1
|
Choroba K, Palion-Gazda J, Kryczka A, Malicka E, Machura B. Push-pull effect - how to effectively control photoinduced intramolecular charge transfer processes in rhenium(I) chromophores with ligands of D-A or D-π-A structure. Dalton Trans 2025; 54:2209-2223. [PMID: 39801429 DOI: 10.1039/d4dt03237c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands. Such compounds can be treated as bichromophoric systems with two close-lying excited states, metal-to-ligand charge transfer (MLCT) and intraligand-charge-transfer (ILCT). A role of ILCT transitions in controlling photobehaviour was discussed for Re(I) tricarbonyls with six different diimine cores decorated by various electron-rich amine, sulphur-based and π-conjugated aryl groups. It was evidenced that this approach is an effective tool for enhancement of the visible absorptivity, bathochromic emission shift and significant prolongation of the excited-state, opening up new possibilities in the development of more efficient materials and expand the range of their applications.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Anna Kryczka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Ewa Malicka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
2
|
Pápai M. Simulation of Ultrafast Excited-State Dynamics in Fe(II) Complexes: Assessment of Electronic Structure Descriptions. J Chem Theory Comput 2025; 21:560-574. [PMID: 39752586 PMCID: PMC11780750 DOI: 10.1021/acs.jctc.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
The assessment of electronic structure descriptions utilized in the simulation of the ultrafast excited-state dynamics of Fe(II) complexes is presented. Herein, we evaluate the performance of the RPBE, OPBE, BLYP, B3LYP, B3LYP*, PBE0, TPSSh, CAM-B3LYP, and LC-BLYP (time-dependent) density functional theory (DFT/TD-DFT) methods in full-dimensional trajectory surface hopping (TSH) simulations carried out on linear vibronic coupling (LVC) potentials. We exploit the existence of time-resolved X-ray emission spectroscopy (XES) data for the [Fe(bmip)2]2+ and [Fe(terpy)2]2+ prototypes for dynamics between metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) states, which serve as a reference to benchmark the calculations (bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, terpy = 2,2':6',2″-terpyridine). The results show that the simulated ultrafast population dynamics between MLCT and MC states with various spin multiplicities (singlet, triplet, and quintet) highly depend on the utilized DFT/TD-DFT method, with the percentage of exact (Hartree-Fock) exchange being the governing factor. Importantly, B3LYP* and TPSSh are the only DFT/TD-DFT methods with satisfactory performance, best reproducing the experimentally resolved dynamics for both complexes, signaling an optimal balance in the description of MLCT-MC energetics. This work demonstrates the power of combining TSH/LVC dynamics simulations with time-resolved experimental reference data to benchmark full-dimensional potential energy surfaces.
Collapse
Affiliation(s)
- Mátyás Pápai
- HUN-REN Wigner Research
Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
3
|
Sanna N, Zazza C, Chillemi G, Pace E, Cappelluti F, Bencivenni L, Oppermann M, Benfatto M, Chergui M. Asymmetric conformation of the high-spin state of iron(II)-tris(2,2-bipyridine): Time-resolved x-ray absorption and ultraviolet circular dichroism. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:064101. [PMID: 39606426 PMCID: PMC11602215 DOI: 10.1063/4.0000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
We analyze the structures of the low-spin (LS) ground state and the high-spin (HS) lowest excited state of the iron-(II)-tris bipyridine complex ([Fe(bpy)3]2+) using density functional theory PBE methods, modeling the solvent interactions with conductor-like polarizable continuum model. These calculations are globally benchmarked against a wide range of experimental observables that include ultraviolet-visible linear absorption and circular dichroism (CD) spectra and Fe K-edge x-ray absorption near edge spectra (XANES). The calculations confirm the already established D3 geometry of the LS state, as well as a departure from this geometry for the HS state, with the appearance of inequivalent Fe-N bond elongations. The simulated structures nicely reproduce the above-mentioned experimental observables. We also calculate the vibrational modes of the LS and HS states. For the former, they reproduce well the vibrational frequencies from published infrared and Raman data, while for the latter, they predict very well the low-frequency vibrational coherences, attributed to Fe-N stretch modes, which were reported in ultrafast spectroscopic experiments. We further present calculations of the high-frequency region, which agree with recent ultrafast transient infrared spectroscopy studies. This work offers a common basis to the structural information encoded in the excited state CD and the Fe K XANES of the HS state tying together different structural IR, UV-visible, and x-ray observables.
Collapse
Affiliation(s)
- Nico Sanna
- Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell' Università snc, 01100 Viterbo, Italy
| | - Costantino Zazza
- Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell' Università snc, 01100 Viterbo, Italy
| | | | - Elisabetta Pace
- Laboratori Nazionali di Frascati – INFN, Via E. Fermi 44, 00044 Frascati, Italy
| | - Francesco Cappelluti
- Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Luigi Bencivenni
- Department of Chemistry, Sapienza University, P. le A. Moro 5, 00185 Rome, Italy
| | | | - Maurizio Benfatto
- Laboratori Nazionali di Frascati – INFN, Via E. Fermi 44, 00044 Frascati, Italy
| | - Majed Chergui
- Authors to whom correspondence should be addressed:; ; ; and
| |
Collapse
|
4
|
Fedunov RG, Grivin VP, Pozdnyakov IP, Melnikov AA, Chekalin SV, Vasilchenko DB, Glebov EM. Photophysics and photochemistry of (n-Bu 4N) 2[Pt(NO 3) 6] in acetonitrile: ultrafast pump-probe spectroscopy and quantum chemical insight. Photochem Photobiol Sci 2024; 23:1957-1970. [PMID: 39405008 DOI: 10.1007/s43630-024-00645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024]
Abstract
The ultrafast processes caused by photoexcitation of (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile were studied by means of transient absorption (TA) pump-probe spectroscopy and verified by quantum chemical calculations. The primary photochemical process was found to be an inner-sphere electron transfer followed by an escape of an •NO3 radical to the bulk solution. The reaction occurs via the dissociative triplet excited LMCT state of the initial complex. Based on the experimental data and quantum chemical calculations, the mechanism of ultrafast photophysical and photochemical processes is proposed.
Collapse
Affiliation(s)
- Roman G Fedunov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Vjacheslav P Grivin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, 119333, Troitsk, Moscow, Russian Federation
| | - Sergei V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, 119333, Troitsk, Moscow, Russian Federation
| | - Danila B Vasilchenko
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Evgeni M Glebov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
- Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
5
|
Troß J, Arias-Martinez JE, Carter-Fenk K, Cole-Filipiak NC, Schrader P, McCaslin LM, Head-Gordon M, Ramasesha K. Femtosecond Core-Level Spectroscopy Reveals Involvement of Triplet States in the Gas-Phase Photodissociation of Fe(CO) 5. J Am Chem Soc 2024; 146:22711-22723. [PMID: 39092878 DOI: 10.1021/jacs.4c07523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Excitation of iron pentacarbonyl [Fe(CO)5], a prototypical photocatalyst, at 266 nm causes the sequential loss of two CO ligands in the gas phase, creating catalytically active, unsaturated iron carbonyls. Despite numerous studies, major aspects of its ultrafast photochemistry remain unresolved because the early excited-state dynamics have so far eluded spectroscopic observation. This has led to the long-held assumption that ultrafast dissociation of gas-phase Fe(CO)5 proceeds exclusively on the singlet manifold. Herein, we present a combined experimental-theoretical study employing ultrafast extreme ultraviolet transient absorption spectroscopy near the Fe M2,3-edge, which features spectral evolution on 100 fs and 3 ps time scales, alongside high-level electronic structure theory, which enables characterization of the molecular geometries and electronic states involved in the ultrafast photodissociation of Fe(CO)5. We assign the 100 fs evolution to spectroscopic signatures associated with intertwined structural and electronic dynamics on the singlet metal-centered states during the first CO loss and the 3 ps evolution to the competing dissociation of Fe(CO)4 along the lowest singlet and triplet surfaces to form Fe(CO)3. Calculations of transient spectra in both singlet and triplet states as well as spin-orbit coupling constants along key structural pathways provide evidence for intersystem crossing to the triplet ground state of Fe(CO)4. Thus, our work presents the first spectroscopic detection of transient excited states during ultrafast photodissociation of gas-phase Fe(CO)5 and challenges the long-standing assumption that triplet states do not play a role in the ultrafast dynamics.
