1
|
Jang J, Yoon HJ. Long-Range Charge Transport in Molecular Wires. J Am Chem Soc 2024; 146:32206-32221. [PMID: 39540553 DOI: 10.1021/jacs.4c11431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Long-range charge transport (LRCT) in molecular wires is crucial for the advancement of molecular electronics but remains insufficiently understood due to complex transport mechanisms and their dependencies on molecular structure. While short-range charge transport is typically dominated by off-resonant tunneling, which decays exponentially with molecular length, recent studies have highlighted certain molecular structures that facilitate LRCT with minimal attenuation over several nanometers. This Perspective reviews the latest progress in understanding LRCT, focusing on chemical designs and mechanisms that enable this phenomenon. Key strategies include π-conjugation, redox-active centers, and stabilization of radical intermediates, which support LRCT through mechanisms such as coherent resonant tunneling or incoherent hopping. We discuss how the effects of molecular structure, length, and temperature influence charge transport, and highlight emerging techniques like the Seebeck effect for distinguishing between transport mechanisms. By clarifying the principles behind LRCT and outlining future challenges, this work aims to guide the design of molecular systems capable of sustaining efficient long-distance charge transport, thereby paving the way for practical applications in molecular electronics and beyond.
Collapse
Affiliation(s)
- Jiung Jang
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
2
|
Imani A, Rahimi E, Lekka M, Andreatta F, Magnan M, Gonzalez-Garcia Y, Mol A, Raman RKS, Fedrizzi L, Asselin E. Albumin Protein Impact on Early-Stage In Vitro Biodegradation of Magnesium Alloy (WE43). ACS APPLIED MATERIALS & INTERFACES 2024; 16:1659-1674. [PMID: 38108601 PMCID: PMC10788864 DOI: 10.1021/acsami.3c12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Mg and its alloys are promising biodegradable materials for orthopedic implants and cardiovascular stents. The first interactions of protein molecules with Mg alloy surfaces have a substantial impact on their biocompatibility and biodegradation. We investigate the early-stage electrochemical, chemical, morphological, and electrical surface potential changes of alloy WE43 in either 154 mM NaCl or Hanks' simulated physiological solutions in the absence or presence of bovine serum albumin (BSA) protein. WE43 had the lowest electrochemical current noise (ECN) fluctuations, the highest noise resistance (Zn = 1774 Ω·cm2), and the highest total impedance (|Z| = 332 Ω·cm2) when immersed for 30 min in Hanks' solution. The highest ECN, lowest Zn (1430 Ω·cm2), and |Z| (49 Ω·cm2) were observed in the NaCl solution. In the solutions containing BSA, a unique dual-mode biodegradation was observed. Adding BSA to a NaCl solution increased |Z| from 49 to 97 Ω·cm2 and decreased the ECN signal of the alloy, i.e., the BSA inhibited corrosion. On the other hand, the presence of BSA in Hanks' solution increased the rate of biodegradation by decreasing both Zn and |Z| while increasing ECN. Finally, using scanning Kelvin probe force microscopy (SKPFM), we observed an adsorbed nanolayer of BSA with aggregated and fibrillar morphology only in Hanks' solution, where the electrical surface potential was 52 mV lower than that of the Mg oxide layer.
Collapse
Affiliation(s)
- Amin Imani
- Department
of Materials Engineering, The University
of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department
of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ehsan Rahimi
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Maria Lekka
- CIDETEC,
Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain
| | - Francesco Andreatta
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Michele Magnan
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Yaiza Gonzalez-Garcia
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Arjan Mol
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - R. K. Singh Raman
- Department
of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Lorenzo Fedrizzi
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Edouard Asselin
- Department
of Materials Engineering, The University
of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Privitera A, Faccio D, Giuri D, Latawiec EI, Genovese D, Tassinari F, Mummolo L, Chiesa M, Fontanesi C, Salvadori E, Cornia A, Wasielewski MR, Tomasini C, Sessoli R. Challenges in the Direct Detection of Chirality-induced Spin Selectivity: Investigation of Foldamer-based Donor-acceptor Dyads. Chemistry 2023:e202301005. [PMID: 37677125 DOI: 10.1002/chem.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.
Collapse
Affiliation(s)
- Alberto Privitera
- Department of Industrial Engineering, University of Florence, Via Santa Marta 3, 50139, Firenze, Italy
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Davide Faccio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Demetra Giuri
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Elisabeth I Latawiec
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Francesco Tassinari
- Department of Chemical and Geological Sciences and, INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Liviana Mummolo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Claudio Fontanesi
- Department of Engineering "E. Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125, Modena, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Andrea Cornia
- Department of Chemical and Geological Sciences and, INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Claudia Tomasini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Jiang T, Zeng BF, Zhang B, Tang L. Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications. Chem Soc Rev 2023; 52:5968-6002. [PMID: 37498342 DOI: 10.1039/d2cs00519k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Biao-Feng Zeng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Bai X, Li P, Peng W, Chen N, Lin JL, Li Y. Ionogel-Electrode for the Study of Protein Tunnel Junctions under Physiologically Relevant Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300663. [PMID: 36965118 DOI: 10.1002/adma.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Indexed: 05/15/2023]
Abstract
The study of charge transport through proteins is essential for understanding complicated electrochemical processes in biological activities while the reasons for the coexistence of tunneling and hopping phenomena in protein junctions still remain unclear. In this work, a flexible and conductive ionogel electrode is synthesized and is used as a top contact to form highly reproducible protein junctions. The junctions of proteins, including human serum albumin, cytochrome C and hemoglobin, show temperature-independent electron tunneling characteristics when the junctions are in solid states while with a different mechanism of temperature-dependent electron hopping when junctions are hydrated under physiologically relevant conditions. It is demonstrated that the solvent reorganization energy plays an important role in the electron-hopping process and experimentally shown that it requires ≈100 meV for electron hopping through one heme group inside a hydrated protein molecule connected between two electrodes.
Collapse
Affiliation(s)
- Xiyue Bai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Pengfei Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
6
|
Khmelinskii I, Makarov V. Activation of enzymatic ethanol oxidation by ATP hydrolysis energy transferred to ADH1A enzyme molecule over Müller cell intermediate filaments. Biophys Chem 2023; 294:106957. [PMID: 36716682 DOI: 10.1016/j.bpc.2023.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Presently exciton activation of enzymatic oxidation of ethanol by human alcohol dehydrogenase (ADH) 1A enzyme is reported. The ADH1A enzyme was activated by infrared (IR) excitons transferred over Müller cell (MC) intermediate filaments (IFs). These IR excitons were generated by energy liberated upon enzymatic ATP hydrolysis and transferred to IFs. Also, the emission spectrum was recorded of the electronically excited ADH1A…NAD+…EtOH complexes obtained by energy transfer from IR excitons that traveled along IFs. These results support the hypothesis that ATP hydrolysis energy may be transmitted in vivo in the form of IR excitons, over the network of IFs, both within and between cells.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Faculty of Science and Technology, Department of Chemistry and Pharmacy, and Center of Electronics, Optoelectronics, and Telecommunications, University of the Algarve, Faro, Portugal.
| | - Vladimir Makarov
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, USA.
| |
Collapse
|
7
|
Forlano N, Bucci R, Contini A, Venanzi M, Placidi E, Gelmi ML, Lettieri R, Gatto E. Non-Conventional Peptide Self-Assembly into a Conductive Supramolecular Rope. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020333. [PMID: 36678086 PMCID: PMC9867255 DOI: 10.3390/nano13020333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Structures composed of alternating α and β amino acids can give rise to peculiar secondary structural motifs, which could self-assemble into complex structures of controlled geometries. This work describes the self-assembly properties of an α,β-peptide, containing three units of syn H2-(2-F-Phe)-h-PheGly-OH, able to self-organize on surfaces into a fascinating supramolecular rope. This material was characterized by AFM, electronic conduction and fluorescence measurements. Molecular dynamics simulations showed that this hexapeptide can self-assemble into an antiparallel β-sheet layer, stabilized by intermolecular H-bonds, which, in turn, can self-assemble into many side-by-side layers, due to π-π interactions. As a matter of fact, we demonstrated that in this system, the presence of aromatic residues at the intramolecular interface promoted by the alternation of α,β-amino-acids in the primary sequence, endorses the formation of a super-secondary structure where the aromatic groups are close to each other, conferring to the system good electron conduction properties. This work demonstrates the capability and future potential of designing and fabricating distinctive nanostructures and efficient bioelectronic interfaces based on an α,β-peptide, by controlling structure and interaction processes beyond those obtained with α- or β-peptides alone.
