys Chem Lett 2024; 15:6126-6136. [PMID: 38830203 PMCID: PMC11181311 DOI: 10.1021/acs.jpclett.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
The recently developed Quasiparticle Energy (QE) scheme, based on a DFT calculation with one more (or less) electron, offers a good description of excitation energies, even with charge transfer characters. In this work, QE is further extended to calculate electron transfer (ET) couplings involving two excited states. We tested it with a donor-acceptor complex, consisting of a furan and a 1,1-dicyanoethylene (DCNE), in which two low lying charge transfer and local excitation states are involved. With generalized Mülliken-Hush and fragment charge-difference schemes, couplings from the QE approach generally agree well with those obtained from TDDFT, except that QE couplings exhibit better exponential distance dependence. Couplings from half-energy gaps with an external field are also calculated and reported. Our results show that the QE scheme is robust in calculating ET couplings with greatly reduced computational time.
Collapse
Affiliation(s)
- Kai-Yuan Kuan
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang
District, Taipei 11529, Taiwan
| | - Shu-Hao Yeh
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang
District, Taipei 11529, Taiwan
- Department
of Chemistry, National Taiwan University, 1 Roosevelt Rd, Section 4, Da’an
District, Taipei City 10617, Taiwan
| | - Weitao Yang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chao-Ping Hsu
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang
District, Taipei 11529, Taiwan
- Division
of Physics, National Center for Theoretical
Sciences, 1 Roosevelt
Road, Section 4, Taipei City 10617, Taiwan
| |
Collapse
|
9
|
Navamani K. Unified Entropy-Ruled Einstein's Relation for Bulk and Low-Dimensional Molecular-Material Systems: A Hopping-to-Band Shift Paradigm. J Phys Chem Lett 2024; 15:2519-2528. [PMID: 38411901 DOI: 10.1021/acs.jpclett.3c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We present a unified paradigm on entropy-ruled Einstein's diffusion-mobility relation (μ/D ratio) for 1D, 2D, and 3D free-electron solid state systems. The localization transport in the extended molecules is well approximated by the continuum time-delayed hopping factor within our unified entropy-ruled transport method of noninteracting quantum systems. Moreover, we generalize an entropy-dependent diffusion relation for 1D, 2D, and 3D systems as defined by D d , h e f f = D d , h e f f = 0 exp ( ( d - 1 ) h e f f d + 2 ) , where heff and d are the effective entropy and dimension (d = 1, 2, 3), respectively. This generalized relation is valid for both equilibrium and nonequilibrium transport systems since the parameter heff is closely connected with the nonequilibrium fluctuation theorem-based entropy production rule. Importantly, we herein revisit the Boltzmann approach using an entropy-ruled method for mobility calculation for the universal quantum materials that is expressed as μ d = [ ( d d + 2 ) q d h e f f d η ] v F 2 τ 2 , where v F 2 τ 2 is the diffusion constant for band transport systems and η is the chemical potential. According to our entropy-ruled μ/D relation, the Navamani-Shockley diode equation is transformed.
Collapse
Affiliation(s)
- K Navamani
- Department of Physics, Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore-641407, India
| |
Collapse
|
10
|
Gibbs CA, Ghazi N, Tao J, Warren JJ. An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein. Molecules 2024; 29:350. [PMID: 38257263 PMCID: PMC10818705 DOI: 10.3390/molecules29020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Multi-step electron transfer reactions are important to the function of many cellular systems. The ways in which such systems have evolved to direct electrons along specific pathways are largely understood, but less so are the ways in which the reduction-oxidation potentials of individual redox sites are controlled. We prepared a series of three new artificial variants of Pseudomonas aeruginosa azurin where a tyrosine (Tyr109) is situated between the native Cu ion and a Ru(II) photosensitizer tethered to a histidine (His107). Arginine, glutamine, or methionine were introduced as position 122, which is near to Tyr109. We investigated the rate of CuI oxidation by a flash-quench generated Ru(III) oxidant over pH values from 5 to 9. While the identity of the residue at position 122 affects some of the physical properties of Tyr109, the rates of CuI oxidation are only weakly dependent on the identity of the residue at 122. The results highlight that more work is still needed to understand how non-covalent interactions of redox active groups are affected in redox proteins.
Collapse
Affiliation(s)
| | | | | | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
11
|
McGuinness KN, Fehon N, Feehan R, Miller M, Mutter AC, Rybak LA, Nam J, AbuSalim JE, Atkinson JT, Heidari H, Losada N, Kim JD, Koder RL, Lu Y, Silberg JJ, Slusky JSG, Falkowski PG, Nanda V. The energetics and evolution of oxidoreductases in deep time. Proteins 2024; 92:52-59. [PMID: 37596815 DOI: 10.1002/prot.26563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023]
Abstract
The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation-reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation-reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user-contributed submissions with the intention of making it a valuable resource for researchers in this field.
Collapse
Affiliation(s)
- Kenneth N McGuinness
- Department of Natural Sciences, Caldwell University, Caldwell, New Jersey, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Nolan Fehon
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ryan Feehan
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Michelle Miller
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Andrew C Mutter
- Department of Physics, The City College of New York, New York, New York, USA
| | - Laryssa A Rybak
- Department of Physics, The City College of New York, New York, New York, USA
| | - Justin Nam
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Jenna E AbuSalim
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Joshua T Atkinson
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Natalie Losada
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - J Dongun Kim
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Jonathan J Silberg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Joanna S G Slusky
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
12
|
Auty AJ, Scattergood PA, Keane T, Cheng T, Wu G, Carson H, Shipp J, Sadler A, Roseveare T, Sazanovich IV, Meijer AJHM, Chekulaev D, Elliot PIP, Towrie M, Weinstein JA. A stronger acceptor decreases the rates of charge transfer: ultrafast dynamics and on/off switching of charge separation in organometallic donor-bridge-acceptor systems. Chem Sci 2023; 14:11417-11428. [PMID: 37886100 PMCID: PMC10599469 DOI: 10.1039/d2sc06409j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
To unravel the role of driving force and structural changes in directing the photoinduced pathways in donor-bridge-acceptor (DBA) systems, we compared the ultrafast dynamics in novel DBAs which share a phenothiazine (PTZ) electron donor and a Pt(ii) trans-acetylide bridge (-C[triple bond, length as m-dash]C-Pt-C[triple bond, length as m-dash]C-), but bear different acceptors conjugated into the bridge (naphthalene-diimide, NDI; or naphthalene-monoimide, NAP). The excited state dynamics were elucidated by transient absorption, time-resolved infrared (TRIR, directly following electron density changes on the bridge/acceptor), and broadband fluorescence-upconversion (FLUP, directly following sub-picosecond intersystem crossing) spectroscopies, supported by TDDFT calculations. Direct conjugation of a strong acceptor into the bridge leads to switching of the lowest excited state from the intraligand 3IL state to the desired charge-separated 3CSS state. We observe two surprising effects of an increased strength of the acceptor in NDI vs. NAP: a ca. 70-fold slow-down of the 3CSS formation-(971 ps)-1vs. (14 ps)-1, and a longer lifetime of the 3CSS (5.9 vs. 1 ns); these are attributed to differences in the driving force ΔGet, and to distance dependence. The 100-fold increase in the rate of intersystem crossing-to sub-500 fs-by the stronger acceptor highlights the role of delocalisation across the heavy-atom containing bridge in this process. The close proximity of several excited states allows one to control the yield of 3CSS from ∼100% to 0% by solvent polarity. The new DBAs offer a versatile platform for investigating the role of bridge vibrations as a tool to control excited state dynamics.