Collapse
Affiliation(s)
- Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
6
|
Han WK, Li J, Zhu RM, Wei M, Xia SK, Fu JX, Zhang J, Pang H, Li MD, Gu ZG. Photosensitizing metal covalent organic framework with fast charge transfer dynamics for efficient CO 2 photoreduction. Chem Sci 2024; 15:8422-8429. [PMID: 38846403 PMCID: PMC11151834 DOI: 10.1039/d4sc01896f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Designing artificial photocatalysts for CO2 reduction is challenging, mainly due to the intrinsic difficulty of making multiple functional units cooperate efficiently. Herein, three-dimensional metal covalent organic frameworks (3D MCOFs) were employed as an innovative platform to integrate a strong Ru(ii) light-harvesting unit, an active Re(i) catalytic center, and an efficient charge separation configuration for photocatalysis. The photosensitive moiety was precisely stabilized into the covalent skeleton by using a rational-designed Ru(ii) complex as one of the building units, while the Re(i) center was linked via a shared bridging ligand with an Ru(ii) center, opening an effective pathway for their electronic interaction. Remarkably, the as-synthesized MCOF exhibited impressive CO2 photoreduction activity with a CO generation rate as high as 1840 μmol g-1 h-1 and 97.7% selectivity. The femtosecond transient absorption spectroscopy combined with theoretical calculations uncovered the fast charge-transfer dynamics occurring between the photoactive and catalytic centers, providing a comprehensive understanding of the photocatalytic mechanism. This work offers in-depth insight into the design of MCOF-based photocatalysts for solar energy utilization.
Collapse
Affiliation(s)
- Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Min Wei
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Shu-Kun Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Jia-Xing Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Jinfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
7
|
Antolini C, Sosa Alfaro V, Reinhard M, Chatterjee G, Ribson R, Sokaras D, Gee L, Sato T, Kramer PL, Raj SL, Hayes B, Schleissner P, Garcia-Esparza AT, Lim J, Babicz JT, Follmer AH, Nelson S, Chollet M, Alonso-Mori R, van Driel TB. The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source. Molecules 2024; 29:2323. [PMID: 38792184 PMCID: PMC11124266 DOI: 10.3390/molecules29102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump-probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE.
Collapse
Affiliation(s)
- Cali Antolini
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Victor Sosa Alfaro
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Marco Reinhard
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Gourab Chatterjee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Ryan Ribson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Leland Gee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Takahiro Sato
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Patrick L. Kramer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Sumana Laxmi Raj
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Brandon Hayes
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Pamela Schleissner
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Angel T. Garcia-Esparza
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Jinkyu Lim
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeffrey T. Babicz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Alec H. Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA;
| | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Matthieu Chollet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Tim B. van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| |
Collapse
|
8
|
De Angelis D, Longetti L, Bonano G, Pelli Cresi JS, Foglia L, Pancaldi M, Capotondi F, Pedersoli E, Bencivenga F, Krstulovic M, Menk RH, D'Addato S, Orlando S, de Simone M, Ingle RA, Bleiner D, Coreno M, Principi E, Chergui M, Masciovecchio C, Mincigrucci R. A sub-100 nm thickness flat jet for extreme ultraviolet to soft X-ray absorption spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:605-612. [PMID: 38592969 DOI: 10.1107/s1600577524001875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.
Collapse
Affiliation(s)
- Dario De Angelis
- CNR - Istituto Officina dei Materiali (IOM), Basovizza, Area Science Park, 34149 Trieste, Italy
| | - Luca Longetti
- Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Gabriele Bonano
- Dipartimento FIM, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/a, 41125 Modena, Italy
| | | | - Laura Foglia
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Matteo Pancaldi
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Flavio Capotondi
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Emanuele Pedersoli
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Filippo Bencivenga
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Marija Krstulovic
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Ralf Hendrik Menk
- Sezione di Trieste, Istituto Nazionale di Fisica Nucleare, Via Valerio 2, 34127 Trieste, Italy
| | - Sergio D'Addato
- Dipartimento FIM, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/a, 41125 Modena, Italy
| | - Stefano Orlando
- ISM-CNR, Trieste Branch, in Basovizza Area Science Park, 34149 Trieste, Italy
| | - Monica de Simone
- CNR - Istituto Officina dei Materiali (IOM), Basovizza, Area Science Park, 34149 Trieste, Italy
| | - Rebecca A Ingle
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Davide Bleiner
- Laboratory for Advanced Analytical Technologies, EMPA, Uberlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Marcello Coreno
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Emiliano Principi
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Majed Chergui
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Claudio Masciovecchio
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Riccardo Mincigrucci
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
9
|
Vaidya S, Hawila S, Zeyu F, Khan T, Fateeva A, Toche F, Chiriac R, Bonhommé A, Ledoux G, Lebègue S, Park J, Kim WJ, Liu J, Guo X, Mesbah A, Horike S, Demessence A. Gold(I)-Thiolate Coordination Polymers as Multifunctional Materials: The Case of Au(I)- p-Fluorothiophenolate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22512-22521. [PMID: 38651627 DOI: 10.1021/acsami.4c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Gold-sulfur interaction has vital importance in nanotechnologies and material chemistry to design functional nanoparticles, self-assembled monolayers, or molecular complexes. In this paper, a mixture of only two basic precursors, such as the chloroauric acid (HAu(III)Cl4) and a thiol molecule (p-fluorothiophenol (p-HSPhF)), are used for the synthesis of gold(I)-thiolate coordination polymers. Under different conditions of synthesis and external stimuli, five different functional materials with different states of [Au(I)(p-SPhF)]n can be afforded. These gold-thiolate compounds are (i) red emissive, flexible, and crystalline fibers; (ii) composite materials made of these red emissive fibers and gold nanoparticles; (iii) amorphous phase; (iv) transparent glass; and (v) amorphous-to-crystalline phase-change material associated with an ON/OFF switch of luminescence. The different functionalities of these materials highlight the great versatility of the gold(I) thiolate coordination polymers with easy synthesis and diverse shaping that may have great potential as sustainable phosphors, smart textiles, sensors, and phase change memories.
Collapse
Affiliation(s)
- Shefali Vaidya
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague 110 00, Czech Republic
| | - Saly Hawila
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
| | - Fan Zeyu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tuhin Khan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 162 00, Czech Republic
| | - Alexandra Fateeva
- University Claude Bernard Lyon 1, CNRS, LMI - UMR 5615, Villeurbanne 69622, France
| | - François Toche
- University Claude Bernard Lyon 1, CNRS, LMI - UMR 5615, Villeurbanne 69622, France
| | - Rodica Chiriac
- University Claude Bernard Lyon 1, CNRS, LMI - UMR 5615, Villeurbanne 69622, France
| | - Anne Bonhommé
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
| | - Gilles Ledoux
- University Claude Bernard Lyon 1, CNRS, ILM - UMR 5306, Villeurbanne 69622, France
| | - Sébastien Lebègue
- University of Lorraine, CNRS, LPCT - UMR 7019, Vandœuvre-lès-Nancy 54506, France
| | - Jeongmin Park
- Department of Biology and Chemistry, Changwon National University, Gyeongsangnam-do 51140, South Korea
| | - Won June Kim
- Department of Biology and Chemistry, Changwon National University, Gyeongsangnam-do 51140, South Korea
| | - Juejing Liu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Adel Mesbah
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Aude Demessence
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
| |
Collapse
|
10
|
Wang L, Nughays R, Rossi TC, Oppermann M, Ogieglo W, Bian T, Shih CH, Guo TF, Pinnau I, Yin J, Bakr OM, Mohammed OF, Chergui M. Disentangling Thermal from Electronic Contributions in the Spectral Response of Photoexcited Perovskite Materials. J Am Chem Soc 2024; 146:5393-5401. [PMID: 38359303 PMCID: PMC10910496 DOI: 10.1021/jacs.3c12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we employed temperature-dependent variable-angle spectroscopic ellipsometry, density functional theory calculations, and broadband transient absorption spectroscopy spanning the visible to mid-to-deep-ultraviolet (UV) ranges on MAPbBr3 thin films. The use of deep-UV detection opens a new spectral window that enables the exploration of high-energy excitations at various symmetry points within the Brillouin zone, facilitating an understanding of the ultrafast responses of the UV bands and the underlying mechanisms governing them. Our investigation reveals that the photoinduced spectral features remarkably resemble those generated by pure lattice heating, and we disentangle the relative thermal and electronic contributions and their evolutions at different delay times using combinations of decay-associated spectra and temperature-induced differential absorption. The results demonstrate that the photoinduced transients possess a significant thermal origin and cannot be attributed solely to electronic effects. Following photoexcitation, as carriers (electrons and holes) transfer their energy to the lattice, the thermal contribution increases from ∼15% at 1 ps to ∼55% at 500 ps and subsequently decreases to ∼35-50% at 1 ns. These findings elucidate the intricate energy exchange between charge carriers and the lattice in photoexcited perovskite materials and provide insights into the limited utilization efficiency of photogenerated charge carriers.