Collapse
Affiliation(s)
- Nicola Forlano
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Raffaella Lettieri
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Emanuela Gatto
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
8
|
Zinelli R, Soni S, Cornelissen JJLM, Michel-Souzy S, Nijhuis CA. Charge Transport across Proteins inside Proteins: Tunneling across Encapsulin Protein Cages and the Effect of Cargo Proteins. Biomolecules 2023; 13:174. [PMID: 36671559 PMCID: PMC9855946 DOI: 10.3390/biom13010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Charge transport across proteins can be surprisingly efficient over long distances-so-called long-range tunneling-but it is still unclear as to why and under which conditions (e.g., presence of co-factors, type of cargo) the long-range tunneling regime can be accessed. This paper describes molecular tunneling junctions based on an encapsulin (Enc), which is a large protein cage with a diameter of 24 nm that can be loaded with various types of (small) proteins, also referred to as "cargo". We demonstrate with dynamic light scattering, transmission electron microscopy, and atomic force microscopy that Enc, with and without cargo, can be made stable in solution and immobilized on metal electrodes without aggregation. We investigated the electronic properties of Enc in EGaIn-based tunnel junctions (EGaIn = eutectic alloy of Ga and In that is widely used to contact (bio)molecular monolayers) by measuring the current density for a large range of applied bias of ±2.5 V. The encapsulated cargo has an important effect on the electrical properties of the junctions. The measured current densities are higher for junctions with Enc loaded with redox-active cargo (ferritin-like protein) than those junctions without cargo or redox-inactive cargo (green fluorescent protein). These findings open the door to charge transport studies across complex biomolecular hierarchical structures.
Collapse
Affiliation(s)
- Riccardo Zinelli
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Saurabh Soni
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Sandra Michel-Souzy
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Christian A. Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
The OCT angular sign of Henle fiber layer (HFL) hyperreflectivity (ASHH) and the pathoanatomy of the HFL in macular disease. Prog Retin Eye Res 2022:101135. [DOI: 10.1016/j.preteyeres.2022.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
|
10
|
Rahimi E, Imani A, Lekka M, Andreatta F, Gonzalez-Garcia Y, Mol JMC, Asselin E, Fedrizzi L. Morphological and Surface Potential Characterization of Protein Nanobiofilm Formation on Magnesium Alloy Oxide: Their Role in Biodegradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10854-10866. [PMID: 35994730 PMCID: PMC9454254 DOI: 10.1021/acs.langmuir.2c01540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The formation of a protein nanobiofilm on the surface of degradable biomaterials such as magnesium (Mg) and its alloys influences metal ion release, cell adhesion/spreading, and biocompatibility. During the early stage of human body implantation, competition and interaction between inorganic species and protein molecules result in a complex film containing Mg oxide and a protein layer. This film affects the electrochemical properties of the metal surface, the protein conformational arrangement, and the electronic properties of the protein/Mg oxide interface. In this study, we discuss the impact of various simulated body fluids, including sodium chloride (NaCl), phosphate-buffered saline (PBS), and Hanks' solutions on protein adsorption, electrochemical interactions, and electrical surface potential (ESP) distribution at the adsorbed protein/Mg oxide interface. After 10 min of immersion in NaCl, atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) showed a higher surface roughness related to enhanced degradation and lower ESP distribution on a Mg-based alloy than those in other solutions. Furthermore, adding bovine serum albumin (BSA) to all solutions caused a decline in the total surface roughness and ESP magnitude on the Mg alloy surface, particularly in the NaCl electrolyte. Using SKPFM surface analysis, we detected a protein nanobiofilm (∼10-20 nm) with an aggregated and/or fibrillary morphology only on the Mg surface exposed in Hanks' and PBS solutions; these surfaces had a lower ESP value than the oxide layer.
Collapse
Affiliation(s)
- Ehsan Rahimi
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amin Imani
- Department
of Materials Engineering, The University
of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Maria Lekka
- CIDETEC,
Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain
| | - Francesco Andreatta
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Yaiza Gonzalez-Garcia
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Johannes M. C. Mol
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Edouard Asselin
- Department
of Materials Engineering, The University
of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lorenzo Fedrizzi
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| |
Collapse
|
11
|
Nawade A, Busi KB, Ramya K, Dalapati GK, Mukhopadhyay S, Chakrabortty S. Improved Charge Transport across Bovine Serum Albumin-Au Nanoclusters' Hybrid Molecular Junction. ACS OMEGA 2022; 7:20906-20913. [PMID: 35755374 PMCID: PMC9219077 DOI: 10.1021/acsomega.2c01563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Proteins, a highly complex substance, have been an essential element in living organisms, and various applications are envisioned due to their biocompatible nature. Apart from proteins' biological functions, contemporary research mainly focuses on their evolving potential associated with nanoscale electronics. Here, we report one chemical doping process in model protein molecules (BSA) to modulate their electrical conductivity by incorporating metal (gold) nanoclusters on the surface or within them. The as-synthesized Au NCs incorporated inside the BSA (Au 1 to Au 6) were optically well characterized with UV-vis, time-resolved photoluminescence (TRPL), X-ray photon spectroscopy, and high-resolution transmission electron microscopy techniques. The PL quantum yield for Au 1 is 6.8%, whereas that for Au 6 is 0.03%. In addition, the electrical measurements showed ∼10-fold enhancement of conductivity in Au 6 (8.78 × 10-3 S/cm), where maximum loading of Au NCs was predicted inside the protein matrix. We observed a dynamic behavior in the electrical conduction of such protein-nanocluster films, which could have real-time applications in preparing biocompatible electronic devices.
Collapse
Affiliation(s)
- Ashwini Nawade
- Department
of Physics, SRM University, AP - Andhra
Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Kumar Babu Busi
- Department
of Chemistry, SRM University, AP - Andhra
Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Kunchanapalli Ramya
- Department
of Physics, SRM University, AP - Andhra
Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Goutam Kumar Dalapati
- Department
of Physics, SRM University, AP - Andhra
Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Sabyasachi Mukhopadhyay
- Department
of Physics, SRM University, AP - Andhra
Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Sabyasachi Chakrabortty
- Department
of Chemistry, SRM University, AP - Andhra
Pradesh, Guntur, Andhra Pradesh 522240, India
| |
Collapse
|
12
|
|
13
|
Rahimi E, Offoiach R, Lekka M, Fedrizzi L. Electronic properties and surface potential evaluations at the protein nano-biofilm/oxide interface: Impact on corrosion and biodegradation. Colloids Surf B Biointerfaces 2022; 212:112346. [PMID: 35074638 DOI: 10.1016/j.colsurfb.2022.112346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
The formation of a protein nano-biofilm, which exhibits a special electronic behavior, on the surface of metals or oxide biomaterials considerably influences the crucial subsequent interactions, particularly the corrosion and biodegradation processes. This study discusses the impact of electrical surface potential (ESP) of a single or nano-biofilm of albumin protein on the electrochemical interactions and electronic property evolutions (e.g., charge carriers, space charge capacitance (SCC), and band bending) occurring on the surface oxide of CoCrMo implants. Scanning Kelvin probe force microscopy (SKPFM) results indicated that ESP or surface charge distribution on a single or nano-biofilm of the albumin protein is lower than that of a CoCrMo complex oxide layer, which hinders the charge transfer at the protein/electrolyte interface. Using a complementary approach, which involved performing Mott-Schottky analysis at the electrolyte/protein/oxide interface, it was revealed that the albumin protein significantly increases the SCC magnitude and number of n-type charge carrier owing to increased band bending at the SCC/protein interface; this facilitated the acceleration of metal ion release and metal-protein complex formation. The nanoscale SKPFM and electrochemical analyses performed in this study provide a better understanding of the role of protein molecules in corrosion/biodegradation of metallic biomaterials at the protein nano-biofilm/oxide interface.