Collapse
Affiliation(s)
- Alexander J Auty
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | | | - Theo Keane
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Tao Cheng
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Guanzhi Wu
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Heather Carson
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - James Shipp
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Andrew Sadler
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Thomas Roseveare
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Igor V Sazanovich
- Laser for Science Facility, Rutherford Appleton Laboratory, RCaH, STFC OX11 0QX UK
| | | | - Dimitri Chekulaev
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Paul I P Elliot
- Department of Chemical Sciences, University of Huddersfield HD1 3DH UK
| | - Mike Towrie
- Laser for Science Facility, Rutherford Appleton Laboratory, RCaH, STFC OX11 0QX UK
| | - Julia A Weinstein
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| |
Collapse
|
13
|
Krishnan S, Aksimentiev A, Lindsay S, Matyushov D. Long-Range Conductivity in Proteins Mediated by Aromatic Residues. ACS PHYSICAL CHEMISTRY AU 2023; 3:444-455. [PMID: 37780537 PMCID: PMC10540285 DOI: 10.1021/acsphyschemau.3c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 09/30/2023]
Abstract
Single-molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen over 10 nm distances, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1 V. This is puzzling because, for fast transport (i.e., a free energy barrier of zero), the hopping rate is determined by the reorganization energy of approximately 0.8 eV, and this sets the time scale of a single hop to at least 1 μs. Furthermore, the Fermi energies of typical metal electrodes are far removed from the energies required for sequential oxidation and reduction of the aromatic residues of the protein, which should further reduce the hopping current. Here, we combine all-atom molecular dynamics (MD) simulations of non-redox-active proteins (consensus tetratricopeptide repeats) with an electron transfer theory to demonstrate a molecular mechanism that can account for the unexpectedly fast electron transport. According to our MD simulations, the reorganization energy produced by the energy shift on charging (the Stokes shift) is close to the conventional value of 0.8 eV. However, the non-ergodic sampling of molecular configurations by the protein results in reaction-reorganization energies, extracted directly from the distribution of the electrostatic energy fluctuations, that are only ∼0.2 eV, which is small enough to enable long-range conductivity, without invoking quantum coherent transport. Using the MD values of the reorganization energies, we calculate a current decay with distance that is in agreement with experiment.
Collapse
Affiliation(s)
- Siddharth Krishnan
- Department
of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department
of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stuart Lindsay
- Department
of Physics, Arizona State University, Tempe, Arizona 85281, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Dmitry Matyushov
- Department
of Physics, Arizona State University, Tempe, Arizona 85281, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
14
|
Dumont R, Dowdell J, Song J, Li J, Wang S, Kang W, Li B. Control of charge transport in electronically active systems towards integrated biomolecular circuits (IbC). J Mater Chem B 2023; 11:8302-8314. [PMID: 37464922 DOI: 10.1039/d3tb00701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The miniaturization of traditional silicon-based electronics will soon reach its limitation as quantum tunneling and heat become serious problems at the several-nanometer scale. Crafting integrated circuits via self-assembly of electronically active molecules using a "bottom-up" paradigm provides a potential solution to these technological challenges. In particular, integrated biomolecular circuits (IbC) offer promising advantages to achieve this goal, as nature offers countless examples of functionalities entailed by self-assembly and examples of controlling charge transport at the molecular level within the self-assembled structures. To this end, the review summarizes the progress in understanding how charge transport is regulated in biosystems and the key redox-active amino acids that enable the charge transport. In addition, charge transport mechanisms at different length scales are also reviewed, offering key insights for controlling charge transport in IbC in the future.
Collapse
Affiliation(s)
- Ryan Dumont
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Juwaan Dowdell
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jisoo Song
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jiani Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Suwan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Wei Kang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Bo Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| |
Collapse
|
15
|
Jiang T, Zeng BF, Zhang B, Tang L. Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications. Chem Soc Rev 2023; 52:5968-6002. [PMID: 37498342 DOI: 10.1039/d2cs00519k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Biao-Feng Zeng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Mostajabi Sarhangi S, Matyushov DV. Electron Tunneling in Biology: When Does it Matter? ACS OMEGA 2023; 8:27355-27365. [PMID: 37546584 PMCID: PMC10399179 DOI: 10.1021/acsomega.3c02719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Electrons can tunnel between cofactor molecules positioned along biological electron transport chains up to a distance of ≃ 20 Å on the millisecond time scale of enzymatic turnover. This tunneling range determines the design of biological energy chains facilitating the cross-membrane transport of electrons. Tunneling distance and cofactors' redox potentials become the main physical parameters affecting the rate of electron transport. In addition, universal charge-transport properties are assigned to all proteins, making protein identity, flexibility, and dynamics insignificant. This paradigm is challenged by dynamical models of electron transfer, showing that the electron hopping rate is constant within the crossover distance R* ≃ 12 Å, followed with an exponential falloff at longer distances. If this hypothesis is fully confirmed, natural and man-made energy chains for electron transport should be best designed by placing redox cofactors near the crossover distance R*. Protein flexibility and dynamics affect the magnitude of the maximum hopping rate within the crossover distance. Changes in protein flexibility between forward and backward transitions contribute to vectorial charge transport. For biological energy chains, charge transport through proteins is not defined by universal parameters, and protein identity matters.
Collapse
Affiliation(s)
- Setare Mostajabi Sarhangi
- School of Molecular Sciences and Department
of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United
States
| | - Dmitry V. Matyushov
- School of Molecular Sciences and Department
of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United
States
| |
Collapse
|
17
|
Jang SJ, Rhee YM. Modified Fermi's golden rule rate expressions. J Chem Phys 2023; 159:014101. [PMID: 37403843 DOI: 10.1063/5.0152804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Fermi's golden rule (FGR) serves as the basis for many expressions of spectroscopic observables and quantum transition rates. The utility of FGR has been demonstrated through decades of experimental confirmation. However, there still remain important cases where the evaluation of a FGR rate is ambiguous or ill-defined. Examples are cases where the rate has divergent terms due to the sparsity in the density of final states or time dependent fluctuations of system Hamiltonians. Strictly speaking, assumptions of FGR are no longer valid for such cases. However, it is still possible to define modified FGR rate expressions that are useful as effective rates. The resulting modified FGR rate expressions resolve a long standing ambiguity often encountered in using FGR and offer more reliable ways to model general rate processes. Simple model calculations illustrate the utility and implications of new rate expressions.
