1
|
Bag S, Liu J, Patil S, Bonowski J, Koska S, Schölermann B, Zhang R, Wang L, Pahl A, Sievers S, Brieger L, Strohmann C, Ziegler S, Grigalunas M, Waldmann H. A divergent intermediate strategy yields biologically diverse pseudo-natural products. Nat Chem 2024; 16:945-958. [PMID: 38365941 PMCID: PMC11164679 DOI: 10.1038/s41557-024-01458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The efficient exploration of biologically relevant chemical space is essential for the discovery of bioactive compounds. A molecular design principle that possesses both biological relevance and structural diversity may more efficiently lead to compound collections that are enriched in diverse bioactivities. Here the diverse pseudo-natural product (PNP) strategy, which combines the biological relevance of the PNP concept with synthetic diversification strategies from diversity-oriented synthesis, is reported. A diverse PNP collection was synthesized from a common divergent intermediate through developed indole dearomatization methodologies to afford three-dimensional molecular frameworks that could be further diversified via intramolecular coupling and/or carbon monoxide insertion. In total, 154 PNPs were synthesized representing eight different classes. Cheminformatic analyses showed that the PNPs are structurally diverse between classes. Biological investigations revealed the extent of diverse bioactivity enrichment of the collection in which four inhibitors of Hedgehog signalling, DNA synthesis, de novo pyrimidine biosynthesis and tubulin polymerization were identified from four different PNP classes.
Collapse
Affiliation(s)
- Sukdev Bag
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jie Liu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sohan Patil
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jana Bonowski
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sandra Koska
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Schölermann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ruirui Zhang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lin Wang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Lukas Brieger
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, TU Dortmund University, Dortmund, Germany
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, TU Dortmund University, Dortmund, Germany
| | - Slava Ziegler
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Grigalunas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
2
|
Sato T. Development of Stereodivergent Synthesis of Skipped Dienes and Application to Unified Total Synthesis of Madangamine Alkaloids. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|
3
|
Guillade L, Mora P, Villar P, Alvarez R, R de Lera A. Total synthesis of nahuoic acid A via a putative biogenetic intramolecular Diels-Alder (IMDA) reaction. Chem Sci 2021; 12:15157-15169. [PMID: 34909158 PMCID: PMC8612404 DOI: 10.1039/d1sc04524e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Inspired by the biogenetic proposal of an intramolecular Diels-Alder (IMDA) cycloaddition, the total synthesis of natural product nahuoic acid A, a cofactor-competitive inhibitor of the epigenetic enzyme lysine methyl transferase SETD8, has been carried out. A non-conjugated pentaenal precursor was synthesized with high levels of stereoselectivity at seven stereogenic centers and with the appropriate control of double bond geometries. Although the IMDA reaction of the non-conjugated pentaenal using Me2AlCl for catalysis at -40 °C selectively afforded the trans-fused diastereomer corresponding to the Re-endo mode of cycloaddition, under thermal reaction conditions it gave rise to a mixture of diastereomers, that preferentially formed through the exo mode, including the cis-fused angularly-methylated octahydronaphthalene diastereomer precursor of nahuoic acid A. The natural product could be obtained upon oxidation and overall deprotection of the hydroxyl groups present in the Si-exo IMDA diastereomer.