Collapse
Affiliation(s)
- Ehsan Rahimi
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy.
| | - Ruben Offoiach
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Maria Lekka
- CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 DonostiaSan Sebastián, Spain.
| | - Lorenzo Fedrizzi
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| |
Collapse
|
14
|
Ashkarran AA, Hosseini A, Loloee R, Perry G, Lee KB, Lund M, Ejtehadi MR, Mahmoudi M. Conformation- and phosphorylation-dependent electron tunnelling across self-assembled monolayers of tau peptides. J Colloid Interface Sci 2022; 606:2038-2050. [PMID: 34749450 DOI: 10.1016/j.jcis.2021.09.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
We report on charge transport across self-assembled monolayers (SAMs) of short tau peptides by probing the electron tunneling rates and quantum mechanical simulation. We measured the electron tunneling rates across SAMs of carboxyl-terminated linker molecules (C6H12O2S) and short cis-tau (CT) and trans-tau (TT) peptides, supported on template-stripped gold (AuTS) bottom electrode, with Eutectic Gallium-Indium (EGaIn)(EGaIn) top electrode. Measurements of the current density across thousands of AuTS/linker/tau//Ga2O3/EGaIn single-molecule junctions show that the tunneling current across CT peptide is one order of magnitude lower than that of TT peptide. Quantum mechanical simulation demonstrated a wider energy bandgap of the CT peptide, as compared to the TT peptide, which causes a reduction in its electron tunneling current. Our findings also revealed the critical role of phosphorylation in altering the charge transport characteristics of short peptides; more specifically, we found that the presence of phosphate groups can reduce the energy band gap in tau peptides and alter their electrical properties. Our results suggest that conformational and phosphorylation of short peptides (e.g., tau) can significantly change their charge transport characteristics and energy levels.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Atiyeh Hosseini
- Division of Theoretical Chemistry, Lund University, Lund, Sweden; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Reza Loloee
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.
| | | | - Morteza Mahmoudi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Srisomwat C, Yakoh A, Avihingsanon A, Chuaypen N, Tangkijvanich P, Vilaivan T, Chailapakul O. An alternative label-free DNA sensor based on the alternating-current electroluminescent device for simultaneous detection of human immunodeficiency virus and hepatitis C co-infection. Biosens Bioelectron 2021; 196:113719. [PMID: 34706315 DOI: 10.1016/j.bios.2021.113719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Coinfection of HIV/HCV is a significant public health issue globally, as it increases the risk of liver cancer in co-infected individuals. The point-of-care testing (POCT) device for HIV/HCV DNA detection is promptly needed for diagnosis and monitoring of the disease progression. Here, the alternating-current electroluminescence (ACEL) technique is proposed as a sensitive POCT sensing platform for HIV/HCV cDNA detection. A conductance-based light emission modulated by the hybridization between a pyrrolidinyl PNA probe and the DNA target enabled the DNA detection in a label-free format. Enhanced electroluminescence was observed in the presence of the target DNA due to the increased proton conductivity. Under the optimal conditions, the linearity range from 1 nM to 1 μM was achieved for HIV and HCV cDNA with LODs of 1.86 pM (HIV cDNA) and 1.96 pM (HCV cDNA). The spiked HIV/HCV cDNA in healthy human serum was successfully detected, demonstrating the feasibility of the developed device for the detection of cDNA in real biological samples. Additionally, simultaneous HIV/HCV cDNA detection on a single ACEL device employing a 2x2-array detection zone design. The cross-reactivity with other viral DNA was shown to be minimal due to the high specificity of the PNA probes used. Finally, the negative and positive samples from the patient's serum were tested and the results were in 100% agreement with the commercial kit based-on real-time PCR method, thus illustrating the high sensitivity and specificity of the developed sensor.
Collapse
Affiliation(s)
- Chawin Srisomwat
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Abdulhadee Yakoh
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anchalee Avihingsanon
- The HIV Netherlands Australia Thailand Research Collaboration (HIV NAT), Thai Red Cross AIDS Research Centre, 104 Ratchadamri Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Abstract
Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuI to the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+-W1(-W2) exhibited crossings between sensitizer-localized (*Re) and charge-separated [ReI(His)(CO)3(dmp•-)/(W1 •+ or W2 •+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Water-dominated electrostatic field fluctuations bring *Re and CS1 states to a crossing where *Re(CO)3(dmp)+←W1 ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around *Re(CO)3(dmp)+(W1); and CS1 is stabilized by Re(dmp•-)/W1 •+ electron/hole interaction and enhanced W1 •+ solvation. The second hop, W1 •+←W2, is facilitated by water fluctuations near the W1/W2 unit, taking place when the electrostatic potential at W2 drops well below that at W1 •+ Insufficient solvation and reorganization around W2 make W1 •+←W2 ET endergonic, shifting the equilibrium toward W1 •+ and decreasing the charge-separation yield. We suggest that multiscale TDDFT/MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds.
Collapse
|
17
|
Furuya R, Omagari S, Tan Q, Lokstein H, Vacha M. Enhancement of the Photocurrent of a Single Photosystem I Complex by the Localized Plasmon of a Gold Nanorod. J Am Chem Soc 2021; 143:13167-13174. [PMID: 34374520 DOI: 10.1021/jacs.1c04691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combination of conductive atomic force microscopy (AFM) and confocal fluorescence microscopy was used to measure photocurrents passing through single trimeric photosytem I (PSI) complexes located in the vicinity of single gold nanorods (AuNRs). Simultaneous excitation of PSI and of the AuNR longitudinal plasmon mode and detection of photocurrents from individual PSI in relation to the position of single AuNRs enable insight into plasmon-induced phenomena that are otherwise inaccessible in ensemble experiments. We have observed photocurrent enhancement by the localized plasmons by a factor of 2.9 on average, with maximum enhancement values of up to 8. Selective excitation of the longitudinal plasmon modes by the polarization of the excitation laser enables controllable switch-on of the photocurrent enhancement. The dependence of the extent of enhancement on the distance between PSI and AuNRs indicates that, apart from the enhancement of absorption, there is an additional enhancement mechanism affecting directly the electron transport process. The present study provides deeper insight into the molecular mechanisms of plasmon-enhanced photocurrents, not only in PSI but also potentially in other systems as well.