Collapse
Affiliation(s)
- Lijie Wang
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Razan Nughays
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Thomas C. Rossi
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Malte Oppermann
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wojciech Ogieglo
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tieyuan Bian
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Kowloon 999077, Hong Kong, P. R. China
| | - Chun-Hua Shih
- Department
of Photonics, National Cheng Kung University, Tainan 701, Taiwan ROC
| | - Tzung-Fang Guo
- Department
of Photonics, National Cheng Kung University, Tainan 701, Taiwan ROC
| | - Ingo Pinnau
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Kowloon 999077, Hong Kong, P. R. China
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Majed Chergui
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
11
|
Zeng C, Li Y, Zheng H, Ren M, Wu W, Chen Z. Nature of ultrafast dynamics in the lowest-lying singlet excited state of [Ru(bpy) 3] 2. Phys Chem Chem Phys 2024; 26:6524-6531. [PMID: 38329237 DOI: 10.1039/d3cp03806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This work presents mechanisms to rationalize the nature of ultrafast photochemical and photophysical processes on the first singlet metal-ligand charge transfer state (1MLCT1) of the [Ru(bpy)3]2+ complex. The 1MLCT1 state is the lowest-lying singlet excited state and the most important intermediate in the early evolution of photoexcited [Ru(bpy)3]2+*. The results obtained from simple but interpretable theoretical models show that the 1MLCT1 state can be very quickly formed via both direct photo-excitation and internal conversions and then can efficiently relax to its equilibrium geometry in ca. 5 fs. The interligand electron transfer (ILET) on the potential energy surface of the 1MLCT1 state is also extremely fast, with a rate constant of ca. 1.38 × 1013 s-1. The ultrafast ILET implies that the excited electron can dynamically delocalize over the three bpy ligands, despite the fact that the excited electron may be localized on either one of the three ligands at the equilibrium geometries of the three symmetric equivalent minima. Since rapid ILET essentially suggests delocalization, the long-standing controversy in inorganic photophysics-whether the excited electron is localized or delocalized-may therefore be calmed down to some extent.
Collapse
Affiliation(s)
- Chenyu Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Yaqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Hangjing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Mingxing Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zhenhua Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
12
|
Buttarazzi E, Perrella F, Rega N, Petrone A. Watching the Interplay between Photoinduced Ultrafast Charge Dynamics and Nuclear Vibrations. J Chem Theory Comput 2023; 19:8751-8766. [PMID: 37991892 PMCID: PMC10720350 DOI: 10.1021/acs.jctc.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Here is presented the ultrafast hole-electron dynamics of photoinduced metal to ligand charge-transfer (MLCT) states in a Ru(II) complex, [Ru(dcbpy)2(NCS)2]4- (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine), a photoactive molecule employed in dye sensitized solar cells. Via cutting-edge computational techniques, a tailored computational protocol is here presented and developed to provide a detailed analysis of the electronic manifold coupled with nuclear vibrations to better understand the nonradiative pathways and the resulting overall dye performances in light-harvesting processes (electron injection). Thus, the effects of different vibrational modes were investigated on both the electronic levels and charge transfer dynamics through a theoretical-computational approach. First, the linear response time-dependent density functional (LR-TDDFT) formalism was employed to characterize excitation energies and spacing among electronic levels (the electronic layouts). Then, to understand the ultrafast (femtosecond) charge dynamics on the molecular scale, we relied on the nonperturbative mean-field quantum electronic dynamics via real-time (RT-) TDDFT. Three vibrational modes were selected, representative for collective nuclear movements that can have a significant influence on the electronic structure: two involving NCS- ligands and one involving dcbpy ligands. As main results, we observed that such MLCT states, under vibrational distortions, are strongly affected and a faster interligand electron transfer mechanism is observed along with an increasing MLCT character of the adiabatic electronic states approaching closer in energy due to the vibrations. Such findings can help both in providing a molecular picture of multidimensional vibro-electronic spectroscopic techniques, used to characterize ultrafast coherent and noncoherent dynamics of complex systems, and to improve dye performances with particular attention to the study of energy or charge transport processes and vibronic couplings.
Collapse
Affiliation(s)
- Edoardo Buttarazzi
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
| | - Fulvio Perrella
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Nadia Rega
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario
di Monte S. Angelo ed. 6, Via Cintia, I-80126 Napoli, Italy
| | - Alessio Petrone
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario
di Monte S. Angelo ed. 6, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
13
|
Lindh L, Pascher T, Persson S, Goriya Y, Wärnmark K, Uhlig J, Chábera P, Persson P, Yartsev A. Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers. J Phys Chem A 2023; 127:10210-10222. [PMID: 38000043 DOI: 10.1021/acs.jpca.3c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
Collapse
Affiliation(s)
- Linnea Lindh
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Torbjörn Pascher
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Samuel Persson
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yogesh Goriya
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
14
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
15
|
Kurta RP, van Driel TB, Dohn AO, Berberich TB, Nelson S, Zaluzhnyy IA, Mukharamova N, Lapkin D, Zederkof DB, Seaberg M, Pedersen KS, Kjær KS, Rippy GI, Biasin E, Møller KB, Gelisio L, Haldrup K, Vartanyants IA, Nielsen MM. Exploring fingerprints of ultrafast structural dynamics in molecular solutions with an X-ray laser. Phys Chem Chem Phys 2023; 25:23417-23434. [PMID: 37486006 DOI: 10.1039/d3cp01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir2(dimen)4]2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir2(dimen)4]2+ molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir2(dimen)4]2+ with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.
Collapse
Affiliation(s)
- Ruslan P Kurta
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
| | - Tim B van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Asmus O Dohn
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107 Reykjavík, Iceland
| | | | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A Zaluzhnyy
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Diana B Zederkof
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Kasper S Kjær
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Geoffery Ian Rippy
- Department of Materials Science and Engineering, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| |
Collapse
|
16
|
Borchert M, Braenzel J, Gnewkow R, Lunin L, Sidiropoulos T, Tümmler J, Will I, Noll T, Reichel O, Rohloff D, Erko A, Krist T, von Korff Schmising C, Pfau B, Eisebitt S, Stiel H, Schick D. Versatile tabletop setup for picosecond time-resolved resonant soft-x-ray scattering and spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:063102. [PMID: 37862537 DOI: 10.1063/5.0151613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/31/2023] [Indexed: 10/22/2023]
Abstract
We present a laser-driven, bright, and broadband (50 to 1500 eV) soft-x-ray plasma source with <10 ps pulse duration. This source is employed in two complementary, laboratory-scale beamlines for time-resolved, magnetic resonant scattering and spectroscopy, as well as near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. In both beamlines, dedicated reflection zone plates (RZPs) are used as single optical elements to capture, disperse, and focus the soft x rays, reaching resolving powers up to E/ΔE > 1000, with hybrid RZPs at the NEXAFS beamline retaining a consistent E/ΔE > 500 throughout the full spectral range, allowing for time-efficient data acquisition. We demonstrate the versatility and performance of our setup by a selection of soft-x-ray spectroscopy and scattering experiments, which so far have not been possible on a laboratory scale. Excellent data quality, combined with experimental flexibility, renders our approach a true alternative to large-scale facilities, such as synchrotron-radiation sources and free-electron lasers.
Collapse
Affiliation(s)
- Martin Borchert
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Julia Braenzel
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Richard Gnewkow
- Helmholtz-Zentrum Berlin, 12489 Berlin, Germany
- Technische Universität Berlin, Institut für Optik und Atomare Physik, 10623 Berlin, Germany
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), 10623 Berlin, Germany
| | - Leonid Lunin
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | | | - Johannes Tümmler
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Ingo Will
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Tino Noll
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Oliver Reichel
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Dirk Rohloff
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | | | - Thomas Krist
- NOB Nano Optics Berlin GmbH, 10627 Berlin, Germany
| | | | - Bastian Pfau
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Stefan Eisebitt
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
- Technische Universität Berlin, Institut für Optik und Atomare Physik, 10623 Berlin, Germany
| | - Holger Stiel
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), 10623 Berlin, Germany
| | - Daniel Schick
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| |
Collapse
|
17
|
Iuchi S, Koga N. Ultrafast Electronic Relaxation in Aqueous [Fe(bpy) 3] 2+: A Surface Hopping Study. J Phys Chem Lett 2023; 14:4225-4232. [PMID: 37126354 DOI: 10.1021/acs.jpclett.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Trajectory surface hopping simulations are performed to better understand the electronic relaxation dynamics of [Fe(bpy)3]2+ in aqueous solution. Specifically, the ultrafast relaxation from the photoexcited singlet metal-to-ligand charge-transfer (MLCT) to the metastable quintet metal-centered (MC) states is simulated through the surface hopping method, where the MLCT and MC states of [Fe(bpy)3]2+ in aqueous solution are computed by using a model electronic Hamiltonian developed previously. As a result, most of the trajectories are interpreted to show the sequential relaxation pathways via the triplet MC states, though some are the direct pathway from MLCT to the quintet MC states. Even though the triplet MC states are involved in the relaxation, the population transfer to the singlet MC ground state is very small, and the population of the quintet MC states reaches more than ∼96%, reasonably consistent with the unity quantum efficiency discussed experimentally.