Collapse
Affiliation(s)
- Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, USA and PhD Programs in Chemistry and Physics, Graduate Center of the City University of New York, New York, New York 10016, USA
- Korea Institute for Advanced Study, Seoul 02455, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
18
|
Zhang J, Tang Z, Zhang X, Zhu H, Zhao R, Lu Y, Gao J. Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States. J Chem Theory Comput 2023; 19:1777-1789. [PMID: 36917687 DOI: 10.1021/acs.jctc.2c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A flexible self-consistent field method, called target state optimization (TSO), is presented for exploring electronic excited configurations and localized diabatic states. The key idea is to partition molecular orbitals into different subspaces according to the excitation or localization pattern for a target state. Because of the orbital-subspace constraint, orbitals belonging to different subspaces do not mix. Furthermore, the determinant wave function for such excited or diabatic configurations can be variationally optimized as a ground state procedure, unlike conventional ΔSCF methods, without the possibility of collapsing back to the ground state or other lower-energy configurations. The TSO method can be applied both in Hartree-Fock theory and in Kohn-Sham density functional theory (DFT). The density projection procedure and the working equations for implementing the TSO method are described along with several illustrative applications. For valence excited states of organic compounds, it was found that the computed excitation energies from TSO-DFT and time-dependent density functional theory (TD-DFT) are of similar quality with average errors of 0.5 and 0.4 eV, respectively. For core excitation, doubly excited states and charge-transfer states, the performance of TSO-DFT is clearly superior to that from conventional TD-DFT calculations. It is shown that variationally optimized charge-localized diabatic states can be defined using TSO-DFT in energy decomposition analysis to gain both qualitative and quantitative insights on intermolecular interactions. Alternatively, the variational diabatic states may be used in molecular dynamics simulation of charge transfer processes. The TSO method can also be used to define basis states in multistate density functional theory for excited states through nonorthogonal state interaction calculations. The software implementing TSO-DFT can be accessed from the authors.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Zhen Tang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Hong Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Ruoqi Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,Institute of Theoretical Chemistry, Jilin University, Changchun, 130023 Jilin, P. R. China
| | - Yangyi Lu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Li X, Zhou S, Zhao Q, Chen Y, Qi P, Zhang Y, Wang L, Guo C, Chen S. Supramolecular Enhancement of Charge Transport through Pillar[5]arene-Based Self-Assembled Monolayers. Angew Chem Int Ed Engl 2023; 62:e202216987. [PMID: 36728903 DOI: 10.1002/anie.202216987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
Intermolecular charge transport is one of the essential modes for modulating charge transport in molecular electronic devices. Supermolecules are highly promising candidates for molecular devices because of their abundant structures and easy functionalization. Herein, we report an efficient strategy to enhance charge transport through pillar[5]arene self-assembled monolayers (SAMs) by introducing cationic guests. The current density of pillar[5]arene SAMs can be raised up to about 2.1 orders of magnitude by inserting cationic molecules into the cavity of pillar[5]arenes in SAMs. Importantly, we have also observed a positive correlation between the charge transport of pillar[5]arene-based complex SAMs and the binding affinities of the pillar[5]arene-based complexation. Such an enhancement of charge transport is attributed to the efficient host-guest interactions that stabilize the supramolecular complexes and lower the energy gaps for charge transport. This work provides a predictive pattern for the regulation of intermolecular charge transport in guiding the design of next generation switches and functional sensors in supramolecular electronics.
Collapse
Affiliation(s)
- Xiaobing Li
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Siyuan Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Qi Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Yi Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Pan Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Yongkang Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| |
Collapse
|
20
|
Karuppannan SK, Nijhuis CA. A Method to Investigate the Mechanism of Charge Transport Across Bio-Molecular Junctions with Ferritin. Methods Mol Biol 2023; 2671:241-255. [PMID: 37308649 DOI: 10.1007/978-1-0716-3222-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the mechanisms of charge transport (CT) across biomolecular tunnel junctions, it is required to make electrical contacts by a non-invasive method that leaves the biomolecules unaltered. Although different methods to form biomolecular junctions are available, here we describe the EGaIn-method because it allows us to readily form electrical contacts to monolayers of biomolecules in ordinary laboratory settings and to probe CT as a function of voltage, temperature, or magnetic field. This method relies on a non-Newtonian liquid-metal ally of Ga and In with a few nm thin layer of GaOx floating on its surface giving this material non-Newtonian properties allowing it to be shaped in to cone-shaped tips or stabilized in microchannels. These EGaIn structures form stable contacts to monolayers making it possible to investigate CT mechanisms across biomolecules in great detail.
Collapse
Affiliation(s)
- Senthil Kumar Karuppannan
- National Quantum Fables Foundry (NQFF), Institute of Materials Research and Engineering, Singapore, Singapore
| | - Christian A Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
21
|
Wang F, Chan CH, Suciu V, Mustafa K, Ammend M, Si D, Hochbaum AI, Egelman EH, Bond DR. Structure of Geobacter OmcZ filaments suggests extracellular cytochrome polymers evolved independently multiple times. eLife 2022; 11:e81551. [PMID: 36062910 PMCID: PMC9473688 DOI: 10.7554/elife.81551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
While early genetic and low-resolution structural observations suggested that extracellular conductive filaments on metal-reducing organisms such as Geobacter were composed of type IV pili, it has now been established that bacterial c-type cytochromes can polymerize to form extracellular filaments capable of long-range electron transport. Atomic structures exist for two such cytochrome filaments, formed from the hexaheme cytochrome OmcS and the tetraheme cytochrome OmcE. Due to the highly conserved heme packing within the central OmcS and OmcE cores, and shared pattern of heme coordination between subunits, it has been suggested that these polymers have a common origin. We have now used cryo-electron microscopy (cryo-EM) to determine the structure of a third extracellular filament, formed from the Geobacter sulfurreducens octaheme cytochrome, OmcZ. In contrast to the linear heme chains in OmcS and OmcE from the same organism, the packing of hemes, heme:heme angles, and between-subunit heme coordination is quite different in OmcZ. A branched heme arrangement within OmcZ leads to a highly surface exposed heme in every subunit, which may account for the formation of conductive biofilm networks, and explain the higher measured conductivity of OmcZ filaments. This new structural evidence suggests that conductive cytochrome polymers arose independently on more than one occasion from different ancestral multiheme proteins.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Chi Ho Chan
- Department of Plant and Microbial Biology, and BioTechnology Institute, University of MinnesotaSt. PaulUnited States
| | - Victor Suciu
- Division of Computing and Software Systems, University of Washington BothellBothellUnited States
| | - Khawla Mustafa
- Department of Chemistry, University of California, IrvineIrvineUnited States
| | - Madeline Ammend
- Department of Plant and Microbial Biology, and BioTechnology Institute, University of MinnesotaSt. PaulUnited States
| | - Dong Si
- Division of Computing and Software Systems, University of Washington BothellBothellUnited States
| | - Allon I Hochbaum
- Department of Chemistry, University of California, IrvineIrvineUnited States
- Department of Materials Science and Engineering, University of CaliforniaIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of CaliforniaIrvineUnited States
- Department of Chemical and Biomolecular Engineering, University of CaliforniaIrvineUnited States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Daniel R Bond
- Department of Plant and Microbial Biology, and BioTechnology Institute, University of MinnesotaSt. PaulUnited States
| |
Collapse
|
22
|
Navamani K, Rajkumar K. Generalization on Entropy-Ruled Charge and Energy Transport for Organic Solids and Biomolecular Aggregates. ACS OMEGA 2022; 7:27102-27115. [PMID: 35967056 PMCID: PMC9366796 DOI: 10.1021/acsomega.2c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/13/2022] [Indexed: 05/27/2023]
Abstract
Herein, a generalized version of the entropy-ruled charge and energy transport mechanism for organic solids and biomolecular aggregates is presented. The effects of thermal disorder and electric field on electronic transport in molecular solids have been quantified by entropy, which eventually varies with respect to the typical disorder (static or dynamic). Based on our previous differential entropy (h s )-driven charge transport method, we explore the nonsteady carrier energy flux principle for soft matter systems from small organic solids to macrobiomolecular aggregates. Through this principle, the synergic nature of charge and energy transport in different organic systems is addressed. In this work, entropy is the key parameter to classify whether the carrier dynamics is in a nonsteady or steady state. Besides that, we also propose the formulation for unifying the hopping and band transport, which provides the relaxation time-hopping rate relation and the relaxation time-effective mass ratio. The calculated disorder drift time (or entropy-weighted carrier drift time) for hole transport in an alkyl-substituted triphenylamine (TPA) molecular device is 9.3 × 10-7 s, which illustrates nuclear dynamics-coupled charge transfer kinetics. The existence of nonequilibrium transport is anticipated while the carrier dynamics is in the nonsteady state, which is further examined from the rate of traversing potential in octupolar molecules. Our entropy-ruled Einstein model connects the adiabatic band and nonadiabatic hopping transport mechanisms. The logarithmic current density at different electric field-assisted site energy differences provides information about the typical transport (whether trap-free diffusion or trap-assisted recombination) in molecular devices, which reflects in the Navamani-Shockley diode equation.