Collapse
Affiliation(s)
- Ryotaro Furuya
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Shun Omagari
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Qiwen Tan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan.,Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| |
Collapse
|
18
|
Mejias SH, López-Martínez E, Fernandez M, Couleaud P, Martin-Lasanta A, Romera D, Sanchez-Iglesias A, Casado S, Osorio MR, Abad JM, González MT, Cortajarena AL. Engineering conductive protein films through nanoscale self-assembly and gold nanoparticles doping. NANOSCALE 2021; 13:6772-6779. [PMID: 33885479 DOI: 10.1039/d1nr00238d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein-based materials are usually considered as insulators, although conductivity has been recently shown in proteins. This fact opens the door to develop new biocompatible conductive materials. While there are emerging efforts in this area, there is an open challenge related to the limited conductivity of protein-based systems. This work shows a novel approach to tune the charge transport properties of protein-based materials by using electron-dense AuNPs. Two strategies are combined in a unique way to generate the conductive solid films: (1) the controlled self-assembly of a protein building block; (2) the templating of AuNPs by the engineered building block. This bottom-up approach allows controlling the structure of the films and the distribution of the AuNPs within, leading to enhanced conductivity. This work illustrates a promising strategy for the development of effective hybrid protein-based bioelectrical materials.
Collapse
Affiliation(s)
- Sara H Mejias
- IMDEA Nanociencia, Campus Universitario de Cantoblanco, C\Faraday, 9, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
How stable are the collagen and ferritin proteins for application in bioelectronics? PLoS One 2021; 16:e0246180. [PMID: 33513177 PMCID: PMC7845979 DOI: 10.1371/journal.pone.0246180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
One major obstacle in development of biomolecular electronics is the loss of function of biomolecules upon their surface-integration and storage. Although a number of reports on solid-state electron transport capacity of proteins have been made, no study on whether their functional integrity is preserved upon surface-confinement and storage over a long period of time (few months) has been reported. We have investigated two specific cases—collagen and ferritin proteins, since these proteins exhibit considerable potential as bioelectronic materials as we reported earlier. Since one of the major factors for protein degradation is the proteolytic action of protease, such studies were made under the action of protease, which was either added deliberately or perceived to have entered in the reaction vial from ambient environment. Since no significant change in the structural characteristics of these proteins took place, as observed in the circular dichroism and UV-visible spectrophotometry experiments, and the electron transport capacity was largely retained even upon direct protease exposure as revealed from the current sensing atomic force spectroscopy experiments, we propose that stable films can be formed using the collagen and ferritin proteins. The observed protease-resistance and robust nature of these two proteins support their potential application in bioelectronics.
Collapse
|
20
|
Zhang L, Lu JR, Waigh TA. Electronics of peptide- and protein-based biomaterials. Adv Colloid Interface Sci 2021; 287:102319. [PMID: 33248339 DOI: 10.1016/j.cis.2020.102319] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Biologically inspired peptide- and protein-based materials are at the forefront of organic bioelectronics research due to their inherent conduction properties and excellent biocompatibility. Peptides have the advantages of structural simplicity and ease of synthesis providing credible prospects for mass production, whereas naturally expressed proteins offer inspiration with many examples of high performance evolutionary optimised bioelectronics properties. We review recent advances in the fundamental conduction mechanisms, experimental techniques and exemplar applications for the bioelectronics of self-assembling peptides and proteins. Diverse charge transfer processes, such as tunnelling, hopping and coupled transfer, are found in naturally occurring biological systems with peptides and proteins as the predominant building blocks to enable conduction in biology. Both theory and experiments allow detailed investigation of bioelectronic properties in order to design functionalized peptide- and protein-based biomaterials, e.g. to create biocompatible aqueous electrodes. We also highlight the design of bioelectronics devices based on peptides/proteins including field-effect transistors, piezoelectric energy harvesters and optoelectronics.
Collapse
Affiliation(s)
- L Zhang
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - J R Lu
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - T A Waigh
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Photon Science Institute, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
21
|
Guo T, Sun B, Ranjan S, Jiao Y, Wei L, Zhou YN, Wu YA. From Memristive Materials to Neural Networks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54243-54265. [PMID: 33232112 DOI: 10.1021/acsami.0c10796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The information technologies have been increasing exponentially following Moore's law over the past decades. This has fundamentally changed the ways of work and life. However, further improving data process efficiency is facing great challenges because of physical and architectural limitations. More powerful computational methodologies are crucial to fulfill the technology gap in the post-Moore's law period. The memristor exhibits promising prospects in information storage, high-performance computing, and artificial intelligence. Since the memristor was theoretically predicted by L. O. Chua in 1971 and experimentally confirmed by HP Laboratories in 2008, it has attracted great attention from worldwide researchers. The intrinsic properties of memristors, such as simple structure, low power consumption, compatibility with the complementary metal oxide-semiconductor (CMOS) process, and dual functionalities of the data storage and computation, demonstrate great prospects in many applications. In this review, we cover the memristor-relevant computing technologies, from basic materials to in-memory computing and future prospects. First, the materials and mechanisms in the memristor are discussed. Then, we present the development of the memristor in the domains of the synapse simulating, in-memory logic computing, deep neural networks (DNNs) and spiking neural networks (SNNs). Finally, the existent technology challenges and outlook of the state-of-art applications are proposed.
Collapse
Affiliation(s)
- Tao Guo
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bai Sun
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shubham Ranjan
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yixuan Jiao
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Lan Wei
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Y Norman Zhou
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
22
|
Freeze-concentration of solutes during bulk freezing and its impact on protein stability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Khmelinskii I, Makarov V. Electric field modulation of light energy transmission along intermediate filaments isolated from porcine retina. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Mukhopadhyay S, Karuppannan SK, Guo C, Fereiro JA, Bergren A, Mukundan V, Qiu X, Castañeda Ocampo OE, Chen X, Chiechi RC, McCreery R, Pecht I, Sheves M, Pasula RR, Lim S, Nijhuis CA, Vilan A, Cahen D. Solid-State Protein Junctions: Cross- Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling. iScience 2020; 23:101099. [PMID: 32438319 PMCID: PMC7235645 DOI: 10.1016/j.isci.2020.101099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that Ageoof junctions varies from 105 to 10-3 μm2. Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (∼contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments.
Collapse
Affiliation(s)
- Sabyasachi Mukhopadhyay
- Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502, India
| | - Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Cunlan Guo
- Weizmann Institute of Science, Rehovot 76100, Israel
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | | | - Adam Bergren
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Vineetha Mukundan
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Olga E. Castañeda Ocampo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Xiaoping Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Richard McCreery
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Israel Pecht
- Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Rupali Reddy Pasula
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Christian A. Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Ayelet Vilan
- Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Cahen
- Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
25
|
Yakoh A, Siangproh W, Chailapakul O, Ngamrojanavanich N. Optical Bioelectronic Device Based on a Screen-Printed Electroluminescent Transducer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22543-22551. [PMID: 32338866 DOI: 10.1021/acsami.0c03812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new class of biosensing transducer based on alternating-current electroluminescent (ACEL) display is demonstrated. Unlike conventional ACEL displays where they have been rigidly used in flexible screens and advertising applications, here, the display is integrated with immunoassay and functioned as an optical transducer. Taking advantage of the reversed ACEL architecture, the display can be simply fabricated on an unconventional paper material without requiring the transparent indium tin oxide (ITO) electrode. The sensing mechanism relies on the promoted electronic conduction from the immunocomplex formation between immobilized antibody, antigen, and nanoparticle labeled antibody. As a result, the electroluminescence could be triggered off instantaneously. To demonstrate the device effectiveness, C-reactive protein (CRP), a particular biomarker of an inflammatory process and cardiovascular disease, is chosen as a model analyte in this work. Additionally, the applicability of the proposed platform is proved efficacious in human serums, showing negligible interference from nontargeting proteins. The sensing display is also capable of performing multiple assays (up to 8) within a single device. This bio-optoelectronic device represents a straightforward yet highly sensitive approach. This ACEL transducer is believed to explore new possibilities for biosensing and exploit in point-of-care testing.