Collapse
Affiliation(s)
- Satoru Iuchi
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nobuaki Koga
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
18
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
19
|
Perrella F, Coppola F, Rega N, Petrone A. An Expedited Route to Optical and Electronic Properties at Finite Temperature via Unsupervised Learning. Molecules 2023; 28:3411. [PMID: 37110644 PMCID: PMC10144358 DOI: 10.3390/molecules28083411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Electronic properties and absorption spectra are the grounds to investigate molecular electronic states and their interactions with the environment. Modeling and computations are required for the molecular understanding and design strategies of photo-active materials and sensors. However, the interpretation of such properties demands expensive computations and dealing with the interplay of electronic excited states with the conformational freedom of the chromophores in complex matrices (i.e., solvents, biomolecules, crystals) at finite temperature. Computational protocols combining time dependent density functional theory and ab initio molecular dynamics (MD) have become very powerful in this field, although they require still a large number of computations for a detailed reproduction of electronic properties, such as band shapes. Besides the ongoing research in more traditional computational chemistry fields, data analysis and machine learning methods have been increasingly employed as complementary approaches for efficient data exploration, prediction and model development, starting from the data resulting from MD simulations and electronic structure calculations. In this work, dataset reduction capabilities by unsupervised clustering techniques applied to MD trajectories are proposed and tested for the ab initio modeling of electronic absorption spectra of two challenging case studies: a non-covalent charge-transfer dimer and a ruthenium complex in solution at room temperature. The K-medoids clustering technique is applied and is proven to be able to reduce by ∼100 times the total cost of excited state calculations on an MD sampling with no loss in the accuracy and it also provides an easier understanding of the representative structures (medoids) to be analyzed on the molecular scale.
Collapse
Affiliation(s)
- Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
| | - Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, via Cintia 21, I-80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, via Cintia 21, I-80126 Napoli, Italy
| |
Collapse
|
20
|
Wei YC, Chen BH, Ye RS, Huang HW, Su JX, Lin CY, Hodgkiss J, Hsu LY, Chi Y, Chen K, Lu CH, Yang SD, Chou PT. Excited-State THz Vibrations in Aggregates of Pt II Complexes Contribute to the Enhancement of Near-Infrared Emission Efficiencies. Angew Chem Int Ed Engl 2023; 62:e202300815. [PMID: 36825300 DOI: 10.1002/anie.202300815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
The exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated PtII complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm-1 (0.96 THz) in the excited states. Importantly, similar THz characteristics were also observed in analogous PtII complexes with prominent NIR emission efficiency. The conservation of THz motions enables excited-state deactivation to proceed along low-frequency vibrational coordinates, contributing to the suppression of nonradiative decay and remarkable NIR emission. These novel results highlight the significance of excited-state vibrations in nonradiative processes, which serve as a benchmark for improving device performance.
Collapse
Affiliation(s)
- Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ren-Siang Ye
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsing-Wei Huang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jia-Xuan Su
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chao-Yang Lin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Justin Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6010, New Zealand
| | - Lian-Yan Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- National Center for Theoretical Sciences, Taipei, 10617, Taiwan
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Kai Chen
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6010, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, 9016, New Zealand
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
21
|
Wei Y, Chen B, Ye R, Huang H, Su J, Lin C, Hodgkiss J, Hsu L, Chi Y, Chen K, Lu C, Yang S, Chou P. Excited‐State THz Vibrations in Aggregates of Pt
II
Complexes Contribute to the Enhancement of Near‐Infrared Emission Efficiencies**. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Yu‐Chen Wei
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei 10617 Taiwan
| | - Bo‐Han Chen
- Institute of Photonics Technologies National Tsing Hua University Hsinchu 30013 Taiwan
| | - Ren‐Siang Ye
- Institute of Photonics Technologies National Tsing Hua University Hsinchu 30013 Taiwan
| | - Hsing‐Wei Huang
- Institute of Photonics Technologies National Tsing Hua University Hsinchu 30013 Taiwan
| | - Jia‐Xuan Su
- Institute of Photonics Technologies National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chao‐Yang Lin
- Robinson Research Institute Faculty of Engineering Victoria University of Wellington Wellington 6012 New Zealand
| | - Justin Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6010 New Zealand
| | - Lian‐Yan Hsu
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei 10617 Taiwan
- National Center for Theoretical Sciences Taipei 10617 Taiwan
| | - Yun Chi
- Department of Materials Science and Engineering Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF) City University of Hong Kong Hong Kong SAR Hong Kong
| | - Kai Chen
- Robinson Research Institute Faculty of Engineering Victoria University of Wellington Wellington 6012 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6010 New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies Dunedin 9016 New Zealand
| | - Chih‐Hsuan Lu
- Institute of Photonics Technologies National Tsing Hua University Hsinchu 30013 Taiwan
| | - Shang‐Da Yang
- Institute of Photonics Technologies National Tsing Hua University Hsinchu 30013 Taiwan
| | - Pi‐Tai Chou
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
22
|
Kim S, Lee D, Kim T, Kim CH, Son HJ, Kang SO, Shin JY. Dynamics of Photoinduced Intramolecular and Intermolecular Electron Transfers in Ligand-Conjugated Ir(III)-Re(I) Photocatalysts. J Phys Chem Lett 2023; 14:1535-1541. [PMID: 36745190 DOI: 10.1021/acs.jpclett.2c03367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report the electron transfer (ET) dynamics in a series of Ir(III)-Re(I) photocatalysts where two bipyridyl ligands of Ir and Re moieties are conjugated at the meta (m)- or para (p)-position of each side. Femtosecond transient absorption (TA) measurements identify the intramolecular ET (IET) dynamics from the Ir to Re moiety, followed by the formation of one-electron-reduced species (OERS) via the intermolecular ET with a sacrificial electron donor (SED). The IET rate depends on the bridging ligand (BL) structures (∼25 ps for BLmm/mp vs ∼68 ps for BLpm/pp), while the OERS formation happens on an even slower time scale (∼1.4 ns). Connecting the Re moiety at the meta-position of the bipyridyl of the Ir moiety can restrict the rotation around a covalent bond between two bipyridyl ligands by steric hindrances and facilitate the IET process. This highlights the importance of BL structures on the ET dynamics in photocatalysts.
Collapse
Affiliation(s)
- Soohwan Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Taesoo Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
23
|
Perrella F, Li X, Petrone A, Rega N. Nature of the Ultrafast Interligands Electron Transfers in Dye-Sensitized Solar Cells. JACS AU 2023; 3:70-79. [PMID: 36711100 PMCID: PMC9875239 DOI: 10.1021/jacsau.2c00556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/14/2023]
Abstract
Charge-transfer dynamics and interligand electron transfer (ILET) phenomena play a pivotal role in dye-sensitizers, mostly represented by the Ru-based polypyridyl complexes, for TiO2 and ZnO-based solar cells. Starting from metal-to-ligand charge-transfer (MLCT) excited states, charge dynamics and ILET can influence the overall device efficiency. In this letter, we focus on N34- dye ( [Ru(dcbpy)2(NCS)2]4-, dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) to provide a first direct observation with high time resolution (<20 fs) of the ultrafast electron exchange between bpy-like ligands. ILET is observed in water solution after photoexcitation in the ∼400 nm MLCT band, and assessment of its ultrafast time-scale is here given through a real-time electronic dynamics simulation on the basis of state-of-the-art electronic structure methods. Indirect effects of water at finite temperature are also disentangled by investigating the system in a symmetric gas-phase structure. As main result, remarkably, the ILET mechanism appears to be based upon a purely electronic evolution among the dense, experimentally accessible, MLCT excited states manifold at ∼400 nm, which rules out nuclear-electronic couplings and proves further the importance of the dense electronic manifold in improving the efficiency of dye sensitizers in solar cell devices.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed.
6, via Cintia, 80126 Napoli, Italy
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed.
