1
|
Zhang J, Rinne SS, Yin W, Leitao CD, Björklund E, Abouzayed A, Ståhl S, Löfblom J, Orlova A, Gräslund T, Vorobyeva A. Affibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor-3 Demonstrate Therapeutic Efficacy in Mice Bearing Low Expressing Xenografts. ACS Pharmacol Transl Sci 2024; 7:3228-3240. [PMID: 39416966 PMCID: PMC11475273 DOI: 10.1021/acsptsci.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
The outcome of clinical trials evaluating drugs targeting the human epidermal growth factor receptor 3 (HER3) has been poor, with primary concerns related to lack of efficacy. HER3 is considered a difficult target since its overexpression on tumors is relatively low and there is normal expression in many different organs. However, a significant number of patients across different cancer indications have overexpression of HER3 and the development of novel modalities targeting HER3 is therefore warranted. Here, we have investigated the properties of affibody-based drug conjugates targeting HER3. The HER3-targeting affibody molecule ZHER3 was fused in a mono- and bivalent format to an engineered albumin-binding domain (ABD) for in vivo half-life extension and was coupled to the cytotoxic drug DM1 via a non-cleavable maleimidocaproyl (mc) linker. In vivo, a moderate uptake was observed for [99mTc]Tc-labeled ZHER3-ABD-ZHER3-mcDM1 in HER3 expressing BxPC3 tumors (3.5 ± 0.3%IA/g) at 24 h after injection, and clearance was predominately renal-mediated. Treatment of mice with BxPC3 human pancreatic cancer xenografts showed that a combination of ZHER3-ABD-ZHER3-mcDM1 and its cytostatic analog ZHER3-ABD-ZHER3 was efficacious and superior to treatment with only ZHER3-ABD-ZHER3, providing tumor growth inhibition and longer median survival (90 d) in comparison to monotherapy (68 d) and vehicle control (49 d). ZHER3-ABD-ZHER3-mcDM1 was found to be a potent drug conjugate for the treatment of HER3-expressing tumors in mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Sara S. Rinne
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Wen Yin
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Elvira Björklund
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Stefan Ståhl
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - John Löfblom
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
- Science
for Life Laboratory, Dag Hammarskjöldsv 14C, 751
83 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Dag Hammarskjölds
Väg 20, 751 85 Uppsala, Sweden
| |
Collapse
|
2
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Ma L, Grant C, Gallazzi F, Watkinson LD, Carmack TL, Embree MF, Smith CJ, Medvedev D, Cutler CS, Li Y, Wilbur DS, Hennkens HM, Jurisson SS. Development and biodistribution studies of 77As-labeled trithiol RM2 bioconjugates for prostate cancer: Comparison of [77As]As-trithiol-Ser-Ser-RM2 vs. [77As]As-trithiol-Glu-Ser-RM2. Nucl Med Biol 2022; 108-109:61-69. [DOI: 10.1016/j.nucmedbio.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
|
4
|
Aoki M, Zhao S, Takahashi K, Washiyama K, Ukon N, Tan C, Shimoyama S, Nishijima KI, Ogawa K. Preliminary Evaluation of Astatine-211-Labeled Bombesin Derivatives for Targeted Alpha Therapy. Chem Pharm Bull (Tokyo) 2021; 68:538-545. [PMID: 32475858 DOI: 10.1248/cpb.c20-00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are various diagnostic and therapeutic agents for prostate cancer using bombesin (BBN) derivatives, but astatine-211 (211At)-labeled BBN derivatives have yet to be studied. This study presented a preliminary evaluation of 211At-labeled BBN derivative. Several nonradioactive iodine-introduced BBN derivatives (IB-BBNs) with different linkers were synthesized and their binding affinities measured. Because IB-3 exhibited a comparable affinity to native BBN, [211At]AB-3 was synthesized and the radiochemical yields of [211At]AB-3 was 28.2 ± 2.4%, with a radiochemical purity of >90%. The stability studies and cell internalization/externalization experiments were performed. [211At]AB-3 was taken up by cells and internalized; however, radioactivity effluxed from cells over time. In addition, the biodistribution of [211At]AB-3, with and without excess amounts of BBN, were evaluated in PC-3 tumor-bearing mice. Despite poor stability in murine plasma, [211At]AB-3 accumulated in tumor tissue (4.05 ± 0.73%ID/g) in PC-3 tumor-bearing mice, which was inhibited by excess native BBN (2.56 ± 0.24%ID/g). Accumulated radioactivity in various organs is probably due to free 211At. Peptide degradation in murine plasma and radioactivity efflux from cells are areas of improvement. The development of 211At-labeled BBN derivatives requires modifying the BBN sequence and preventing deastatination.