Collapse
Affiliation(s)
- Abdulhadee Yakoh
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Nattaya Ngamrojanavanich
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
26
|
Talebi S, Daraghma SMA, Subramaniam RT, Bhassu S, Gnana Kumar G, Periasamy V. Printed-Circuit-Board-Based Two-Electrode System for Electronic Characterization of Proteins. ACS OMEGA 2020; 5:7802-7808. [PMID: 32309689 PMCID: PMC7160841 DOI: 10.1021/acsomega.9b03831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Proteins have been increasingly suggested as suitable candidates for the fabrication of biological computers and other biomolecular-based electronic devices mainly due to their interesting structure-related intrinsic electrical properties. These natural biopolymers are environmentally friendly substitutes for conventional inorganic materials and find numerous applications in bioelectronics. Effective manipulation of protein biomolecules allows for accurate fabrication of nanoscaled device dimensions for miniaturized electronics. The prerequisite, however, demands an interrogation of its various electronic properties prior to understanding the complex charge transfer mechanisms in protein molecules, the knowledge of which will be crucial toward development of such nanodevices. One significantly preferred method in recent times involves the utilization of solid-state sensors where interactions of proteins could be investigated upon contact with metals such as gold. Therefore, in this work, proteins (hemoglobin and collagen) were integrated within a two-electrode system, and the resulting electronic profiles were investigated. Interestingly, structure-related electronic profiles representing semiconductive-like behaviors were observed. These characteristic electronic profiles arise from the metal (Au)-semiconductor (protein) junction, clearly demonstrating the formation of a Schottky junction. Further interpretation of the electronic behavior of proteins was done by the calculation of selected solid-state parameters. For example, the turn-on voltage of hemoglobin was measured to occur at a lower turn-on voltage, indicating the possible influence of the hem group present as a cofactor in each subunit of this tetrameric protein.
Collapse
Affiliation(s)
- Sara Talebi
- Low
Dimensional Materials Research Centre (LDMRC), Department of Physics,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre
for Ionics University of Malaya, Department of Physics, Faculty of
Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute
of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Souhad M. A. Daraghma
- Low
Dimensional Materials Research Centre (LDMRC), Department of Physics,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ramesh T. Subramaniam
- Centre
for Ionics University of Malaya, Department of Physics, Faculty of
Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Institute
of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Georgepeter Gnana Kumar
- Department
of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Vengadesh Periasamy
- Low
Dimensional Materials Research Centre (LDMRC), Department of Physics,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Zuliani C, Formaggio F, Scipionato L, Toniolo C, Antonello S, Maran F. Insights into the Distance Dependence of Electron Transfer through Conformationally Constrained Peptides. ChemElectroChem 2020. [DOI: 10.1002/celc.202000088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Claudio Zuliani
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
- Ozo Innovations Ltd, Unit 29 Chancerygate Business Centre Langford Ln Kidlington OX5 1FQ UK
| | - Fernando Formaggio
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Laura Scipionato
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Claudio Toniolo
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Sabrina Antonello
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Flavio Maran
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| |
Collapse
|
28
|
Abstract
Materials that conduct electricity are studied in the context of tissue engineering. The mechanisms by which they interact with tissues are unclear and the complexity of the interface between biological and artificial systems is often underestimated.
Collapse
Affiliation(s)
- Pawel Sikorski
- Department of Physics
- Norwegian University of Science and Technology
- NTNU
- Trondheim
- Norway
| |
Collapse
|
29
|
Li B, Tian L, He X, Ji X, Khalid H, Yue C, Liu Q, Yu X, Lei S, Hu W. Tunable oligo-histidine self-assembled monolayer junction and charge transport by a pH modulated assembly. Phys Chem Chem Phys 2019; 21:26058-26065. [PMID: 31746863 DOI: 10.1039/c9cp04695j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histidine works as an important mediator in the charge transport process through proteins via its conjugate side group. It can also stabilize a peptide's secondary structure through hydrogen bonding of the imidazole group. In this study, the conformation of the self-assembled monolayer (SAM) and the charge transport of the tailor-made oligopeptide hepta-histidine derivative (7-His) were modulated through the pH control of the assembly environment. Histidine is found to be an efficient tunneling mediator in monolayer junctions with an attenuation factor of β = ∼0.5 Å-1. Successful theoretical model fitting indicates a linear increase in the number of tunneling sites as the 7-His SAM thickness increases, following the deprotonation of histidine. Combined with the ultraviolet photoelectron spectroscopy (UPS) measurements, a modulable charge transport pathway through 7-His with imidazole groups of histidine as tunneling foot stones is revealed. Histidine therefore possesses a large potential for modulable functional (bio)electronic devices.
Collapse
Affiliation(s)
- Baili Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Intermediate filaments in the retinal Müller cells as natural light energy guides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 200:111641. [DOI: 10.1016/j.jphotobiol.2019.111641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
|
31
|
Energy propagation along polypeptide α-helix: Experimental data and ab initio zone structure. Biosystems 2019; 185:104016. [DOI: 10.1016/j.biosystems.2019.104016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
|
32
|
Zueva L, Golubeva T, Korneeva E, Resto O, Inyushin M, Khmelinskii I, Makarov V. Quantum mechanism of light energy propagation through an avian retina. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 197:111543. [PMID: 31279896 PMCID: PMC6711473 DOI: 10.1016/j.jphotobiol.2019.111543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Taking into account the ultrastructure of the Pied Flycatcher foveal retina reported earlier and the earlier reported properties of Müller cell (MC) intermediate filaments (IFs) isolated from vertebrate retina, we proposed a quantum mechanism (QM) of light energy transfer from the inner limiting membrane level to visual pigments in the photoreceptor cells. This mechanism involves electronic excitation energy transfer in a donor-acceptor system, with the IFs excited by photons acting as energy donors, and visual pigments in the photoreceptor cells acting as energy acceptors. It was shown earlier that IFs with diameter 10 nm and length 117 μm isolated from vertebrate eye retina demonstrate properties of light energy guide, where exciton propagates along such IFs from MC endfeet area to photoreceptor cell area. The energy is mostly transferred via the contact exchange quantum mechanism. Our estimates demonstrate that energy transfer efficiencies in such systems may exceed 80-90%. Thus, the presently developed quantum mechanism of light energy transfer in the inverted retina complements the generally accepted classic optical mechanism and the mechanism whereby Müller cells transmit light like optical fibers. The proposed QM of light energy transfer in the inverted retina explains the high image contrast achieved in photopic conditions by an avian eye, being probably also active in other vertebrates.
Collapse
Affiliation(s)
- Lidia Zueva
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St-Petersburg, Russia; Universidad Central del Caribe, Bayamón, PR 00960-6032, USA
| | - Tatiana Golubeva
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Elena Korneeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova st., 5a, 117485 Moscow, Russia
| | - Oscar Resto
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA
| | | | - Igor Khmelinskii
- Universidade do Algarve, FCT, DQB and CEOT, 8005-139 Faro, Portugal
| | - Vladimir Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA.