Collapse
Affiliation(s)
- Karuppuchamy Navamani
- Department
of Physics, Centre for Research and Development
(CFRD), KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - Kanakaraj Rajkumar
- Department
of Physics, Indian Institute of Technology
Madras, Chennai 600036, India
| |
Collapse
|
23
|
Shen W, Teo RD, Beratan DN, Warren JJ. Cofactor Dynamics Couples the Protein Surface to the Heme in Cytochrome c, Facilitating Electron Transfer. J Phys Chem B 2022; 126:3522-3529. [PMID: 35507916 PMCID: PMC9867876 DOI: 10.1021/acs.jpcb.2c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electron transport through biomolecules and in biological transport networks is of great importance to bioenergetics and biocatalysis. More generally, it is of crucial importance to understand how the pathways that connect buried metallocofactors to other cofactors, and to protein surfaces, affect the biological chemistry of metalloproteins. In terms of electron transfer (ET), the strongest coupling pathways usually comprise covalent and hydrogen bonded networks, with a limited number of through-space contacts. Herein, we set out to determine the relative roles of hydrogen bonds involved in ET via an established heme-to-surface tunneling pathway in cytochrome (cyt) c (i.e., heme-W59-D60-E61-N62). A series of cyt c variants were produced where a ruthenium tris(diimine) photooxidant was placed at position 62 via covalent modification of the N62C residue. Surprisingly, variants where the H-bonding residues W59 and D60 were replaced (i.e., W59F and D60A) showed no change in ET rate from the ferrous heme to Ru(III). In contrast, changing the composition of an alternative tunneling pathway (i.e., heme-M64-N63-C62) with the M64L substitution shows a factor of 2 decrease in the rate of heme-to-Ru ET. This pathway involves a through-space tunneling step between the heme and M64 residue, and such steps are usually disfavored. To rationalize why the heme-M64-N63-C62 is preferred, molecular dynamics (MD) simulations and Pathways analysis were employed. These simulations show that the change in heme-Ru ET rates is attributed to different conformations with compressed donor-acceptor distances, by ∼2 Å in pathway distance, in the M64-containing protein as compared to the M64L protein. The change in distance is correlated with changes in the electronic coupling that are in accord with the experimentally observed heme-Ru ET rates. Remarkably, the M64L variation at the core of the protein translates to changes in cofactor dynamics at the protein surface. The surface changes identified by MD simulations include dynamic anion-π and dipole-dipole interactions. These interactions influence the strength of tunneling pathways and ET rates by facilitating decreases in through-space tunneling distances in key coupling pathways.
Collapse
Affiliation(s)
- William Shen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| | - Ruijie D. Teo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| |
Collapse
|
24
|
Li X, Cazade PA, Qi P, Thompson D, Guo C. The role of externally-modulated electrostatic interactions in amplifying charge transport across lysine-doped peptide junctions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Chatterjee G, Jha A, Blanco-Gonzalez A, Tiwari V, Manathunga M, Duan HG, Tellkamp F, Prokhorenko VI, Ferré N, Dasgupta J, Olivucci M, Miller RJD. Torsionally broken symmetry assists infrared excitation of biomimetic charge-coupled nuclear motions in the electronic ground state. Chem Sci 2022; 13:9392-9400. [PMID: 36093002 PMCID: PMC9384489 DOI: 10.1039/d2sc02133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
The concerted interplay between reactive nuclear and electronic motions in molecules actuates chemistry. Here, we demonstrate that out-of-plane torsional deformation and vibrational excitation of stretching motions in the electronic ground...
Collapse
Affiliation(s)
- Gourab Chatterjee
- Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany
| | - Ajay Jha
- Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany
| | | | - Vandana Tiwari
- Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany
- Department of Chemistry, University of Hamburg Martin-Luther-King Platz 6 20146 Hamburg Germany
| | | | - Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany
| | - Valentyn I Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR 13013 Marseille France
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University Bowling Green OH 43403 USA
- Dipartimento di Biotechnologie, Chimica e Farmacia, Università di Siena I-53100 Siena Italy
| | - R J Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| |
Collapse
|
26
|
Naaman R, Paltiel Y, Waldeck DH. Chiral Induced Spin Selectivity and Its Implications for Biological Functions. Annu Rev Biophys 2021; 51:99-114. [PMID: 34932912 DOI: 10.1146/annurev-biophys-083021-070400] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chirality in life has been preserved throughout evolution. It has been assumed that the main function of chirality is its contribution to structural properties. In the past two decades, however, it has been established that chiral molecules possess unique electronic properties. Electrons that pass through chiral molecules, or even charge displacements within a chiral molecule, do so in a manner that depends on the electron's spin and the molecule's enantiomeric form. This effect, referred to as chiral induced spin selectivity (CISS), has several important implications for the properties of biosystems. Among these implications, CISS facilitates long-range electron transfer, enhances bio-affinities and enantioselectivity, and enables efficient and selective multi-electron redox processes. In this article, we review the CISS effect and some of its manifestations in biological systems. We argue that chirality is preserved so persistently in biology not only because of its structural effect, but also because of its important function in spin polarizing electrons. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel;
| | - Yossi Paltiel
- Applied Physics Department and Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David H Waldeck
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
27
|
Cahen D, Pecht I, Sheves M. What Can We Learn from Protein-Based Electron Transport Junctions? J Phys Chem Lett 2021; 12:11598-11603. [PMID: 34852460 PMCID: PMC8647078 DOI: 10.1021/acs.jpclett.1c02446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- David Cahen
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Israel Pecht
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | | |
Collapse
|
28
|
Engelbrekt C, Nazmutdinov RR, Shermukhamedov S, Ulstrup J, Zinkicheva TT, Xiao X. Complex single‐molecule and molecular scale entities in electrochemical environments: Mechanisms and challenges. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Christian Engelbrekt
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Renat R. Nazmutdinov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Shokirbek Shermukhamedov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Jens Ulstrup
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Tamara T. Zinkicheva
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| |
Collapse
|
29
|
Jeon K, Jen M, Lee S, Jang T, Pang Y. Intramolecular Charge Transfer of 1-Aminoanthraquinone and Ultrafast Solvation Dynamics of Dimethylsulfoxide. Int J Mol Sci 2021; 22:ijms222111926. [PMID: 34769357 PMCID: PMC8584543 DOI: 10.3390/ijms222111926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
The intramolecular charge transfer (ICT) of 1-aminoanthraquinone (AAQ) in the excited state strongly depends on its solvent properties, and the twisted geometry of its amino group has been recommended for the twisted ICT (TICT) state by recent theoretical works. We report the transient Raman spectra of AAQ in a dimethylsulfoxide (DMSO) solution by femtosecond stimulated Raman spectroscopy to provide clear experimental evidence for the TICT state of AAQ. The ultrafast (~110 fs) TICT dynamics of AAQ were observed from the major vibrational modes of AAQ including the νC-N + δCH and νC=O modes. The coherent oscillations in the vibrational bands of AAQ strongly coupled to the nuclear coordinate for the TICT process have been observed, which showed its anharmonic coupling to the low frequency out of the plane deformation modes. The vibrational mode of solvent DMSO, νS=O showed a decrease in intensity, especially in the hydrogen-bonded species of DMSO, which clearly shows that the solvation dynamics of DMSO, including hydrogen bonding, are crucial to understanding the reaction dynamics of AAQ with the ultrafast structural changes accompanying the TICT.