Collapse
Affiliation(s)
- Miho Aoki
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University.,Graduate School of Medical Sciences, Kanazawa University
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University
| | - Chengbo Tan
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University
| | - Saki Shimoyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University
| | - Ken-Ichi Nishijima
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University.,Institute for Frontier Science Initiative, Kanazawa University
| |
Collapse
|
5
|
Day AH, Übler MH, Best HL, Lloyd-Evans E, Mart RJ, Fallis IA, Allemann RK, Al-Wattar EAH, Keymer NI, Buurma NJ, Pope SJA. Targeted cell imaging properties of a deep red luminescent iridium(iii) complex conjugated with a c-Myc signal peptide. Chem Sci 2020; 11:1599-1606. [PMID: 32206278 PMCID: PMC7069228 DOI: 10.1039/c9sc05568a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/14/2019] [Indexed: 12/05/2022] Open
Abstract
A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λ ex = 550 nm; λ em = 677 nm) cyclometalated organometallic iridium(iii) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18-24 h incubation show that Ir-CMYC concentrations of 80-100 μM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(iii) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 μM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M-1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Martin H Übler
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Hannah L Best
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Emyr Lloyd-Evans
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Robert J Mart
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Ian A Fallis
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Eman A H Al-Wattar
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Nathaniel I Keymer
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Niklaas J Buurma
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Simon J A Pope
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| |
Collapse
|
6
|
Farahani AM, Maleki F, Sadeghzadeh N. The Influence of Different Spacers on Biological Profile of Peptide Radiopharmaceuticals for Diagnosis and Therapy of Human Cancers. Anticancer Agents Med Chem 2020; 20:402-416. [PMID: 31889492 DOI: 10.2174/1871520620666191231161227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cancer is the leading cause of death worldwide. Early detection can reduce the disadvantageous effects of diseases and the mortality in cancer. Nuclear medicine is a powerful tool that has the ability to diagnose malignancy without harming normal tissues. In recent years, radiolabeled peptides have been investigated as potent agents for cancer detection. Therefore, it is necessary to modify radiopeptides in order to achieve more effective agents. OBJECTIVE This review describes modifications in the structure of radioconjugates with spacers who have improved the specificity and sensitivity of the peptides that are used in oncologic diagnosis and therapy. METHODS To improve the biological activity, researchers have conjugated these peptide analogs to different spacers and bifunctional chelators. Many spacers of different kinds, such as hydrocarbon chain, amino acid sequence, and poly (ethyleneglycol) were introduced in order to modify the pharmacokinetic properties of these biomolecules. RESULTS Different spacers have been applied to develop radiolabeled peptides as potential tracers in nuclear medicine. Spacers with different charge and hydrophilicity affect the characteristics of peptide conjugate. For example, the complex with uncharged and hydrophobic spacers leads to increased liver uptake, while the composition with positively charged spacers results in high kidney retention. Therefore, the pharmacokinetics of radio complexes correlates to the structure and total charge of the conjugates. CONCLUSION Radio imaging technology has been successfully applied to detect a tumor in the earliest stage. For this purpose, the assessment of useful agents to diagnose the lesion is necessary. Developing peptide radiopharmaceuticals using spacers can improve in vitro and in vivo behavior of radiotracers leading to better noninvasive detection and monitoring of tumor growth.