| |
Collapse
|
33
|
Khmelinskii I, Makarov V. Optical transparency and electrical conductivity of intermediate filaments in Müller cells and single-wall carbon nanotubes. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Takematsu K, Pospíšil P, Pižl M, Towrie M, Heyda J, Záliš S, Kaiser JT, Winkler JR, Gray HB, Vlček A. Hole Hopping Across a Protein-Protein Interface. J Phys Chem B 2019; 123:1578-1591. [PMID: 30673250 PMCID: PMC6384139 DOI: 10.1021/acs.jpcb.8b11982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated photoinduced hole hopping in a Pseudomonas aeruginosa azurin mutant Re126WWCuI, where two adjacent tryptophan residues (W124 and W122) are inserted between the CuI center and a Re photosensitizer coordinated to a H126 imidazole (Re = ReI(H126)(CO)3(dmp)+, dmp = 4,7-dimethyl-1,10-phenanthroline). Optical excitation of this mutant in aqueous media (≤40 μM) triggers 70 ns electron transport over 23 Å, yielding a long-lived (120 μs) ReI(H126)(CO)3(dmp•-)WWCuII product. The Re126FWCuI mutant (F124, W122) is not redox-active under these conditions. Upon increasing the concentration to 0.2-2 mM, {Re126WWCuI}2 and {Re126FWCuI}2 are formed with the dmp ligand of the Re photooxidant of one molecule in close contact (3.8 Å) with the W122' indole on the neighboring chain. In addition, {Re126WWCuI}2 contains an interfacial tryptophan quadruplex of four indoles (3.3-3.7 Å apart). In both mutants, dimerization opens an intermolecular W122' → //*Re ET channel (// denotes the protein interface, *Re is the optically excited sensitizer). Excited-state relaxation and ET occur together in two steps (time constants of ∼600 ps and ∼8 ns) that lead to a charge-separated state containing a Re(H126)(CO)3(dmp•-)//(W122•+)' unit; then (CuI)' is oxidized intramolecularly (60-90 ns) by (W122•+)', forming ReI(H126)(CO)3(dmp•-)WWCuI//(CuII)'. The photocycle is closed by ∼1.6 μs ReI(H126)(CO)3(dmp•-) → //(CuII)' back ET that occurs over 12 Å, in contrast to the 23 Å, 120 μs step in Re126WWCuI. Importantly, dimerization makes Re126FWCuI photoreactive and, as in the case of {Re126WWCuI}2, channels the photoproduced "hole" to the molecule that was not initially photoexcited, thereby shortening the lifetime of ReI(H126)(CO)3(dmp•-)//CuII. Although two adjacent W124 and W122 indoles dramatically enhance CuI → *Re intramolecular multistep ET, the tryptophan quadruplex in {Re126WWCuI}2 does not accelerate intermolecular electron transport; instead, it acts as a hole storage and crossover unit between inter- and intramolecular ET pathways. Irradiation of {Re126WWCuII}2 or {Re126FWCuII}2 also triggers intermolecular W122' → //*Re ET, and the Re(H126)(CO)3(dmp•-)//(W122•+)' charge-separated state decays to the ground state by ∼50 ns ReI(H126)(CO)3(dmp•-)+ → //(W122•+)' intermolecular charge recombination. Our findings shed light on the factors that control interfacial hole/electron hopping in protein complexes and on the role of aromatic amino acids in accelerating long-range electron transport.
Collapse
Affiliation(s)
- Kana Takematsu
- Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA
| | - Petr Pospíšil
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Martin Pižl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK
| | - Jan Heyda
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Jens T. Kaiser
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
35
|
Schweitzer-Stenner R, Pecht I, Guo C. Orientation of Oligopeptides in Self-Assembled Monolayers Inferred from Infrared Reflection-Absorption Spectroscopy. J Phys Chem B 2019; 123:860-868. [PMID: 30607951 DOI: 10.1021/acs.jpcb.8b09180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of a single tryptophan containing oligo-alanine peptides were recently characterized as conductive molecules that enable electron transport between electrodes. IR reflection-absorption of self-assembled monolayers of such peptides on gold surfaces revealed that the relative intensities of amide I and II bands in the respective spectra depend on the tryptophan residue position in the oligopeptide sequence. This indicates different average peptide orientations with respect to the normal onto the carrying gold surface. We developed a model which calculates the polarized reflectivities of the amide I and II bands as function of the angle of the incident light, the average peptide orientation and the relative orientations of peptide group at the N-terminal. The orientation and strength of vibrational transition dipole moments were calculated by employing an excitonic coupling approach which considers probable conformational distributions of the disordered peptides. Our results revealed that the position of the tryptophan can affect the effective tilt angle of the peptide as well as the orientation of transition dipole moments with respect to the reflection plane. We have also calculated the average end to end distances of the examined peptides and found them to be in reasonable agreement with experimental values determined by ellipsometry. Some evidence is obtained for the notion that increasing the tilt angle of the investigated peptides reduces their conductivity.
Collapse
Affiliation(s)
- Reinhard Schweitzer-Stenner
- Department of Chemistry , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Israel Pecht
- Department of Chemical Immunology , The Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Cunlan Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
36
|
Liang W, Wu C, Cai Z, Sun Y, Zhang H, Wu P, Cai C. Tuning the electron transport band gap of bovine serum albumin by doping with Vb12. Chem Commun (Camb) 2019; 55:2853-2856. [DOI: 10.1039/c9cc00688e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile method to tune the electron transport band gaps of proteins via doping with other molecules is reported.
Collapse
Affiliation(s)
- Wenhui Liang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Chuanli Wu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Zhewei Cai
- Department of Chemical and Biomolecular Engineering
- Clarkson University
- Potsdam
- USA
| | - Yujie Sun
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| |
Collapse
|
37
|
Futera Z, Blumberger J. Adsorption of Amino Acids on Gold: Assessing the Accuracy of the GolP-CHARMM Force Field and Parametrization of Au-S Bonds. J Chem Theory Comput 2018; 15:613-624. [PMID: 30540462 DOI: 10.1021/acs.jctc.8b00992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The interaction of amino acids with metal electrodes plays a crucial role in bioelectrochemistry and the emerging field of bionanoelectronics. Here we present benchmark calculations of the adsorption structure and energy of all natural amino acids on Au(111) in vacuum using a van-der-Waals density functional (revPBE-vdW) that showed good performance on the S22 set of weakly bound dimers (mean relative unsigned error (MRUE) wrt CCSD(T)/CBS = 13.3%) and adsorption energies of small organic molecules on Au(111) (MRUE wrt experiment = 11.2%). The vdW-DF results are then used to assess the accuracy of a popular force field for Au-amino acid interactions, GolP-CHARMM, which explicitly describes image charge interactions via rigid-rod dipoles. We find that while the force field underestimates adsorption distances, it does reproduce the binding energy rather well (MRUE wrt revPBE-vdW = 11.3%) with the MRUE decreasing in the order Cys, Met > amines > aliphatic > carboxylic > aromatic. We also present a parametrization of the bonding interaction between sulfur-containing molecules and the Au(111) surface and report force field parameters that are compatible with GolP-CHARMM. We believe the vdW-DF calculations presented herein will provide useful reference data for further force field development, and that the new Au-S bonding parameters will enable improved simulations of proteins immobilized on Au-electrodes via S-linkages.
Collapse
Affiliation(s)
- Zdenek Futera
- Department of Physics and Astronomy and Thomas-Young-Centre , University College London , Gower Street , London , WC1E 6BT , U.K
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas-Young-Centre , University College London , Gower Street , London , WC1E 6BT , U.K.,Institute for Advanced Study , Technische Universität München , Lichtenbergstrasse 2 a , D-85748 Garching , Germany
| |
Collapse
|
38
|
Garg K, Raichlin S, Bendikov T, Pecht I, Sheves M, Cahen D. Interface Electrostatics Dictates the Electron Transport via Bioelectronic Junctions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41599-41607. [PMID: 30376633 DOI: 10.1021/acsami.8b16312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Different batches of Si wafers with nominally the same specifications were found to respond differently to identical chemical surface treatments aimed at regrowing Si oxide on them. We found that the oxides produced on different batches of wafer differ electrically, thereby affecting solid-state electron transport (ETp) via protein films assembled on them. These results led to the another set of experiments, where we studied this phenomenon using two distinct chemical methods to regrow oxides on the same batch of Si wafers. We have characterized the surfaces of the regrown oxides and of monolayers of linker molecules that connect proteins with the oxides and examined ETp via ultrathin layers of the protein bacteriorhodopsin, assembled on them. Our results illustrate the crucial role of (near) surface charges on the substrate in defining the ETp characteristics across the proteins. This is expressed most strikingly in the observed current's temperature dependences, and we propose that these are governed by the electrostatic landscape at the electrode-protein interface rather than by intrinsic protein properties. This study's major finding, relevant to protein bioelectronics, is that protein-electrode coupling in junctions is a decisive factor in ETp across them. Hence,surface electrostatics can create a barrier that dominates charge transport and controls the transport mode across the junction. Our findings' wider importance lies in their relevance to hybrid junctions of Si with (polyelectrolyte) biomolecules, a likely direction for future bioelectronics. A remarkable corollary of presented results is that once an electron is injected into the protein, transport within the proteins is so efficient that it does not encounter a measurable barrier down to 160 K.