Collapse
|
30
|
Multiple hops move electrons from bacteria to rocks. Proc Natl Acad Sci U S A 2021; 118:2115620118. [PMID: 34625473 DOI: 10.1073/pnas.2115620118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
|
31
|
Abstract
Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuI to the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+-W1(-W2) exhibited crossings between sensitizer-localized (*Re) and charge-separated [ReI(His)(CO)3(dmp•-)/(W1 •+ or W2 •+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Water-dominated electrostatic field fluctuations bring *Re and CS1 states to a crossing where *Re(CO)3(dmp)+←W1 ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around *Re(CO)3(dmp)+(W1); and CS1 is stabilized by Re(dmp•-)/W1 •+ electron/hole interaction and enhanced W1 •+ solvation. The second hop, W1 •+←W2, is facilitated by water fluctuations near the W1/W2 unit, taking place when the electrostatic potential at W2 drops well below that at W1 •+ Insufficient solvation and reorganization around W2 make W1 •+←W2 ET endergonic, shifting the equilibrium toward W1 •+ and decreasing the charge-separation yield. We suggest that multiscale TDDFT/MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds.
Collapse
|
32
|
Li X, Sun W, Qin X, Xie Y, Liu N, Luo X, Wang Y, Chen X. An interesting possibility of forming special hole stepping stones with high-stacking aromatic rings in proteins: three-π five-electron and four-π seven-electron resonance bindings. RSC Adv 2021; 11:26672-26682. [PMID: 35479969 PMCID: PMC9037495 DOI: 10.1039/d1ra05341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Long-range hole transfer of proteins plays an important role in many biological processes of living organisms. Therefore, it is highly useful to examine the possible hole stepping stones, which can facilitate hole transfer in proteins. However, the structures of stepping stones are diverse because of the complexity of the protein structures. In the present work, we proposed a series of special stepping stones, which are instantaneously formed by three and four packing aromatic side chains of amino acids to capture a hole, corresponding to three-π five-electron (π:π∴π↔π∴π:π) and four-π seven-electron (π:π∴π:π↔π:π:π∴π) resonance bindings with appropriate binding energies. The aromatic amino acids include histidine (His), phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp). The formations of these special stepping stones can effectively reduce the local ionization potential of the high π-stacking region to efficiently capture the migration hole. The quick formations and separations of them promote the efficient hole transfer in proteins. More interestingly, we revealed that a hole cannot delocalize over infinite aromatic rings along the high π-π packing structure at the same time and the micro-surroundings of proteins can modulate the formations of π:π∴π↔π∴π:π and π:π∴π:π↔π:π:π∴π bindings. These results may contribute a new avenue to better understand the potential hole transfer pathway in proteins.
Collapse
Affiliation(s)
- Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Weichao Sun
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuanying Wang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| |
Collapse
|
33
|
Yuan W, Al-Hadid Q, Wang Z, Shen L, Cho H, Wu X, Yang Y. TDRD3 promotes DHX9 chromatin recruitment and R-loop resolution. Nucleic Acids Res 2021; 49:8573-8591. [PMID: 34329467 PMCID: PMC8421139 DOI: 10.1093/nar/gkab642] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
R-loops, which consist of a DNA/RNA hybrid and a displaced single-stranded DNA (ssDNA), are increasingly recognized as critical regulators of chromatin biology. R-loops are particularly enriched at gene promoters, where they play important roles in regulating gene expression. However, the molecular mechanisms that control promoter-associated R-loops remain unclear. The epigenetic ‘reader’ Tudor domain-containing protein 3 (TDRD3), which recognizes methylarginine marks on histones and on the C-terminal domain of RNA polymerase II, was previously shown to recruit DNA topoisomerase 3B (TOP3B) to relax negatively supercoiled DNA and prevent R-loop formation. Here, we further characterize the function of TDRD3 in R-loop metabolism and introduce the DExH-box helicase 9 (DHX9) as a novel interaction partner of the TDRD3/TOP3B complex. TDRD3 directly interacts with DHX9 via its Tudor domain. This interaction is important for recruiting DHX9 to target gene promoters, where it resolves R-loops in a helicase activity-dependent manner to facilitate gene expression. Additionally, TDRD3 also stimulates the helicase activity of DHX9. This stimulation relies on the OB-fold of TDRD3, which likely binds the ssDNA in the R-loop structure. Thus, DHX9 functions together with TOP3B to suppress promoter-associated R-loops. Collectively, these findings reveal new functions of TDRD3 and provide important mechanistic insights into the regulation of R-loop metabolism.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Qais Al-Hadid
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Zhihao Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Hyejin Cho
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
34
|
Ru X, Crane BR, Zhang P, Beratan DN. Why Do Most Aromatics Fail to Support Hole Hopping in the Cytochrome c Peroxidase-Cytochrome c Complex? J Phys Chem B 2021; 125:7763-7773. [PMID: 34235935 DOI: 10.1021/acs.jpcb.1c05064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transport through aromatic species (especially tryptophan and tyrosine) plays a central role in water splitting, redox signaling, oxidative damage protection, and bioenergetics. The cytochrome c peroxidase (CcP)-cytochrome c (Cc) complex (CcP:Cc) is used widely to study interprotein electron transfer (ET) mechanisms. Tryptophan 191 (Trp191) of CcP supports hole hopping charge recombination in the CcP:Cc complex. Experimental studies find that when Trp191 is substituted by tyrosine, phenylalanine, or redox-active aniline derivatives bound in the W191G cavity, enzymatic activity and charge recombination rates both decrease. Theoretical analysis of these CcP:Cc complexes finds that the ET kinetics depend strongly on the chemistry of the modified Trp site. The computed electronic couplings in the W191F and W191G species are orders of magnitude smaller than in the native protein, due largely to the absence of a hopping intermediate and the large tunneling distance. Small molecules bound in the W191G cavity are weakly coupled electronically to the Cc heme, and the structural disorder of the guest molecule in the binding pocket may contribute further to the lack of enzymatic activity. The couplings in W191Y are not substantially weakened compared to the native species, but the redox potential difference for tyrosine vs tryptophan oxidation accounts for the slower rate in the Tyr mutant. Thus, theoretical analysis explains why only the native Trp supports rapid hole hopping in the CcP:Cc complex. Favorable free energies and electronic couplings are essential for establishing an efficient hole hopping relay in this protein-protein complex.