6, via Cintia, 80126 Napoli, Italy
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125 Napoli, Italy
| |
Collapse
|
24
|
Branching mechanism of photoswitching in an Fe(II) polypyridyl complex explained by full singlet-triplet-quintet dynamics. Commun Chem 2023; 6:7. [PMID: 36697805 PMCID: PMC9829715 DOI: 10.1038/s42004-022-00796-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
It has long been known that irradiation with visible light converts Fe(II) polypyridines from their low-spin (singlet) to high-spin (quintet) state, yet mechanistic interpretation of the photorelaxation remains controversial. Herein, we simulate the full singlet-triplet-quintet dynamics of the [Fe(terpy)2]2+ (terpy = 2,2':6',2"-terpyridine) complex in full dimension, in order to clarify the complex photodynamics. Importantly, we report a branching mechanism involving two sequential processes: a dominant 3MLCT→3MC(3T2g)→3MC(3T1g)→5MC, and a minor 3MLCT→3MC(3T2g)→5MC component. (MLCT = metal-to-ligand charge transfer, MC = metal-centered). While the direct 3MLCT→5MC mechanism is considered as a relevant alternative, we show that it could only be operative, and thus lead to competing pathways, in the absence of 3MC states. The quintet state is populated on the sub-picosecond timescale involving non-exponential dynamics and coherent Fe-N breathing oscillations. The results are in agreement with the available time-resolved experimental data on Fe(II) polypyridines, and fully describe the photorelaxation dynamics.
Collapse
|
25
|
Perrella F, Petrone A, Rega N. Understanding Charge Dynamics in Dense Electronic Manifolds in Complex Environments. J Chem Theory Comput 2023; 19:626-639. [PMID: 36602443 PMCID: PMC9878732 DOI: 10.1021/acs.jctc.2c00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Photoinduced charge transfer (CT) excited states and their relaxation mechanisms can be highly interdependent on the environment effects and the consequent changes in the electronic density. Providing a molecular interpretation of the ultrafast (subpicosecond) interplay between initial photoexcited states in such dense electronic manifolds in condensed phase is crucial for improving and understanding such phenomena. Real-time time-dependent density functional theory is here the method of choice to observe the charge density, explicitly propagated in an ultrafast time domain, along with all time-dependent properties that can be easily extracted from it. A designed protocol of analysis for real-time electronic dynamics to be applied to time evolving electronic density related properties to characterize both in time and in space CT dynamics in complex systems is here introduced and validated, proposing easy to be read cross-correlation maps. As case studies to test such tools, we present the photoinduced charge-transfer electronic dynamics of 5-benzyluracil, a mimic of nucleic acid/protein interactions, and the metal-to-ligand charge-transfer electronic dynamics in water solution of [Ru(dcbpy)2(NCS)2]4-, dcbpy = (4,4'-dicarboxy-2,2'-bipyridine), or "N34-", a dye sensitizer for solar cells. Electrostatic and explicit ab initio treatment of solvent molecules have been compared in the latter case, revealing the importance of the accurate modeling of mutual solute-solvent polarization on CT kinetics. We observed that explicit quantum mechanical treatment of solvent slowed down the charge carriers mobilities with respect to the gas-phase. When all water molecules were modeled instead as simpler embedded point charges, the electronic dynamics appeared enhanced, with a reduced hole-electron distance and higher mean velocities due to the close fixed charges and an artificially increased polarization effect. Such analysis tools and the presented case studies can help to unveil the influence of the electronic manifold, as well as of the finite temperature-induced structural distortions and the environment on the ultrafast charge motions.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
26
|
Dorn M, East NR, Förster C, Kitzmann WR, Moll J, Reichenauer F, Reuter T, Stein L, Heinze K. d-d and charge transfer photochemistry of 3d metal complexes. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:707-788. [DOI: 10.1016/b978-0-12-823144-9.00063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Leahy CA, Vura-Weis J. Femtosecond Extreme Ultraviolet Spectroscopy of an Iridium Photocatalyst Reveals Oxidation State and Ligand Field Specific Dynamics. J Phys Chem A 2022; 126:9510-9518. [DOI: 10.1021/acs.jpca.2c05562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Clare A. Leahy
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Ogawa T, Sinha N, Pfund B, Prescimone A, Wenger OS. Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes. J Am Chem Soc 2022; 144:21948-21960. [DOI: 10.1021/jacs.2c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
29
|
Šrut A, Mai S, Sazanovich IV, Heyda J, Vlček A, González L, Záliš S. Nonadiabatic excited-state dynamics of ReCl(CO) 3(bpy) in two different solvents. Phys Chem Chem Phys 2022; 24:25864-25877. [PMID: 36279148 DOI: 10.1039/d2cp02981b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present a study of excited-states relaxation of the complex ReCl(CO)3(bpy) (bpy = 2,2-bipyridine) using a nonadiabatic TD-DFT dynamics on spin-mixed potential energy surfaces in explicit acetonitrile (ACN) and dimethylsulfoxide (DMSO) solutions up to 800 fs. ReCl(CO)3(bpy) belongs to a group of important photosensitizers which show ultrafast biexponential subpicosecond fluorescence decay kinetics. The choice of solvents was motivated by the different excited-state relaxation dynamics observed in subpicosecond time-resolved IR (TRIR) experiments. Simulations of intersystem crossing (ISC) showed the development of spin-mixed states in both solvents. Transformation of time-dependent populations of spin-mixed states enabled to monitor the temporal evolution of individual singlet and triplet states, fitting of bi-exponential decay kinetics, and simulating the time-resolved fluorescence spectra that show only minor differences between the two solvents. Analysis of structural relaxation and solvent reorganization employing time-resolved proximal distribution functions pointed to the factors influencing the fluorescence decay time constants. Nonadiabatic dynamics simulations of time-evolution of electronic, molecular, and solvent structures emerge as a powerful technique to interpret time-resolved spectroscopic data and ultrafast photochemical reactivity.
Collapse
Affiliation(s)
- Adam Šrut
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic.
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Jan Heyda
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic.
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
| |
Collapse
|
30
|
Ito A, Iwamura M, Sakuda E. Excited-state dynamics of luminescent transition metal complexes with metallophilic and donor–acceptor interactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Leong TX, Collins BK, Dey Baksi S, Mackin RT, Sribnyi A, Burin AL, Gladysz JA, Rubtsov IV. Tracking Energy Transfer across a Platinum Center. J Phys Chem A 2022; 126:4915-4930. [PMID: 35881911 PMCID: PMC9358659 DOI: 10.1021/acs.jpca.2c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Rigid, conjugated alkyne bridges serve as important components
in various transition-metal complexes used for energy conversion,
charge separation, sensing, and molecular electronics. Alkyne stretching
modes have potential for modulating charge separation in donor–bridge–acceptor
compounds. Understanding the rules of energy relaxation and energy
transfer across the metal center in such compounds can help optimize
their electron transfer switching properties. We used relaxation-assisted
two-dimensional infrared spectroscopy to track energy transfer across
metal centers in platinum complexes featuring a triazole-terminated
alkyne ligand of two or six carbons, a perfluorophenyl ligand, and
two tri(p-tolyl)phosphine ligands. Comprehensive
analyses of waiting-time dynamics for numerous cross and diagonal
peaks were performed, focusing on coherent oscillation, energy transfer,
and cooling parameters. These observables augmented with density functional
theory computations of vibrational frequencies and anharmonic force
constants enabled identification of different functional groups of
the compounds. Computations of vibrational relaxation pathways and
mode couplings were performed, and two regimes of intramolecular energy
redistribution are described. One involves energy transfer between
ligands via high-frequency modes; the transfer is efficient only if
the modes involved are delocalized over both ligands. The energy transport
pathways between the ligands are identified. Another regime involves
redistribution via low-frequency delocalized modes, which does not
lead to interligand energy transport.
Collapse
Affiliation(s)
- Tammy X Leong
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Brenna K Collins
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Sourajit Dey Baksi
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Robert T Mackin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Artem Sribnyi
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
32
|
Zulfikri H, Pápai M, Dohn AO. Simulating the solvation structure of low- and high-spin [Fe(bpy) 3] 2+: long-range dispersion and many-body effects. Phys Chem Chem Phys 2022; 24:16655-16670. [PMID: 35766396 DOI: 10.1039/d2cp00892k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When characterizing transition metal complexes and their functionalities, the importance of including the solvent as an active participant is becoming more and more apparent. Whereas many studies have evaluated long-range dispersion effects inside organic molecules and organometallics, less is known about their role in solvation. Here, we have analysed the components within solute-solvent and solvent-solvent interactions of one of the most studied iron-based photoswitch model systems, in two spin states. We find that long-range dispersion effects modulate the coordination significantly, and that this is accurately captured by density functional theory models including dispersion corrections. We furthermore correlate gas-phase relaxed complex-water clusters to thermally averaged molecular densities. This shows how the gas-phase interactions translate to solution structure, quantified through 3D molecular densities, angular distributions, and radial distribution functions. We show that finite-size simulation cells can cause the radial distribution functions to have artificially enlarged amplitudes. Finally, we quantify the effects of many-body interactions within the solvent shells, and find that almost a fifth of the total interaction energy of the solute-shell system in the high-spin state comes from many-body contributions, which cannot be captured by by pair-wise additive force field methods.