Collapse
Affiliation(s)
- Arezou M Farahani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fariba Maleki
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran
| |
Collapse
|
7
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
|
8
|
Oroujeni M, Abouzayed A, Lundmark F, Mitran B, Orlova A, Tolmachev V, Rosenström U. Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart. Pharmaceutics 2019; 11:pharmaceutics11080380. [PMID: 31382362 PMCID: PMC6724035 DOI: 10.3390/pharmaceutics11080380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Radiolabelled antagonistic bombesin analogues are successfully used for targeting of gastrin-releasing peptide receptors (GRPR) that are overexpressed in prostate cancer. Internalization of antagonistic bombesin analogues is slow. We hypothesized that the use of a non-residualizing radioiodine label might not affect the tumour uptake but would reduce the retention in normal organs, where radiopharmaceutical would be internalized. To test this hypothesis, tyrosine was conjugated via diethylene glycol linker to N-terminus of an antagonistic bombesin analogue RM26 to form Tyr-PEG2-RM26. [111In]In-DOTA-PEG2-RM26 was used as a control with a residualizing label. Tyr-PEG2-RM26 was labelled with 125I with 95% radiochemical purity and retained binding specificity to GRPR. The IC50 values for Tyr-PEG2-RM26 and DOTA-PEG2-RM26 were 1.7 ± 0.3 nM and 3.3 ± 0.5 nM, respectively. The cellular processing of [125I]I-Tyr-PEG2-RM26 by PC-3 cells showed unusually fast internalization. Biodistribution showed that uptake in pancreas and tumour was GRPR-specific for both radioconjugates. Blood clearance of [125I]I-Tyr-PEG2-RM26 was appreciably slower and activity accumulation in all organs was significantly higher than for [111In]In-DOTA-PEG2-RM26. Tumor uptake of [111In]In-DOTA-PEG2-RM26 was significantly higher than for [125I]I-Tyr-PEG2-RM26, resulting in higher tumour-to-organ ratio for [111In]In-DOTA-PEG2-RM26 at studied time points. Incorporation of amino acids with hydrophilic side-chains next to tyrosine might overcome the problems associated with the use of tyrosine as a prosthetic group for radioiodination.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, SE-750 03 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
9
|
De K, Mukherjee D, Sinha S, Ganguly S. HYNIC and DOMA conjugated radiolabeled bombesin analogs as receptor-targeted probes for scintigraphic detection of breast tumor. EJNMMI Res 2019; 9:25. [PMID: 30887136 PMCID: PMC6423188 DOI: 10.1186/s13550-019-0493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Background Among the many peptide receptor systems, gastrin-releasing-peptide (GRP) receptors, the mammalian equivalent of bombesin (BN) receptors, are potential targets for diagnosis and therapy of breast tumors due to their overexpression in various frequently occurring human cancers. The aim of this study was to synthesize and comparative evaluation of 99mTc-labeled new BN peptide analogs. Four new BN analogs, HYNIC-Asp[PheNle]BN(7-14)NH2, BN1; HYNIC-Pro-Asp[TyrMet]BN(7-14)NH2, BN2; HYNIC-Asp-Asn[Lys-CHAla-Nle]BN(7-14)NH2, BN3; and DOMA-GABA[Pro-Tyr-Nle]BN(7-14)NH2, BN4 were synthesized and biologically evaluated for targeted imaging of GRP receptor-positive breast-tumors. Methods Solid-phase synthesis using Fmoc-chemistry was adopted for the synthesis of peptides. BN1–BN4 analogs were better over the standard Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 (BNS). Lipophilicity, serum stability, internalization, and binding affinity studies were carried out using 99mTc-labeled analogs. Biodistribution and imaging analyses were performed on MDA-MB-231 cell-induced tumor-bearing mice. BN-analogs induced angiogenesis; tumor formation and GRP-receptor-expression were confirmed by histology and immunohistochemistry analyses of tumor sections and important tissue sections. Results All the analogs displayed ≥ 97% purity after the HPLC purification. BN-peptide-conjugates exhibited high serum stability and significant binding affinity to GRP-positive tumor; rapid internalization/externalization in/from MDA-MB-231 cells were noticed for the BN analogs. BN4 and BN3 exhibited higher binding affinity, stability than BN1 and BN2. Highly specific in vivo uptakes to the tumor were clearly visualized by scintigraphy; rapid excretion from non-target tissues via kidneys suggests a higher tumor-to-background ratio. BN4, among all the analogs, stimulates the expression of angiogenic markers to a maximum. Conclusion Considering its most improved pharmacological characteristics, BN4 is thus considered as most promising probes for early non-invasive diagnosis of GRP receptor-positive breast tumors. Electronic supplementary material The online version of this article (10.1186/s13550-019-0493-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, West Bengal, 700032, India.