Collapse
Affiliation(s)
- Lucía Guillade
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| | - Paula Mora
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| | - Pedro Villar
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| | - Rosana Alvarez
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| |
Collapse
|
4
|
Sato T, Suto T, Nagashima Y, Mukai S, Chida N. Total Synthesis of Skipped Diene Natural Products. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takahiro Suto
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiyuki Nagashima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Shori Mukai
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
5
|
Motika SE, Hergenrother PJ. Re-engineering natural products to engage new biological targets. Nat Prod Rep 2020; 37:1395-1403. [PMID: 33034322 PMCID: PMC7720426 DOI: 10.1039/d0np00059k] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020 Natural products have a long history in drug discovery, with their inherent biological activity often tailored by medicinal chemists to arrive at the final drug product. This process is illustrated by numerous examples, including the conversion of epothilone to ixabepilone, erythromycin to azithromycin, and lovastatin to simvastatin. However, natural products are also fruitful starting points for the creation of complex and diverse compounds, especially those that are markedly different from the parent natural product and accordingly do not retain the biological activity of the parent. The resulting products have physiochemical properties that differ considerably when compared to traditional screening collections, thus affording an opportunity to discover novel biological activity. The synthesis of new structural frameworks from natural products thus yields value-added compounds, as demonstrated in the last several years with multiple biological discoveries emerging from these collections. This Highlight details a handful of these studies, describing new compounds derived from natural products that have biological activity and cellular targets different from those evoked/engaged by the parent. Such re-engineering of natural products offers the potential for discovering compounds with interesting and unexpected biological activity.
Collapse
Affiliation(s)
- Stephen E Motika
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| | - Paul J Hergenrother
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
6
|
Konik YA, Kananovich DG. Asymmetric synthesis with titanacyclopropane reagents: From early results to the recent achievements. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Cai B, Panek JS. Titanium Alkoxide-Based Regioselective Alkyne-Alkyne Reductive Coupling Mediated by In Situ Generated Arylamidate. J Am Chem Soc 2020; 142:3729-3735. [PMID: 32050069 DOI: 10.1021/jacs.0c00550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Titanium alkoxide-based alkyne-alkyne reductive coupling mediated by in situ generated arylamidate is described. A high level of regioselectivity is achieved in 37 examples, where (E,E)-dienes are exclusively formed. To the best of our knowledge, this study represents the first example of an apparent amide and carbamate directing effect in metal-mediated reductive coupling.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry, Metcalf Center for Science and Engineering , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - James S Panek
- Department of Chemistry, Metcalf Center for Science and Engineering , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
8
|
Li MZ, Tong Q, Han WY, Yang SY, Cui BD, Wan NW, Chen YZ. Synthesis of chromone-containing polycyclic compounds via palladium-catalyzed [2 + 2 + 1] annulation. Org Biomol Chem 2020; 18:1112-1116. [PMID: 31984976 DOI: 10.1039/c9ob02690h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A palladium-catalyzed [2 + 2 + 1] domino annulation of 3-iodochromones, α-bromo carbonyl compounds, and tetracyclododecene (TCD) is described. This approach provides a facile, efficient and atom-economical route to a variety of chromone-containing polycyclic compounds bearing fused/bridged-ring systems in good yields (up to 81%) with excellent diastereoselectivities (99 : 1 dr in all cases).
Collapse
Affiliation(s)
- Mi-Zhuan Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and School of Public Health, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Qi Tong
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Si-Yi Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| |
Collapse
|
9
|
Abstract
As readily accessible strained carbocycles, cyclopropenes show a diverse range of reactivities, and a lot of novel and useful transformations have been developed.
Collapse
Affiliation(s)
- Penghua Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xiaoyu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
10
|
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| |
Collapse
|
11
|
Candeias NR, Assoah B, Simeonov SP. Production and Synthetic Modifications of Shikimic Acid. Chem Rev 2018; 118:10458-10550. [PMID: 30350584 DOI: 10.1021/acs.chemrev.8b00350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Shikimic acid is a natural product of industrial importance utilized as a precursor of the antiviral Tamiflu. It is nowadays produced in multihundred ton amounts from the extraction of star anise ( Illicium verum) or by fermentation processes. Apart from the production of Tamiflu, shikimic acid has gathered particular notoriety as its useful carbon backbone and inherent chirality provide extensive use as a versatile chiral precursor in organic synthesis. This review provides an overview of the main synthetic and microbial methods for production of shikimic acid and highlights selected methods for isolation from available plant sources. Furthermore, we have attempted to demonstrate the synthetic utility of shikimic acid by covering the most important synthetic modifications and related applications, namely, synthesis of Tamiflu and derivatives, synthetic manipulations of the main functional groups, and its use as biorenewable material and in total synthesis. Given its rich chemistry and availability, shikimic acid is undoubtedly a promising platform molecule for further exploration. Therefore, in the end, we outline some challenges and promising future directions.