Collapse
Affiliation(s)
- Habiburrahman Zulfikri
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, Reykjavík 107, Iceland.
| | - Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, Reykjavík 107, Iceland. .,Department of Physics, Technical University of Denmark, Fysikvej 307, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
33
|
Glebov EM. Femtochemistry methods for studying the photophysics and photochemistry of halide complexes of platinum metals. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Restaino L, Jadoun D, Kowalewski M. Probing nonadiabatic dynamics with attosecond pulse trains and soft x-ray Raman spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:034101. [PMID: 35774244 PMCID: PMC9239728 DOI: 10.1063/4.0000146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/06/2022] [Indexed: 05/31/2023]
Abstract
Linear off-resonant x-ray Raman techniques are capable of detecting the ultrafast electronic coherences generated when a photoexcited wave packet passes through a conical intersection. A hybrid femtosecond or attosecond probe pulse is employed to excite the system and stimulate the emission of the signal photon, where both fields are components of a hybrid pulse scheme. In this paper, we investigate how attosecond pulse trains, as provided by high-harmonic generation processes, perform as probe pulses in the framework of this spectroscopic technique, instead of single Gaussian pulses. We explore different combination schemes for the probe pulse as well as the impact of parameters of the pulse trains on the signals. Furthermore, we show how Raman selection rules and symmetry consideration affect the spectroscopic signal, and we discuss the importance of vibrational contributions to the overall signal. We use two different model systems, representing molecules of different symmetries, and quantum dynamics simulations to study the difference in the spectra. The results suggest that such pulse trains are well suited to capture the key features associated with the electronic coherence.
Collapse
|
35
|
Cole-Filipiak NC, Troß J, Schrader P, McCaslin LM, Ramasesha K. Ultrafast infrared transient absorption spectroscopy of gas-phase Ni(CO) 4 photodissociation at 261 nm. J Chem Phys 2022; 156:144306. [DOI: 10.1063/5.0080844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We employ ultrafast mid-infrared transient absorption spectroscopy to probe the rapid loss of carbonyl ligands from gas-phase nickel tetracarbonyl following ultraviolet photoexcitation at 261 nm. Here, nickel tetracarbonyl undergoes prompt dissociation to produce nickel tricarbonyl in a singlet excited state; this electronically excited tricarbonyl loses another CO group over tens of picoseconds. Our results also suggest the presence of a parallel, concerted dissociation mechanism to produce nickel dicarbonyl in a triplet excited state, which likely dissociates to nickel monocarbonyl. Mechanisms for the formation of these photoproducts in multiple electronic excited states are theoretically predicted with one-dimensional cuts through the potential energy surfaces and computation of spin–orbit coupling constants using equation of motion coupled cluster methods (EOM-CC) and coupled cluster theory with single and double excitations (CCSD). Bond dissociation energies are calculated with CCSD, and anharmonic frequencies of ground and excited state species are computed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT).
Collapse
Affiliation(s)
- Neil C. Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Laura M. McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| |
Collapse
|
36
|
Mummaneni BC, Liu J, Lefkidis G, Hübner W. Laser-Controlled Implementation of Controlled-NOT, Hadamard, SWAP, and Pauli Gates as Well as Generation of Bell States in a 3d-4f Molecular Magnet. J Phys Chem Lett 2022; 13:2479-2485. [PMID: 35266722 DOI: 10.1021/acs.jpclett.2c00172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using high-level ab initio many-body theory, we theoretically propose that the Dy and the Ni atoms in the [Dy2Ni2(L)4(NO3)2(DMF)2] real molecular magnet as well as in its core, that is, the [Dy2Ni2O6] system, act as two-level qubit systems. Despite their spatial proximity we can individually control each qubit in this highly correlated real magnetic system through specially designed laser-pulse combinations. This allows us to prepare any desired two-qubit state and to build several classical and quantum logic gates, such as the two-qubit (binary) CNOT gate with three distinct laser pulses. Other quantum logic gates include the single-qubit (unary) quantum X, Y, and Z Pauli gates; the Hadamard gate (which necessitates the coherent quantum superposition of two many-body electronic states); and the SWAP gate (which plays an important role in Shor's algorithm for integer factorization). Finally, by sequentially using the achieved CNOT and Hadamard gates we are able to obtain the maximally entangled Bell states, for example, (12)(|00⟩ + |11⟩).
Collapse
Affiliation(s)
| | - Jing Liu
- Department of Physics, Technische Universität Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
| | - Georgios Lefkidis
- Department of Physics, Technische Universität Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wolfgang Hübner
- Department of Physics, Technische Universität Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
| |
Collapse
|
37
|
Pelczarski D, Korolevych O, Gierczyk B, Zalas M, Makowska-Janusik M, Stampor W. Electronic States of Tris(bipyridine) Ruthenium(II) Complexes in Neat Solid Films Investigated by Electroabsorption Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2278. [PMID: 35329728 PMCID: PMC8950412 DOI: 10.3390/ma15062278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023]
Abstract
We present the electric field-induced absorption (electroabsorption, EA) spectra of the solid neat films of tris(bipyridine) Ru(II) complexes, which were recently functionalized in our group as photosensitizers in dye-sensitized solar cells, and we compare them with the results obtained for an archetypal [Ru(bpy)3]2+ ion (RBY). We argue that it is difficult to establish a unique set of molecular parameter values by discrete parametrization of the EA spectra under the Liptay formalism for non-degenerate excited states. Therefore, the experimental EA spectra are compared with the spectra computed by the TDDFT (time-dependent density-functional theory) method, which for the first time explains the mechanism of electroabsorption in tris(bipyridine) Ru complexes without any additional assumptions about the spectral lineshape of the EA signal. We have shown that the main EA feature, in a form close to the absorption second derivative observed in the spectral range of the first MLCT (metal-to-ligand charge transfer) absorption band in Ru(bpy)3(PF6)2, can be attributed to a delocalized and orbitally degenerate excited state. This result may have key implications for the EA mechanism in RBY-based systems that exhibit similar EA spectra due to the robust nature of MLCT electronic states in such systems.
Collapse
Affiliation(s)
- Daniel Pelczarski
- Department of Molecular Photophysics, Institute of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Oleksandr Korolevych
- Faculty of Science and Technology, Jan Długosz University, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (O.K.); (M.M.-J.)
| | - Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (B.G.); (M.Z.)
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (B.G.); (M.Z.)
| | - Małgorzata Makowska-Janusik
- Faculty of Science and Technology, Jan Długosz University, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (O.K.); (M.M.-J.)
| | - Waldemar Stampor
- Department of Molecular Photophysics, Institute of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
38
|
Pápai M. Toward Simulation of Fe(II) Low-Spin → High-Spin Photoswitching by Synergistic Spin-Vibronic Dynamics. J Chem Theory Comput 2022; 18:1329-1339. [PMID: 35199532 PMCID: PMC8908767 DOI: 10.1021/acs.jctc.1c01184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A new theoretical
approach is presented and applied for the simulation
of Fe(II) low-spin (LS, singlet, t2g6eg0) → high-spin (HS, quintet, t2g4eg2) photoswitching dynamics of the octahedral
model complex [Fe(NCH)6]2+. The utilized synergistic
methodology heavily exploits the strengths of complementary electronic
structure and spin-vibronic dynamics methods. Specifically, we perform
3D quantum dynamics (QD) and full-dimensional trajectory surface hopping
(TSH, in conjunction with a linear vibronic coupling model), with
the modes for QD selected by TSH. We follow a hybrid approach which
is based on the application of time-dependent density functional theory
(TD-DFT) excited-state potential energy surfaces (PESs) and multiconfigurational
second-order perturbation theory (CASPT2) spin–orbit couplings
(SOCs). Our method delivers accurate singlet–triplet–quintet
intersystem crossing (ISC) dynamics, as assessed by comparison to
our recent high-level ab initio simulations and related
time-resolved experimental data. Furthermore, we investigate the capability
of our simulations to identify the location of ISCs. Finally, we assess
the approximation of constant SOCs (calculated at the Franck–Condon
geometry), whose validity has central importance for the combination
of TD-DFT PESs and CASPT2 SOCs. This efficient methodology will have
a key role in simulating LS → HS dynamics for more complicated
cases, involving higher density of states and varying electronic character,
as well as the analysis of ultrafast experiments.