Collapse
Affiliation(s)
- Xuyan Ru
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States.,Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
35
|
Pastore AJ, Teo RD, Montoya A, Burg MJ, Twahir UT, Bruner SD, Beratan DN, Angerhofer A. Oxalate decarboxylase uses electron hole hopping for catalysis. J Biol Chem 2021; 297:100857. [PMID: 34097877 PMCID: PMC8254039 DOI: 10.1016/j.jbc.2021.100857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
The hexameric low-pH stress response enzyme oxalate decarboxylase catalyzes the decarboxylation of the oxalate mono-anion in the soil bacterium Bacillus subtilis. A single protein subunit contains two Mn-binding cupin domains, and catalysis depends on Mn(III) at the N-terminal site. The present study suggests a mechanistic function for the C-terminal Mn as an electron hole donor for the N-terminal Mn. The resulting spatial separation of the radical intermediates directs the chemistry toward decarboxylation of the substrate. A π-stacked tryptophan pair (W96/W274) links two neighboring protein subunits together, thus reducing the Mn-to-Mn distance from 25.9 Å (intrasubunit) to 21.5 Å (intersubunit). Here, we used theoretical analysis of electron hole-hopping paths through redox-active sites in the enzyme combined with site-directed mutagenesis and X-ray crystallography to demonstrate that this tryptophan pair supports effective electron hole hopping between the C-terminal Mn of one subunit and the N-terminal Mn of the other subunit through two short hops of ∼8.5 Å. Replacement of W96, W274, or both with phenylalanine led to a large reduction in catalytic efficiency, whereas replacement with tyrosine led to recovery of most of this activity. W96F and W96Y mutants share the wildtype tertiary structure. Two additional hole-hopping networks were identified leading from the Mn ions to the protein surface, potentially protecting the enzyme from high Mn oxidation states during turnover. Our findings strongly suggest that multistep hole-hopping transport between the two Mn ions is required for enzymatic function, adding to the growing examples of proteins that employ aromatic residues as hopping stations.
Collapse
Affiliation(s)
- Anthony J Pastore
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Ruijie D Teo
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Matthew J Burg
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Umar T Twahir
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
36
|
Chen X, Kretz B, Adoah F, Nickle C, Chi X, Yu X, Del Barco E, Thompson D, Egger DA, Nijhuis CA. A single atom change turns insulating saturated wires into molecular conductors. Nat Commun 2021; 12:3432. [PMID: 34103489 PMCID: PMC8187423 DOI: 10.1038/s41467-021-23528-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
We present an efficient strategy to modulate tunnelling in molecular junctions by changing the tunnelling decay coefficient, β, by terminal-atom substitution which avoids altering the molecular backbone. By varying X = H, F, Cl, Br, I in junctions with S(CH2)(10-18)X, current densities (J) increase >4 orders of magnitude, creating molecular conductors via reduction of β from 0.75 to 0.25 Å−1. Impedance measurements show tripled dielectric constants (εr) with X = I, reduced HOMO-LUMO gaps and tunnelling-barrier heights, and 5-times reduced contact resistance. These effects alone cannot explain the large change in β. Density-functional theory shows highly localized, X-dependent potential drops at the S(CH2)nX//electrode interface that modifies the tunnelling barrier shape. Commonly-used tunnelling models neglect localized potential drops and changes in εr. Here, we demonstrate experimentally that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta \propto 1/\sqrt{{\varepsilon }_{r}}$$\end{document}β∝1/εr, suggesting highly-polarizable terminal-atoms act as charge traps and highlighting the need for new charge transport models that account for dielectric effects in molecular tunnelling junctions. In molecular junctions, where a molecule is placed between two electrodes, the current passed decays exponentially as a function of length. Here, Chen et al. show that this exponentially attenuation can be controlled by changing a single atom at the end of the molecular wire.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
| | - Bernhard Kretz
- Department of Physics, Technical University of Munich, Garching, Germany
| | - Francis Adoah
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Cameron Nickle
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Xiao Chi
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - David A Egger
- Department of Physics, Technical University of Munich, Garching, Germany.
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, Singapore, Singapore. .,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore. .,Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands.
| |
Collapse
|
37
|
Wu X, Hénin J, Baciou L, Baaden M, Cailliez F, de la Lande A. Mechanistic Insights on Heme-to-Heme Transmembrane Electron Transfer Within NADPH Oxydases From Atomistic Simulations. Front Chem 2021; 9:650651. [PMID: 34017816 PMCID: PMC8129163 DOI: 10.3389/fchem.2021.650651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
NOX5 is a member of the NADPH oxidase family which is dedicated to the production of reactive oxygen species. The molecular mechanisms governing transmembrane electron transfer (ET) that permits to shuttle electrons over the biological membrane have remained elusive for a long time. Using computer simulations, we report conformational dynamics of NOX5 embedded within a realistic membrane environment. We assess the stability of the protein within the membrane and monitor the existence of cavities that could accommodate dioxygen molecules. We investigate the heme-to-heme electron transfer. We find a reaction free energy of a few tenths of eV (ca. −0.3 eV) and a reorganization free energy of around 1.1 eV (0.8 eV after including electrostatic induction corrections). The former indicates thermodynamically favorable ET, while the latter falls in the expected values for transmembrane inter-heme ET. We estimate the electronic coupling to fall in the range of the μeV. We identify electron tunneling pathways showing that not only the W378 residue is playing a central role, but also F348. Finally, we reveal the existence of two connected O2−binding pockets near the outer heme with fast exchange between the two sites on the nanosecond timescale. We show that when the terminal heme is reduced, O2 binds closer to it, affording a more efficient tunneling pathway than when the terminal heme is oxidized, thereby providing an efficient mechanism to catalyze superoxide production in the final step. Overall, our study reveals some key molecular mechanisms permitting reactive oxygen species production by NOX5 and paves the road for further investigation of ET processes in the wide family of NADPH oxidases by computer simulations.
Collapse
Affiliation(s)
- Xiaojing Wu
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Jérôme Hénin
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Laura Baciou
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Fabien Cailliez
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| |
Collapse
|
38
|
Valdiviezo J, Clever C, Beall E, Pearse A, Bae Y, Zhang P, Achim C, Beratan DN, Waldeck DH. Delocalization-Assisted Transport through Nucleic Acids in Molecular Junctions. Biochemistry 2021; 60:1368-1378. [PMID: 33870693 DOI: 10.1021/acs.biochem.1c00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The flow of charge through molecules is central to the function of supramolecular machines, and charge transport in nucleic acids is implicated in molecular signaling and DNA repair. We examine the transport of electrons through nucleic acids to understand the interplay of resonant and nonresonant charge carrier transport mechanisms. This study reports STM break junction measurements of peptide nucleic acids (PNAs) with a G-block structure and contrasts the findings with previous results for DNA duplexes. The conductance of G-block PNA duplexes is much higher than that of the corresponding DNA duplexes of the same sequence; however, they do not display the strong even-odd dependence conductance oscillations found in G-block DNA. Theoretical analysis finds that the conductance oscillation magnitude in PNA is suppressed because of the increased level of electronic coupling interaction between G-blocks in PNA and the stronger PNA-electrode interaction compared to that in DNA duplexes. The strong interactions in the G-block PNA duplexes produce molecular conductances as high as 3% G0, where G0 is the quantum of conductance, for 5 nm duplexes.