Collapse
Affiliation(s)
- Nuno R Candeias
- Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Korkeakoulunkatu 8 , 33101 Tampere , Finland
| | - Benedicta Assoah
- Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Korkeakoulunkatu 8 , 33101 Tampere , Finland
| | - Svilen P Simeonov
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry , Bulgarian Academy of Sciences , Acad. G. Bontchev str. Bl. 9 , 1113 Sofia , Bulgaria
| |
Collapse
|
12
|
Shalit ZA, Micalizio GC. A Highly Chemo-, Regio-, and Stereoselective Metallacycle-Mediated Annulation Between a Conjugated Enyne and an Ene-Diyne. ARKIVOC 2018; 2018:132-138. [PMID: 31742254 DOI: 10.24820/ark.5550190.p010.487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alkoxide-directed metal-centered intermolecular [2+2+2] annulation is shown to chemo-, regio-, and stereoselectively engage two polyunsaturated substrate in productive cyclization chemistry. This annulation process is unique in the field, revealing that it is possible to selectively engage three of five π-systems residing in the coupling partners in initial [2+2+2] reaction, and demonstrating that one of the two remaining π-systems (the TMS-alkyne) can ultimately serve to simply generate a new metallacyclopentene of great potential value in additional metallacycle-mediated coupling chemistry.
Collapse
Affiliation(s)
- Zachary A Shalit
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, NH 03755
| | - Glenn C Micalizio
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
13
|
Abstract
A convergent total synthesis of (-)-nahuoic acid Ci(Bii) (3), a novel cis-decalin polyketide, has been achieved. Key synthetic transformations include Type II Anion Relay Chemistry (ARC) to construct the polyol chain, a Ti-catalyzed asymmetric Diels-Alder reaction to generate the cis-decalin skeleton, and a late-stage large fragment union exploiting a Micalizio alkoxide-directed alkyne-alkene coupling tactic.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yifan Deng
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amos B. Smith
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Borra S, Chandrasekhar D, Khound S, Maurya RA. Access to 1a,6b-Dihydro-1H-benzofuro[2,3-b]azirines and Benzofuran-2-amines via Visible Light Triggered Decomposition of α-Azidochalcones. Org Lett 2017; 19:5364-5367. [DOI: 10.1021/acs.orglett.7b02643] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Satheesh Borra
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat, Assam-785006, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NEIST Jorhat, Assam-785006, India
| | - D. Chandrasekhar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat, Assam-785006, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NEIST Jorhat, Assam-785006, India
| | - Susmita Khound
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat, Assam-785006, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NEIST Jorhat, Assam-785006, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat, Assam-785006, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NEIST Jorhat, Assam-785006, India
| |
Collapse
|
15
|
Mazumdar W, Jana N, Thurman BT, Wink DJ, Driver TG. Rh 2(II)-Catalyzed Ring Expansion of Cyclobutanol-Substituted Aryl Azides To Access Medium-Sized N-Heterocycles. J Am Chem Soc 2017; 139:5031-5034. [PMID: 28355068 DOI: 10.1021/jacs.7b01833] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new reactivity pattern of Rh2(II)-N-arylnitrenes was discovered that facilitates the synthesis of medium-sized N-heterocycles from ortho-cyclobutanol-substituted aryl azides. The key ring-expansion step of the catalytic cycle is both chemoselective and stereospecific. Our mechanistic experiments implicate the formation of a rhodium N-arylnitrene catalytic intermediate and reveal that sp3 C-H bond amination of this electrophilic species is competitive with the ring-expansion process.