Collapse
Affiliation(s)
- Mátyás Pápai
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
39
|
Han NS, Kim J, Yoon TH, Cho M. Time-resolved spectroscopy of thioflavin T solutions: Asynchronous optical sampling method with two frequency-upconverted mode-locked lasers. J Chem Phys 2022; 156:064201. [DOI: 10.1063/5.0077756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Noh Soo Han
- Korea University, Korea, Republic of (South Korea)
| | - JunWoo Kim
- Department of Chemistry, Princeton University, United States of America
| | - Tai Hyun Yoon
- Department of Physics, Korea University, Korea, Republic of (South Korea)
| | - Minhaeng Cho
- Chemistry, Korea University, Korea, Republic of (South Korea)
| |
Collapse
|
40
|
Lindh L, Gordivska O, Persson S, Michaels H, Fan H, Chábera P, Rosemann NW, Gupta AK, Benesperi I, Uhlig J, Prakash O, Sheibani E, Kjaer KS, Boschloo G, Yartsev A, Freitag M, Lomoth R, Persson P, Wärnmark K. Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality. Chem Sci 2021; 12:16035-16053. [PMID: 35024126 PMCID: PMC8672732 DOI: 10.1039/d1sc02963k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
A new generation of octahedral iron(ii)–N-heterocyclic carbene (NHC) complexes, employing different tridentate C^N^C ligands, has been designed and synthesized as earth-abundant photosensitizers for dye sensitized solar cells (DSSCs) and related solar energy conversion applications. This work introduces a linearly aligned push–pull design principle that reaches from the ligand having nitrogen-based electron donors, over the Fe(ii) centre, to the ligand having an electron withdrawing carboxylic acid anchor group. A combination of spectroscopy, electrochemistry, and quantum chemical calculations demonstrate the improved molecular excited state properties in terms of a broader absorption spectrum compared to the reference complex, as well as directional charge-transfer displacement of the lowest excited state towards the semiconductor substrate in accordance with the push–pull design. Prototype DSSCs based on one of the new Fe NHC photosensitizers demonstrate a power conversion efficiency exceeding 1% already for a basic DSSC set-up using only the I−/I3− redox mediator and standard operating conditions, outcompeting the corresponding DSSC based on the homoleptic reference complex. Transient photovoltage measurements confirmed that adding the co-sensitizer chenodeoxycholic acid helped in improving the efficiency by increasing the electron lifetime in TiO2. Time-resolved spectroscopy revealed spectral signatures for successful ultrafast (<100 fs) interfacial electron injection from the heteroleptic dyes to TiO2. However, an ultrafast recombination process results in undesirable fast charge recombination from TiO2 back to the oxidized dye, leaving only 5–10% of the initially excited dyes available to contribute to a current in the DSSC. On slower timescales, time-resolved spectroscopy also found that the recombination dynamics (longer than 40 μs) were significantly slower than the regeneration of the oxidized dye by the redox mediator (6–8 μs). Therefore it is the ultrafast recombination down to fs-timescales, between the oxidized dye and the injected electron, that remains as one of the main bottlenecks to be targeted for achieving further improved solar energy conversion efficiencies in future work. Iron-based photosensitizers for dye-sensitized solar cells with a rod-like push–pull design. Solar cell performance was limited by ultrafast (sub-ps) recombination, but yielded better performance than the homoleptic parent photosensitizer.![]()
Collapse
Affiliation(s)
- Linnea Lindh
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden.,Theoretical Chemistry Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Olga Gordivska
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Samuel Persson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Hannes Michaels
- Department of Chemistry - Angstrom Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden .,School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Hao Fan
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Pavel Chábera
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Nils W Rosemann
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden.,Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Arvind Kumar Gupta
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Iacopo Benesperi
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden .,School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Jens Uhlig
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Om Prakash
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Esmaeil Sheibani
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Kasper S Kjaer
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Gerrit Boschloo
- Department of Chemistry - Angstrom Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Arkady Yartsev
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Marina Freitag
- Department of Chemistry - Angstrom Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden .,School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Reiner Lomoth
- Department of Chemistry - Angstrom Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| |
Collapse
|
41
|
Pižl M, Hunter BM, Sazanovich IV, Towrie M, Gray HB, Záliš S, Vlček A. Excitation-Wavelength-Dependent Photophysics of d 8d 8 Di-isocyanide Complexes. Inorg Chem 2021; 61:2745-2759. [PMID: 34905688 DOI: 10.1021/acs.inorgchem.1c02645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binuclear Rh(I) and Ir(I) TMB (2,5-dimethyl-2,5-diisocyanohexane) and dimen (1,8-diisocyanomenthane) complexes possess dσ*pσ and dπpσ singlet and triplet excited states that can be selectively excited in the visible and UV spectral regions. Using perturbational spin-orbit TDDFT, we unraveled the detailed character and spin mixing of these electronic transitions and found that delocalization of pσ and dπ orbitals over C≡N- groups makes C≡N stretching vibrations sensitive reporters of electron density and structural changes upon electronic excitation. Picosecond time-resolved infrared spectra measured after visible light, 375 nm, and 316 nm excitation revealed excitation-wavelength-dependent deactivation cascades. Visible light irradiation prepares the 1dσ*pσ state that, after one or two (sub)picosecond relaxation steps, undergoes 70-1300 ps intersystem crossing to 3dσ*pσ, which is faster for the more flexible dimen complexes. UV-excited 1,3dπpσ states decay with (sub)picosecond kinetics through a manifold of high-lying triplet and mixed-spin states to 3dσ*pσ with lifetimes in the range of 6-19 ps (316 nm) and 19-43 ps (375 nm, Ir only), bypassing 1dσ*pσ. Most excited-state conversion and some relaxation steps are accompanied by direct decay to the ground state that is especially pronounced for the most flexible long/eclipsed Rh(dimen) conformer.
Collapse
Affiliation(s)
- Martin Pižl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic.,Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Bryan M Hunter
- Rowland Institute at Harvard, Cambridge, Massachusetts 02142, United States
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic.,Department of Chemistry, Queen Mary University of London, E1 4NS London, U.K
| |
Collapse
|
42
|
Longetti L, Barillot TR, Puppin M, Ojeda J, Poletto L, van Mourik F, Arrell CA, Chergui M. Ultrafast photoelectron spectroscopy of photoexcited aqueous ferrioxalate. Phys Chem Chem Phys 2021; 23:25308-25316. [PMID: 34747432 DOI: 10.1039/d1cp02872c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochemistry of metal-organic compounds in solution is determined by both intra- and inter-molecular relaxation processes after photoexcitation. Understanding its prime mechanisms is crucial to optimise the reactive paths and control their outcome. Here we investigate the photoinduced dynamics of aqueous ferrioxalate ([FeIII(C2O4)3]3-) upon 263 nm excitation using ultrafast liquid phase photoelectron spectroscopy (PES). The initial step is found to be a ligand-to-metal electron transfer, occuring on a time scale faster than our time resolution (≲30 fs). Furthermore, we observe that about 25% of the initially formed ferrous species population are lost in ∼2 ps. Cast in the contest of previous ultrafast infrared and X-ray spectroscopic studies, we suggest that upon prompt photoreduction of the metal centre, the excited molecules dissociate in <140 fs into the pair of CO2 and [(CO2)FeII(C2O4)2]3- fragments, with unity quantum yield. About 25% of these pairs geminately recombine in ∼2 ps, due to interaction with the solvent molecules, reforming the ground state of the parent ferric molecule.
Collapse
Affiliation(s)
- L Longetti
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - T R Barillot
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - M Puppin
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - J Ojeda
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - L Poletto
- National Research Council of Italy - Institute of Photonics and Nanotechnologies (CNR-IFN), via Trasea 7, 35131 Padova, Italy
| | - F van Mourik
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - C A Arrell
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - M Chergui
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
Perrella F, Petrone A, Rega N. Direct observation of the solvent organization and nuclear vibrations of [Ru(dcbpy) 2(NCS) 2] 4-, [dcbpy = (4,4'-dicarboxy-2,2'-bipyridine)], via ab initio molecular dynamics. Phys Chem Chem Phys 2021; 23:22885-22896. [PMID: 34668499 DOI: 10.1039/d1cp03151a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental effects can drastically influence the optical properties and photoreactivity of molecules, particularly in the presence of polar and/or protic solvents. In this work we investigate a negatively charged Ru(II) complex, [Ru(dcbpy)2(NCS)2]4- [dcbpy = (4,4'-dicarboxy-2,2'-bipyridine)], in water solution, since this system belongs to a broader class of transition-metal compounds undergoing upon photo-excitation rapid and complex charge transfer (CT) dynamics, which can be dictated by structural rearrangement and solvent environment. Ab initio molecular dynamics (AIMD) relying on a hybrid quantum/molecular mechanics scheme is used to probe the equilibrium microsolvation around the metal complex in terms of radial distribution functions of the main solvation sites and solvent effects on the overall equilibrium structure. Then, using our AIMD-based generalized normal mode approach, we investigate how the ligand vibrational spectroscopic features are affected by water solvation, also contributing to the interpretation of experimental Infra-Red spectra. Two solvation sites are found for the ligands: the sulfur and the oxygen sites can interact on average with ∼4 and ∼3 water molecules, respectively, where a stronger interaction of the oxygen sites is highlighted. On average an overall dynamic distortion of the C2 symmetric gas-phase structure was found to be induced by water solvation. Vibrational analysis reproduced experimental values for ligand symmetric and asymmetric stretchings, linking the observed shifts with respect to the gas-phase to a complex solvent distribution around the system. This is the groundwork for future excited-state nuclear and electronic dynamics to monitor non-equilibrium processes of CT excitation in complex environments, such as exciton migration in photovoltaic technologies.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy.