Collapse
Affiliation(s)
- Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Caleb Clever
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Edward Beall
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Pearse
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yookyung Bae
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Catalina Achim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
39
|
Pedron FN, Issoglio F, Estrin DA, Scherlis DA. Electron transfer pathways from quantum dynamics simulations. J Chem Phys 2021; 153:225102. [PMID: 33317287 DOI: 10.1063/5.0023577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, -1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.
Collapse
Affiliation(s)
- F N Pedron
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - F Issoglio
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - D A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - D A Scherlis
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| |
Collapse
|
40
|
Derr JB, Rybicka-Jasińska K, Espinoza EM, Morales M, Billones MK, Clark JA, Vullev VI. On the Search of a Silver Bullet for the Preparation of Bioinspired Molecular Electrets with Propensity to Transfer Holes at High Potentials. Biomolecules 2021; 11:429. [PMID: 33804209 PMCID: PMC8001849 DOI: 10.3390/biom11030429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/24/2023] Open
Abstract
Biological structure-function relationships offer incomparable paradigms for charge-transfer (CT) science and its implementation in solar-energy engineering, organic electronics, and photonics. Electrets are systems with co-directionally oriented electric dopes with immense importance for CT science, and bioinspired molecular electrets are polyamides of anthranilic-acid derivatives with designs originating from natural biomolecular motifs. This publication focuses on the synthesis of molecular electrets with ether substituents. As important as ether electret residues are for transferring holes under relatively high potentials, the synthesis of their precursors presents formidable challenges. Each residue in the molecular electrets is introduced as its 2-nitrobenzoic acid (NBA) derivative. Hence, robust and scalable synthesis of ether derivatives of NBA is essential for making such hole-transfer molecular electrets. Purdie-Irvine alkylation, using silver oxide, produces with 90% yield the esters of the NBA building block for iso-butyl ether electrets. It warrants additional ester hydrolysis for obtaining the desired NBA precursor. Conversely, Williamson etherification selectively produces the same free-acid ether derivative in one-pot reaction, but a 40% yield. The high yields of Purdie-Irvine alkylation and the selectivity of the Williamson etherification provide important guidelines for synthesizing building blocks for bioinspired molecular electrets and a wide range of other complex ether conjugates.
Collapse
Affiliation(s)
- James Bennett Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | | | - Eli Misael Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA; (E.M.E.); (M.M.)
| | - Maryann Morales
- Department of Chemistry, University of California, Riverside, CA 92521, USA; (E.M.E.); (M.M.)
| | | | - John Anthony Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (K.R.-J.); (J.A.C.)
| | - Valentine Ivanov Vullev
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (K.R.-J.); (J.A.C.)
- Department of Chemistry, University of California, Riverside, CA 92521, USA; (E.M.E.); (M.M.)
- Department of Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
41
|
Murgida DH. In Situ Spectroelectrochemical Investigations of Electrode-Confined Electron-Transferring Proteins and Redox Enzymes. ACS OMEGA 2021; 6:3435-3446. [PMID: 33585730 PMCID: PMC7876673 DOI: 10.1021/acsomega.0c05746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 06/09/2023]
Abstract
This perspective analyzes recent advances in the spectroelectrochemical investigation of redox proteins and enzymes immobilized on biocompatible or biomimetic electrode surfaces. Specifically, the article highlights new insights obtained by surface-enhanced resonance Raman (SERR), surface-enhanced infrared absorption (SEIRA), protein film infrared electrochemistry (PFIRE), polarization modulation infrared reflection-absorption spectroscopy (PMIRRAS), Förster resonance energy transfer (FRET), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and differential electrochemical mass spectrometry (DMES)-based spectroelectrochemical methods on the structure, orientation, dynamics, and reaction mechanisms for a variety of immobilized species. This includes small heme and copper electron shuttling proteins, large respiratory complexes, hydrogenases, multicopper oxidases, alcohol dehydrogenases, endonucleases, NO-reductases, and dye decolorizing peroxidases, among other enzymes. Finally, I discuss the challenges and foreseeable future developments toward a better understanding of the functioning of these complex macromolecules and their exploitation in technological devices.
Collapse
Affiliation(s)
- Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química-Física,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos
Aires 1428, Argentina
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
42
|
Abstract
The understanding of binding interactions between a protein and a small molecule plays a key role in the rationalization of potency and selectivity and in design of new ideas. However, even when a target of interest is structurally enabled, visual inspection and force field-based molecular mechanics calculations cannot always explain the full complexity of the molecular interactions that are critical in drug design. Quantum mechanical methods have the potential to address this shortcoming, but traditionally, computational expense has made the application of these calculations impractical. The fragment molecular orbital (FMO) method offers a solution that combines accuracy, speed, and the ability to characterize important interactions (i.e. its strength in kcal/mol and chemical nature: hydrophobic, electrostatic, etc) that would otherwise be hard to detect. In this chapter, we describe the FMO method and illustrate its application in the discovery of the benzothiazole (BZT) series as novel tyrosine kinase ITK inhibitors for treatment of allergic asthma.
Collapse
|
43
|
Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Methods Mol Biol 2021. [PMID: 32016893 DOI: 10.1007/978-1-0716-0282-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
G-protein-coupled receptors (GPCRs) have enormous physiological and biomedical importance, and therefore it is not surprising that they are the targets of many prescribed drugs. Further progress in GPCR drug discovery is highly dependent on the availability of protein structural information. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanics (QM) approaches are often too computationally expensive to be of practical use in time-sensitive situations, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed, and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule toward ligand binding, including an analysis of their chemical nature. Such information is essential for an efficient structure-based drug design (SBDD) process. In this chapter, we describe how to use FMO in the characterization of GPCR-ligand interactions.
Collapse
|
44
|
Teo RD, Du X, Vera HLT, Migliore A, Beratan DN. Correlation between Charge Transport and Base Excision Repair in the MutY-DNA Glycosylase. J Phys Chem B 2021; 125:17-23. [PMID: 33371674 DOI: 10.1021/acs.jpcb.0c08598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental evidence suggests that DNA-mediated redox signaling between high-potential [Fe4S4] proteins is relevant to DNA replication and repair processes, and protein-mediated charge transfer (CT) between [Fe4S4] clusters and nucleic acids is a fundamental process of the signaling and repair mechanisms. We analyzed the dominant CT pathways in the base excision repair glycosylase MutY using molecular dynamics simulations and hole hopping pathway analysis. We find that the adenine nucleobase of the mismatched A·oxoG DNA base pair facilitates [Fe4S4]-DNA CT prior to adenine excision by MutY. We also find that the R153L mutation in MutY (linked to colorectal adenomatous polyposis) influences the dominant [Fe4S4]-DNA CT pathways and appreciably decreases their effective CT rates.
Collapse
Affiliation(s)
- Ruijie D Teo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xiaochen Du
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Computer Science, Duke University, Durham, North Carolina 27708, United States
| | - Héctor Luis Torres Vera
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Agostino Migliore
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Physics, Duke University, Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
45
|
Marzolf DR, McKenzie AM, O’Malley MC, Ponomarenko NS, Swaim CM, Brittain TJ, Simmons NL, Pokkuluri PR, Mulfort KL, Tiede DM, Kokhan O. Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2143. [PMID: 33126541 PMCID: PMC7693585 DOI: 10.3390/nano10112143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4-8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies.