Collapse
Affiliation(s)
- Wrickban Mazumdar
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Navendu Jana
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Bryant T Thurman
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Donald J Wink
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607-7061, United States.,Institute of Next Generation Matter Transformation, College of Chemical Engineering, Huaqiao University , 668 Jimei Boulevard, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
16
|
Cai B, Evans RW, Wu J, Panek JS. Total Synthesis of Nuclear Factor of Activated T-Cells-68 (NFAT-68): Sequential Use of Chiral Allenylsilane and Titanium Alkoxide-Mediated Reductive Coupling Bond Construction. Org Lett 2016; 18:4304-7. [PMID: 27513364 DOI: 10.1021/acs.orglett.6b02052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly enantioenriched chiral allenylsilanes 4 were prepared in high yield through a scalable synthetic sequence, employing a modified copper-catalyzed SN2' reaction. These reagents were used for the production of enantioenriched homoproparglylic ethers 5, which were subjected to titanium alkoxide-mediated reductive coupling with acetylenic esters to produce (E,E)-dienes 6 bearing α,β,γ,δ-unsaturated esters. Both enantiomers of nuclear factor of activated T-cells-68 (NFAT-68) were synthesized in five steps with the sequential use of the two methods.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ryan W Evans
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jie Wu
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - James S Panek
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
17
|
Kaplan W, Khatri HR, Nagorny P. Concise Enantioselective Total Synthesis of Cardiotonic Steroids 19-Hydroxysarmentogenin and Trewianin Aglycone. J Am Chem Soc 2016; 138:7194-8. [PMID: 27232585 PMCID: PMC5015484 DOI: 10.1021/jacs.6b04029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expedient and scalable approach to cardiotonic steroids carrying oxygenation at the C11- and C19-positions has been developed and applied to the total asymmetric synthesis of steroids 19-hydroxysarmentogenin and trewianin aglycone as well as to the assembly of the panogenin core. This new approach features enantioselective organocatalytic oxidation of an aldehyde, diastereoselective Cu(OTf)2-catalyzed Michael reaction/tandem aldol cyclizations, and one-pot reduction/transposition reactions allowing a rapid (7 linear steps) assembly of a functionalized cardenolide skeleton. The ability to quickly set this steroidal core with preinstalled functional handles and diversity elements eliminates the need for difficult downstream functionalizations and substantially improves the accessibility to the entire class of cardenolides and their derivatives for biological evaluation.
Collapse
Affiliation(s)
- Will Kaplan
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| | - Hem Raj Khatri
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
18
|
Bandar J, Ascic E, Buchwald SL. Enantioselective CuH-Catalyzed Reductive Coupling of Aryl Alkenes and Activated Carboxylic Acids. J Am Chem Soc 2016; 138:5821-4. [PMID: 27121395 PMCID: PMC4866599 DOI: 10.1021/jacs.6b03086] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/19/2022]
Abstract
A new method for the enantioselective reductive coupling of aryl alkenes with activated carboxylic acid derivatives via copper hydride catalysis is described. Dual catalytic cycles are proposed, with a relatively fast enantioselective hydroacylation cycle followed by a slower diastereoselective ketone reduction cycle. Symmetrical aryl carboxyclic anhydrides provide access to enantioenriched α-substituted ketones or alcohols with excellent stereoselectivity and functional group tolerance.
Collapse
Affiliation(s)
- Jeffrey
S. Bandar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erhad Ascic
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
O’Rourke NF, Micalizio GC. Cyclopropenes in Metallacycle-Mediated Cross-Coupling with Alkynes: Convergent Synthesis of Highly Substituted Vinylcyclopropanes. Org Lett 2016; 18:1250-3. [PMID: 26987882 PMCID: PMC4882924 DOI: 10.1021/acs.orglett.6b00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereodivergent metallacycle-mediated cross-coupling reactions are described for the synthesis of densely functionalized vinylcyclopropanes from the union of alkynes with cyclopropenes. Strategies explored include hydroxyl-directed and nondirected processes, with the latter of these delivering vinylcyclopropanes with exquisite levels of regio- and stereoselectivity. Challenges inherent to these coupling reactions include diastereoselectivity (with respect to the cyclopropene) and regioselectivity (with respect to both coupling partners).