| | - Alessio Petrone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy. .,Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy. .,Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy.,CRIB, Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
44
|
Karak P, Ruud K, Chakrabarti S. Demystifying the Origin of Vibrational Coherence Transfer Between the S 1 and T 1 States of the Pt-pop Complex. J Phys Chem Lett 2021; 12:9768-9773. [PMID: 34595923 DOI: 10.1021/acs.jpclett.1c02789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate that spin-vibronic coupling is the most significant mechanism in vibrational coherence transfer (VCT) from the singlet (S1) to the triplet (T1) state of the [Pt2(P2O5H2)4]4- complex. Our time-dependent correlation function-based study shows that the rate of intersystem crossing (kISC) through direct spin-orbit coupling is negligibly small, making VCT vanishingly small due to the ultrashort decoherence time (2.5 ps). However, the inclusion of the spin-vibronic contribution to the net kISC in selective normal modes along the Pt-Pt axis increases the kISC to such an extent that VCT becomes feasible. Our results suggest that kISC for the S1 →T2 (τISC = 1.084 ps) is much faster than the S1 → T1 (τISC = 763.4 ps) and S1 → T3 (τISC = 13.38 ps) in CH3CN solvent, indicating that VCT is possible from the low-lying excited singlet (S1) to the triplet (T1) state through the intermediate T2 state. This is the first example where VCT occurs solely due to spin-vibronic interactions. This finding can pave the way for new types of photocatalysis.
Collapse
Affiliation(s)
- Pijush Karak
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Swapan Chakrabarti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
45
|
Farrow GA, Quick M, Kovalenko SA, Wu G, Sadler A, Chekulaev D, Chauvet AAP, Weinstein JA, Ernsting NP. On the intersystem crossing rate in a Platinum(II) donor-bridge-acceptor triad. Phys Chem Chem Phys 2021; 23:21652-21663. [PMID: 34580688 DOI: 10.1039/d1cp03471e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rates of ultrafast intersystem crossing in acceptor-bridge-donor molecules centered on Pt(II) acetylides are investigated. Specifically, a Pt(II) trans-acetylide triad NAP--Pt--Ph-CH2-PTZ [1], with acceptor 4-ethynyl-N-octyl-1,8-naphthalimide (NAP) and donor phenothiazine (PTZ), is examined in detail. We have previously shown that optical excitation in [1] leads to a manifold of singlet charge-transfer states, S*, which evolve via a triplet charge-transfer manifold into a triplet state 3NAP centered on the acceptor ligand and partly to a charge-separated state 3CSS (NAP--Pt-PTZ+). A complex cascade of electron transfer processes was observed, but intersystem crossing (ISC) rates were not explicitly resolved due to lack of spin selectivity of most ultrafast spectroscopies. Here we revisit the question of ISC with a combination and complementary analysis of (i) transient absorption, (ii) ultrafast broadband fluorescence upconversion, FLUP, which is only sensitive to emissive states, and (iii) femtosecond stimulated Raman spectroscopy, FSR. Raman resonance conditions allow us to observe S* and 3NAP exclusively by FSR, through vibrations which are pertinent only to these two states. This combination of methods enabled us to extract the intersystem crossing rates that were not previously accessible. Multiple timescales (1.6 ps to ∼20 ps) are associated with the rise of triplet species, which can now be assigned conclusively to multiple ISC pathways from a manifold of hot charge-transfer singlet states. The analysis is consistent with previous transient infrared spectroscopy data. A similar rate of ISC, up to 20 ps, is observed in the trans-acetylide NAP--Pt--Ph [2] which maintains two acetylide groups across the platinum center but lacks a donor unit, whilst removal of one acetylide group in mono-acetylide NAP--Pt-Cl [3] leads to >10-fold deceleration of the intersystem crossing process. Our work provides insight on the intersystem crossing dynamics of the organo-metallic complexes, and identifies a general method based on complementary ultrafast spectroscopies to disentangle complex spin, electronic and vibrational processes following photoexcitation.
Collapse
Affiliation(s)
- G A Farrow
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - M Quick
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - S A Kovalenko
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - G Wu
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - A Sadler
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - D Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - A A P Chauvet
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - J A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - N P Ernsting
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
46
|
Abramov PA. SYNTHESIS AND CRYSTAL STRUCTURE OF [LRe(CO)3(O2CC3F7)]. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621090109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Shimoda Y, Miyata K, Funaki M, Ehara T, Morimoto T, Nozawa S, Adachi SI, Ishitani O, Onda K. Determining Excited-State Structures and Photophysical Properties in Phenylphosphine Rhenium(I) Diimine Biscarbonyl Complexes Using Time-Resolved Infrared and X-ray Absorption Spectroscopies. Inorg Chem 2021; 60:7773-7784. [PMID: 33971089 DOI: 10.1021/acs.inorgchem.1c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have explored the structural factors on the photophysical properties in two rhenium(I) diimine complexes in acetonitrile solution, cis,trans-[Re(dmb)(CO)2(PPh2Et)2]+ (Et(2,2)) and cis,trans-[Re(dmb)(CO)2(PPh3)2]+ ((3,3)) (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ph = phenyl, Et = ethyl) using the combination method of time-resolved infrared spectroscopy, time-resolved extended X-ray absorption fine structure, and quantum chemical calculations. The difference between these complexes is the number of phenyl groups in the phosphine ligand, and this only indirectly affects the central Re(I). Despite this minor difference, the complexes exhibit large differences in emission wavelength and excited-state lifetime. Upon photoexcitation, the bond length of Re-P and angle of P-Re-P are significantly changed in both complexes, while the phenyl groups are largely rotated by ∼20° only in (3,3). In contrast, there is little change in charge distribution on the phenyl groups when Re to dmb charge transfer occurs upon photoexcitation. We concluded that the instability from steric effects of phenyl groups and diimine leads to a smaller Stokes shift of the lowest excited triplet state (T1) in (3,3). The large structural change between the ground and excited states causes the longer lifetime of T1 in (3,3).
Collapse
Affiliation(s)
- Yuushi Shimoda
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masataka Funaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takumi Ehara
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuki Morimoto
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, Katakuramachi, Hachioji, Tokyo 192-0982, Japan
| | - Shunsuke Nozawa
- Photon Factory, Institute of Materials Structure Sciences, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Sciences, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Ken Onda
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
48
|
Li K, Chen Y, Wang J, Yang C. Diverse emission properties of transition metal complexes beyond exclusive single phosphorescence and their wide applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Vittardi SB, Thapa Magar R, Breen DJ, Rack JJ. A Future Perspective on Phototriggered Isomerizations of Transition Metal Sulfoxides and Related Complexes. J Am Chem Soc 2021; 143:526-537. [PMID: 33400512 DOI: 10.1021/jacs.0c08820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photochromic molecules are examples of light-activated bistable molecules. We highlight the design criteria for a class of ruthenium and osmium sulfoxide complexes that undergo phototriggered isomerization of the bound sulfoxide. The mode of action in these complexes is an excited-state isomerization of the sulfoxide from S-bonded to O-bonded. We discuss the basic mechanism for this transformation and highlight specific examples that demonstrate the effectiveness and efficiency of the isomerization. We subsequently discuss future research directions within the field of phototriggered sulfoxide isomerizations on transition metal polypyridine complexes. These efforts involve new synthetic directions, including the choice of metal as well as new ambidentate ligands for isomerization.
Collapse
Affiliation(s)
- Sebastian B Vittardi
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Douglas J Breen
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, 300 Terrace Street NE, University of New Mexico, Albuquerque, New Mexico 87131-001 United States
| |
Collapse
|
50
|
Abstract
Coordination compounds, characterized by fascinating and tunable electronic properties, are capable of binding easily to proteins, polymers, wires and DNA. Upon irradiation, these molecular systems develop functions finding applications in solar cells, photocatalysis, luminescent and conformational probes, electron transfer triggers and diagnostic or therapeutic tools. The control of these functions is activated by the light wavelength, the metal/ligand cooperation and the environment within the first picoseconds (ps). After a brief summary of the theoretical background, this perspective reviews case studies, from 1st row to 3rd row transition metal complexes, that illustrate how spin-orbit, vibronic coupling and quantum effects drive the photophysics of this class of molecules at the early stage of the photoinduced elementary processes within the fs-ps time scale range.
Collapse
Affiliation(s)
- Chantal Daniel
- Laboratoire de Chimie Quantique, Université de Strasbourg, CNRS UMR7177, Institut Le Bel, 4 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|