Collapse
Affiliation(s)
- Daniel R. Marzolf
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Aidan M. McKenzie
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Matthew C. O’Malley
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Nina S. Ponomarenko
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - Coleman M. Swaim
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Tyler J. Brittain
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Natalie L. Simmons
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA;
| | | | - Karen L. Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - David M. Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| |
Collapse
|
46
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhuravel R, Huang H, Polycarpou G, Polydorides S, Motamarri P, Katrivas L, Rotem D, Sperling J, Zotti LA, Kotlyar AB, Cuevas JC, Gavini V, Skourtis SS, Porath D. Backbone charge transport in double-stranded DNA. NATURE NANOTECHNOLOGY 2020; 15:836-840. [PMID: 32807877 DOI: 10.1038/s41565-020-0741-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Understanding charge transport in DNA molecules is a long-standing problem of fundamental importance across disciplines1,2. It is also of great technological interest due to DNA's ability to form versatile and complex programmable structures. Charge transport in DNA-based junctions has been reported using a wide variety of set-ups2-4, but experiments so far have yielded seemingly contradictory results that range from insulating5-8 or semiconducting9,10 to metallic-like behaviour11. As a result, the intrinsic charge transport mechanism in molecular junction set-ups is not well understood, which is mainly due to the lack of techniques to form reproducible and stable contacts with individual long DNA molecules. Here we report charge-transport measurements through single 30-nm-long double-stranded DNA (dsDNA) molecules with an experimental set-up that enables us to address individual molecules repeatedly and to measure the current-voltage characteristics from 5 K up to room temperature. Strikingly, we observed very high currents of tens of nanoamperes, which flowed through both homogeneous and non-homogeneous base-pair sequences. The currents are fairly temperature independent in the range 5-60 K and show a power-law decrease with temperature above 60 K, which is reminiscent of charge transport in organic crystals. Moreover, we show that the presence of even a single discontinuity ('nick') in both strands that compose the dsDNA leads to complete suppression of the current, which suggests that the backbones mediate the long-distance conduction in dsDNA, contrary to the common wisdom in DNA electronics2-4.
Collapse
Affiliation(s)
- Roman Zhuravel
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haichao Huang
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Phani Motamarri
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Dvir Rotem
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Sperling
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Linda A Zotti
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Alexander B Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Juan Carlos Cuevas
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Vikram Gavini
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Danny Porath
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
48
|
Kitoh-Nishioka H, Shigeta Y, Ando K. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. J Chem Phys 2020; 153:104104. [PMID: 32933280 DOI: 10.1063/5.0018423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Practical ways to calculate the tunneling matrix elements and analyze the tunneling pathways for protein electron-transfer (ET) reactions with a fragment molecular orbital (FMO) method are presented. The straightforward use of minimal basis sets only for the atoms involved in the covalent bond detachment in FMO can properly describe the ETs through the protein main-chains with the cost-effective two-body corrections (FMO2) without losing the quality of double-zeta basis sets. The current FMO codes have been interfaced with density functional theory, polarizable continuum model, and model core potentials, with which the FMO-based protein ET calculations can consider the effects of electron correlation, solvation, and transition-metal redox centers. The reasonable performance of the FMO-based ET calculations is demonstrated for three different sets of protein-ET model molecules: (1) hole transfer between two tryptophans covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, (2) ET between two plastoquinones covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, and (3) hole transfer between ruthenium (Ru) and copper (Cu) complexes covalently bridged by a stretch of a polyglycine linker as a model for Ru-modified derivatives of azurin.
Collapse
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Koji Ando
- Department of Information and Sciences, Tokyo Woman's Christian University, 2-6-1 Zenpukuji, Suginami-ku, Tokyo 167-8585, Japan
| |
Collapse
|
49
|
Oosterheert W, Reis J, Gros P, Mattevi A. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination. Acc Chem Res 2020; 53:1969-1980. [PMID: 32815713 DOI: 10.1021/acs.accounts.0c00400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ferric reductase superfamily comprises several oxidoreductases that use an intracellular electron source to reduce an extracellular acceptor substrate. NADPH oxidases (NOXs) and six-transmembrane epithelial antigen of the prostate enzymes (STEAPs) are iconic members of the superfamily. NOXs produce extracellular reactive oxygen species that exert potent bactericidal activities and trigger redox-signaling cascades that regulate cell division and differentiation. STEAPs catalyze the reduction of extracellular iron and copper which is necessary for the bioavailability of these essential elements. Both NOXs and STEAPs are present as multiple isozymes with distinct regulatory properties and physiological roles. Despite the important roles of NOXs and STEAPs in human physiology and despite their wide involvement in diseases like cancer, their mode of action at the molecular level remained incompletely understood for a long time, in part due to the absence of high-resolution models of the complete enzymes. Our two laboratories have elucidated the three-dimensional structures of NOXs and STEAPs, providing key insight into their mechanisms and evolution. The enzymes share a conserved transmembrane helical domain with an eye-catching hourglass shape. On the extracellular side, a heme prosthetic group is at the bottom of a pocket where the substrate (O2 in NOX, chelated iron or copper in STEAP) is reduced. On the intracellular side, the inner heme of NOX and the FAD of STEAP are bound to topological equivalent sites. This is a rare case where critical amino acid substitutions and local conformational changes enable a cofactor (heme vs FAD) swap between two structurally and functionally conserved scaffolds. The catalytic core of these enzymes is completed by distinct cytosolic NADPH-binding domains that are topologically unrelated (a ferredoxin reductase-like flavoprotein domain in NOX and a F420H2:NADP+-like domain in STEAP), feature different quaternary structures, and underlie specific regulatory mechanisms. Despite their differences, these domains all establish electron-transfer chains that direct the electrons from NADPH to the transmembrane domain. The multistep nature of the process and the chemical nature of the products pose considerable problems in the enzymatic assays. We learned that great care must be exerted in the validation of a candidate inhibitor. Multiple orthogonal assays are required to rule out off-target effects such as ROS-scavenging activities or nonspecific interference with the enzyme redox chain. The structural analysis of STEAP/NOX enzymes led us to further notice that their transmembrane heme-binding topology is shared by other enzymes. We found that the core domain of the cytochrome b subunits of the mitochondrial complex III and photosynthetic cytochrome b6f are closely related to NOXs and STEAPs and likely arose from the same ancestor protein. This observation expands the substrate portfolio of the superfamily since cytochromes b act on ubiquinone. The rigidly packed helices of the NOX/STEAP/cytochrome b domain contrast with the more malleable membrane proteins like ion channels or amino-acid transporters, which undergo large conformational changes to allow passage of relatively large metabolites. This notion of a rigid hourglass scaffold found an unexpected confirmation in the observation, revealed by structural comparisons, that an helical bundle identical to the NOX/STEAP/cytochrome b enzymes is featured by a de novo designed heme-binding protein, PS1. Apparently, nature and protein designers have independently converged to this fold as a versatile scaffold for heme-mediated reactions. The challenge is now to uncover the molecular mechanisms that implement the isozyme-specific regulation of the enzyme functions and develop much needed inhibitors and modulators for chemical biology and drug design studies.
Collapse
Affiliation(s)
- Wout Oosterheert
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joana Reis
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
50
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|