Collapse
Affiliation(s)
- Natasha F. O’Rourke
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755
| |
Collapse
|
20
|
Oguri H. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. CHEM REC 2016; 16:652-66. [DOI: 10.1002/tcr.201500213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Hiroki Oguri
- Division of Applied Chemistry Graduate School of Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Nakacho Koganei Tokyo 184-8588 Japan
- JST PRESTO; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
21
|
Oguri H. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. CHEM REC 2016. [DOI: 10.1002/tcr.201201600213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroki Oguri
- Division of Applied Chemistry Graduate School of Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Nakacho Koganei Tokyo 184-8588 Japan
- JST PRESTO; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
22
|
Mizoguchi H, Micalizio GC. Synthesis of Highly Functionalized Decalins via Metallacycle-Mediated Cross-Coupling. J Am Chem Soc 2015; 137:6624-8. [PMID: 25930967 DOI: 10.1021/jacs.5b02107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bridged bicyclic metallacyclopentenes generated from the [4 + 2] cycloaddition of metallacyclopentadienes with alkenes have been proposed as reactive intermediates in the course of [2 + 2 + 2] annulation reactions. Recently a collection of alkoxide-directed Ti-mediated [2 + 2 + 2] annulation reactions have been discovered for the synthesis of densely functionalized hydrindanes, where the bridged bicyclic metallacyclopentenes from intramolecular [4 + 2] were treated as fleeting intermediates en route to cyclohexadiene products formed by formal cheletropic extrusion of Ti(Oi-Pr)2. In studies aimed at understanding the course of these organometallic cascade reactions it was later discovered that these bridged bicyclic intermediates can be trapped by various elimination processes. Here, we have realized metallacycle-mediated annulation reactions for the assembly of angularly substituted decalins--structural motifs that are ubiquitous in natural products and molecules of pharmaceutical relevance. In addition to defining the basic annulation reaction we have discovered a surprising stability associated with the complex organometallic intermediates generated in the course of this coupling process and document here the ability to control the fate of such species. Ligand-induced cheletropic extrusion of the titanium center delivers cyclohexadiene-containing products, while several distinct protonation events have been identified to realize polycyclic products that contain three new stereocenters (one of which is the angular quaternary center that is a hallmark of alkoxide-directed titanium-mediated [2 + 2 + 2] annulation reactions). Examples of this metallacycle-mediated annulation reaction are provided to demonstrate that a range of stereodefined fused bicyclo[4.4.0]decanes are accessible, including those that contain aromatic and aliphatic substituents, and an empirical model is presented to accompany the observations made.
Collapse
Affiliation(s)
- Haruki Mizoguchi
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Glenn C Micalizio
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
23
|
Chen X, Xie Y, Xiao X, Li G, Deng Y, Jiang H, Zeng W. Rh(iii)-catalyzed chelation-assisted intermolecular carbenoid functionalization of α-imino Csp3–H bonds. Chem Commun (Camb) 2015; 51:15328-31. [DOI: 10.1039/c5cc06428g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A Rh(iii)-catalyzed cross-coupling/cyclization cascade of α-imino Csp3–H bonds with donor/acceptor α-acyl diazocarbonyl compounds has been developed.
Collapse
Affiliation(s)
- Xun Chen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Ying Xie
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xinsheng Xiao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Guoqiang Li
- Analysis and Testing Center
- Jinan University
- Guangzhou 510632
- China
| | - Yuanfu Deng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Wei Zeng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|