Collapse
|
39
|
Kayser B, Fereiro JA, Guo C, Cohen SR, Sheves M, Pecht I, Cahen D. Transistor configuration yields energy level control in protein-based junctions. NANOSCALE 2018; 10:21712-21720. [PMID: 30431054 DOI: 10.1039/c8nr06627b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The incorporation of proteins as functional components in electronic junctions has received much interest recently due to their diverse bio-chemical and physical properties. However, information regarding the energies of the frontier orbitals involved in their electron transport (ETp) has remained elusive. Here we employ a new method to quantitatively determine the energy position of the molecular orbital, nearest to the Fermi level (EF) of the electrode, in the electron transfer protein Azurin. The importance of the Cu(ii) redox center of Azurin is demonstrated by measuring gate-controlled conductance switching which is absent if Azurin's copper ions are removed. Comparing different electrode materials, a higher conductance and a lower gate-induced current onset is observed for the material with smaller work function, indicating that ETp via Azurin is LUMO-mediated. We use the difference in work function to calibrate the difference in gate-induced current onset for the two electrode materials, to a specific energy level shift and find that ETp via Azurin is near resonance. Our results provide a basis for mapping and studying the role of energy level positions in (bio)molecular junctions.
Collapse
Affiliation(s)
- Ben Kayser
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | | | | | | | |
Collapse
|
40
|
Garg K, Ghosh M, Eliash T, van Wonderen JH, Butt JN, Shi L, Jiang X, Zdenek F, Blumberger J, Pecht I, Sheves M, Cahen D. Direct evidence for heme-assisted solid-state electronic conduction in multi-heme c-type cytochromes. Chem Sci 2018; 9:7304-7310. [PMID: 30294419 PMCID: PMC6166575 DOI: 10.1039/c8sc01716f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Multi-heme cytochrome c (Cytc) proteins are key for transferring electrons out of cells, to enable intracellular oxidation to proceed in the absence of O2. In these proteins most of the hemes are arranged in a linear array suggesting a facile path for electronic conduction. To test this, we studied solvent-free electron transport across two multi-heme Cytc-type proteins: MtrF (deca-heme Cytc) and STC (tetra-heme Cytc). Transport is measured across monolayers of these proteins in a solid state configuration between Au electrodes. Both proteins showed 1000× higher conductance than single heme, or heme-free proteins, but similar conductance to monolayers of conjugated organics. Conductance is found to be temperature-independent (320-80 K), suggesting tunneling as the transport mechanism. This mechanism is consistent with I-V curves modelling, results of which could be interpreted by having protein-electrode coupling as rate limiting, rather than transport within the proteins.
Collapse
Affiliation(s)
- Kavita Garg
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot , Israel .
| | - Mihir Ghosh
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot , Israel .
| | - Tamar Eliash
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot , Israel .
| | - Jessica H van Wonderen
- School of Chemistry , School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Julea N Butt
- School of Chemistry , School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Liang Shi
- Department of Biological Sciences and Technology , School of Environmental Sciences , China University of Geosciences , Wuhan , China 430074
| | - Xiuyun Jiang
- Department of Physics and Astronomy and Thomas Young Centre , University College London , Gower Street , London WC1E 6BT , UK
| | - Futera Zdenek
- Department of Physics and Astronomy and Thomas Young Centre , University College London , Gower Street , London WC1E 6BT , UK
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre , University College London , Gower Street , London WC1E 6BT , UK
| | - Israel Pecht
- Department of Immunology , Weizmann Institute of Science , Rehovot , Israel
| | - Mordechai Sheves
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot , Israel .
| | - David Cahen
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot , Israel .
| |
Collapse
|
41
|
Ing NL, El-Naggar MY, Hochbaum AI. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. J Phys Chem B 2018; 122:10403-10423. [DOI: 10.1021/acs.jpcb.8b07431] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
González-Arribas E, Falk M, Aleksejeva O, Bushnev S, Sebastián P, Feliu JM, Shleev S. A conventional symmetric biosupercapacitor based on rusticyanin modified gold electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Tunneling explains efficient electron transport via protein junctions. Proc Natl Acad Sci U S A 2018; 115:E4577-E4583. [PMID: 29712853 DOI: 10.1073/pnas.1719867115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.
Collapse
|
44
|
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026601. [PMID: 29303117 DOI: 10.1088/1361-6633/aa85f2] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Collapse
Affiliation(s)
- Christopher D Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, United States of America. Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, United States of America
| | | | | | | | | | | |
Collapse
|
45
|
Motovilov KA, Savinov M, Zhukova ES, Pronin AA, Gagkaeva ZV, Grinenko V, Sidoruk KV, Voeikova TA, Barzilovich PY, Grebenko AK, Lisovskii SV, Torgashev VI, Bednyakov P, Pokorný J, Dressel M, Gorshunov BP. Observation of dielectric universalities in albumin, cytochrome C and Shewanella oneidensis MR-1 extracellular matrix. Sci Rep 2017; 7:15731. [PMID: 29147016 PMCID: PMC5691187 DOI: 10.1038/s41598-017-15693-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022] Open
Abstract
The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ 1(ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ 1(ν)∝ν s with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ1/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1-1012 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.
Collapse
Affiliation(s)
- K A Motovilov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | - M Savinov
- Institute of Physics AS CR, Praha 8, Czech Republic
| | - E S Zhukova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- A.M. Prokhorov General Physics Institute, RAS, Moscow, Russia
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - A A Pronin
- A.M. Prokhorov General Physics Institute, RAS, Moscow, Russia
| | - Z V Gagkaeva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - V Grinenko
- Institute for Metallic Materials, IFW Dresden, Dresden, Germany
| | - K V Sidoruk
- Scientific Center of Russian Federation Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - T A Voeikova
- Scientific Center of Russian Federation Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - P Yu Barzilovich
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - A K Grebenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - S V Lisovskii
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | | | - P Bednyakov
- Institute of Physics AS CR, Praha 8, Czech Republic
| | - J Pokorný
- Institute of Physics AS CR, Praha 8, Czech Republic
| | - M Dressel
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow, 141701, Russia
| | - B P Gorshunov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
- A.M. Prokhorov General Physics Institute, RAS, Moscow, Russia.
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany.
| |
Collapse
|
46
|
López-Martínez M, Artés JM, Sarasso V, Carminati M, Díez-Pérez I, Sanz F, Gorostiza P. Differential Electrochemical Conductance Imaging at the Nanoscale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700958. [PMID: 28722303 DOI: 10.1002/smll.201700958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Electron transfer in proteins is essential in crucial biological processes. Although the fundamental aspects of biological electron transfer are well characterized, currently there are no experimental tools to determine the atomic-scale electronic pathways in redox proteins, and thus to fully understand their outstanding efficiency and environmental adaptability. This knowledge is also required to design and optimize biomolecular electronic devices. In order to measure the local conductance of an electrode surface immersed in an electrolyte, this study builds upon the current-potential spectroscopic capacity of electrochemical scanning tunneling microscopy, by adding an alternating current modulation technique. With this setup, spatially resolved, differential electrochemical conductance images under bipotentiostatic control are recorded. Differential electrochemical conductance imaging allows visualizing the reversible oxidation of an iron electrode in borate buffer and individual azurin proteins immobilized on atomically flat gold surfaces. In particular, this method reveals submolecular regions with high conductance within the protein. The direct observation of nanoscale conduction pathways in redox proteins and complexes enables important advances in biochemistry and bionanotechnology.
Collapse
Affiliation(s)
- Montserrat López-Martínez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Material Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Catalonia, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Juan Manuel Artés
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Material Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Veronica Sarasso
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Marco Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio, 34/5, 20133, Milan, Italy
| | - Ismael Díez-Pérez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Material Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Catalonia, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Fausto Sanz
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Material Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Catalonia, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
47
|
Khmelinskii I, Golubeva T, Korneeva E, Inyushin M, Zueva L, Makarov V. Spectral selectivity model for light transmission by the intermediate filaments in Müller cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 173:282-290. [PMID: 28623820 PMCID: PMC5642305 DOI: 10.1016/j.jphotobiol.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022]
Abstract
Presently we continue our studies of the quantum mechanism of light energy transmission in the form of excitons by axisymmetric nanostructures with electrically conductive walls. Using our theoretical model, we analyzed the light energy transmission by biopolymers forming optical channels within retinal Müller cells. There are specialized intermediate filaments (IF) 10-18nm in diameter, built of electrically conductive polypeptides. Presently, we analyzed the spectral selectivity of these nanostructures. We found that their transmission spectrum depends on their diameter and wall thickness. We also considered the classical approach, comparing the results with those predicted by the quantum mechanism. We performed experimental measurements on model quantum waveguides, made of rectangular nanometer-thick chromium (Cr) tracks. The optical spectrum of such waveguides varied with their thickness. We compared the experimental absorption/transmission spectra with those predicted by our model, with good agreement between the two. We report that the observed spectra may be explained by the same mechanisms as operating in metal nanolayers. Both the models and the experiment show that Cr nanotracks have high light transmission efficiency in a narrow spectral range, with the spectral maximum dependent on the layer thickness. Therefore, a set of intermediate filaments with different geometries may provide light transmission over the entire visible spectrum with a very high (~90%) efficiency. Thus, we believe that high contrast and visual resolution in daylight are provided by the quantum mechanism of energy transfer in the form of excitons, whereas the ultimate retinal sensitivity of the night vision is provided by the classical mechanism of photons transmitted by the Müller cell light-guides.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQF and CIQA, 8005-139 Faro, Portugal
| | - Tatiana Golubeva
- Lomonosov Moscow State University, Department of Vertebrate Zoology, Moscow 119992, Russia
| | - Elena Korneeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova st., 5a, 117485 Moscow, Russia
| | | | - Lidia Zueva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA
| | - Vladimir Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA.
| |
Collapse
|
48
|
Bera S, Kolay J, Banerjee S, Mukhopadhyay R. Nanoscale On-Silico Electron Transport via Ferritins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1951-1958. [PMID: 28145712 DOI: 10.1021/acs.langmuir.6b04120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silicon is a solid-state semiconducting material that has long been recognized as a technologically useful one, especially in electronics industry. However, its application in the next-generation metalloprotein-based electronics approaches has been limited. In this work, the applicability of silicon as a solid support for anchoring the iron-storage protein ferritin, which has a semiconducting iron nanocore, and probing electron transport via the ferritin molecules trapped between silicon substrate and a conductive scanning probe has been investigated. Ferritin protein is an attractive bioelectronic material because its size (X-ray crystallographic diameter ∼12 nm) should allow it to fit well in the larger tunnel gaps (>5 nm), fabrication of which is relatively more established, than the smaller ones. The electron transport events occurring through the ferritin molecules that are covalently anchored onto the MPTMS-modified silicon surface could be detected at the molecular level by current-sensing atomic force spectroscopy (CSAFS). Importantly, the distinct electronic signatures of the metal types (i.e., Fe, Mn, Ni, and Au) within the ferritin nanocore could be distinguished from each other using the transport band gap analyses. The CSAFS measurements on holoferritin, apoferritin, and the metal core reconstituted ferritins reveal that some of these ferritins behave like n-type semiconductors, while the others behave as p-type semiconductors. The band gaps for the different ferritins are found to be within 0.8 to 2.6 eV, a range that is valid for the standard semiconductor technology (e.g., diodes based on p-n junction). The present work indicates effective on-silico integration of the ferritin protein, as it remains functionally viable after silicon binding and its electron transport activities can be detected. Potential use of the ferritin-silicon nanohybrids may therefore be envisaged in applications other than bioelectronics, too, as ferritin is a versatile nanocore-containing biomaterial (for storage/transport of metals and drugs) and silicon can be a versatile nanoscale solid support (for its biocompatible nature).
Collapse
Affiliation(s)
- Sudipta Bera
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Jayeeta Kolay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Siddhartha Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Rupa Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
49
|
Shleev S. Quo Vadis, Implanted Fuel Cell? Chempluschem 2017; 82:522-539. [DOI: 10.1002/cplu.201600536] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/12/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Sergey Shleev
- Department of Biomedical Science; Malmö University; Jan Waldenströms gata 25 214 28 Malmö Sweden
- Kurchatov NBICS Centre; National Research Centre “Kurchatov Institute”; Akademika Kurchatova pl. 1 123 182 Moscow Russia
| |
Collapse
|
50
|
Makarov V, Zueva L, Golubeva T, Korneeva E, Khmelinskii I, Inyushin M. Quantum mechanism of light transmission by the intermediate filaments in some specialized optically transparent cells. NEUROPHOTONICS 2017; 4:011005. [PMID: 27570792 PMCID: PMC4985621 DOI: 10.1117/1.nph.4.1.011005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/20/2016] [Indexed: 06/02/2023]
Abstract
Some very transparent cells in the optical tract of vertebrates, such as the lens fiber cells, possess certain types of specialized intermediate filaments (IFs) that have essential significance for their transparency. The exact mechanism describing why the IFs are so important for transparency is unknown. Recently, transparency was described also in the retinal Müller cells (MCs). We report that the main processes of the MCs contain bundles of long specialized IFs, each about 10 nm in diameter; most likely, these filaments are the channels providing light transmission to the photoreceptor cells in mammalian and avian retinas. We interpret the transmission of light in such channels using the notions of quantum confinement, describing energy transport in structures with electroconductive walls and diameter much smaller than the wavelength of the respective photons. Model calculations produce photon transmission efficiency in such channels exceeding 0.8, in optimized geometry. We infer that protein molecules make up the channels, proposing a qualitative mechanism of light transmission by such structures. The developed model may be used to describe light transmission by the IFs in any transparent cells.
Collapse
Affiliation(s)
- Vladimir Makarov
- University of Puerto Rico, Department of Physics, Rio Piedras Campus, P.O. Box 23343, San Juan 00931-3343, Puerto Rico
| | - Lidia Zueva
- Russian Academy of Sciences, Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Tatiana Golubeva
- Lomonosov State University, Department of Vertebrate Zoology, Moscow 119992, Russia
| | - Elena Korneeva
- Russian Academy of Sciences, Institute of Higher Nervous Activity and Neurophysiology, Butlerova Street 5a, Moscow 117485, Russia
| | - Igor Khmelinskii
- Universidade do Algarve, Centro de Investigação em Química do Algarve (CIQA), Faro 8005-139, Portugal
| | - Mikhail Inyushin
- Universidad Central del Caribe, School of Medicine, Department of Physiology, Bayamón 00960-6032, Puerto Rico
| |
Collapse
|