| | - Dibyanti Mukherjee
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, West Bengal, 700032, India
| | - Samarendu Sinha
- Regional Radiation Medicine Center, Thakurpukur Cancer Research Center and Welfare Home Campus, Kolkata, West Bengal, 700 060, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Research Center and Welfare Home Campus, Kolkata, West Bengal, 700 060, India
| |
Collapse
|
10
|
Murrell E, Kovacs MS, Luyt LG. A Compact and Synthetically Accessible Fluorine-18 Labelled Cyclooctyne Prosthetic Group for Labelling of Biomolecules by Copper-Free Click Chemistry. ChemMedChem 2018; 13:1625-1628. [DOI: 10.1002/cmdc.201800334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Emily Murrell
- Department of Chemistry; University of Western Ontario; 1151 Richmond Street London ON N6A 5B7 Canada
| | - Michael S. Kovacs
- Lawson Health Research Institute; 268 Grosvenor Street London ON N6A 4V2 Canada
- Departments of Medical Imaging and Medical Biophysics; University of Western Ontario; 1151 Richmond Street London ON N6A 5B7 Canada
| | - Leonard G. Luyt
- Department of Chemistry; University of Western Ontario; 1151 Richmond Street London ON N6A 5B7 Canada
- Department of Oncology; University of Western Ontario; 1151 Richmond Street London ON N6A 5B7 Canada
- London Regional Cancer Program; Lawson Health Research Institute; 790 Commissioners Road East London ON N6A 4L6 Canada
| |
Collapse
|
11
|
Mansour N, Dumulon-Perreault V, Ait-Mohand S, Paquette M, Lecomte R, Guérin B. Impact of dianionic and dicationic linkers on tumor uptake and biodistribution of [64Cu]Cu/NOTA peptide-based gastrin-releasing peptide receptors antagonists. J Labelled Comp Radiopharm 2017; 60:200-212. [DOI: 10.1002/jlcr.3491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Nematallah Mansour
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Véronique Dumulon-Perreault
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Samia Ait-Mohand
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Michel Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| |
Collapse
|
12
|
De K, Banerjee I, Sinha S, Ganguly S. Synthesis and exploration of novel radiolabeled bombesin peptides for targeting receptor positive tumor. Peptides 2017; 89:17-34. [PMID: 28088445 DOI: 10.1016/j.peptides.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022]
Abstract
Increasing evidence of peptide receptor overexpression in various cancer cells, warrant the development of receptor specific radiolabeled peptides for molecular imaging and therapy in nuclear medicine. Gastrin-releasing-peptide (GRP) receptor, are overexpressed in a variety of human cancer cells. The present study report the synthesis and biological evaluation of new bombesin (BBN) analogs, HYNIC-Asp-[Phe13]BBN(7-13)-NH-CH2-CH2-CH3:BA1, HYNIC-Pro-[Tyr13Met14]BBN(7-14)NH2:BA2 as prospective tumor imaging agent with compare to BBN(7-14)NH2:BS as standard. The pharmacophores were radiolabeled in high yields with 99mTc, characterized for their stability in serum and saline, cysteine/histidine and were found to be substantially stable. Internalization/externalization and receptor binding studies were assessed using MDA-MB-231 cells and showed high receptor binding-affinity and favourable internalization. Fluorescence studies revealed that BA1 changed the morphology of the cells and could localize in the nucleus more effectively than BA2/BS. Cell-viability studies displayed substantial antagonistic and nuclear-internalization effect of BA1. BA1 also exhibited antiproliferative effect on MDA-MB-231 cell by inducing apoptosis. In vivo behaviour of the radiopeptides was evaluated in GRP receptor positive tumor bearing mice. The 99mTc-BA1/99mTc-BA2 demonstrated rapid blood/urinary clearance through the renal pathway and comparatively more significant tumor uptake image and favourable tumor-to-non-target ratios provided by 99mTc-BA1. The specificity of the in vivo uptake was confirmed by co-injection with BS. Moreover, 99mTc-BA1 provided a much clearer tumor image in scintigraphic studies than others. Thus the combination of favourable in vitro and in vivo properties renders BA1 as more potential antagonist bombesin-peptide for targeting GRP-receptor positive tumor. These properties are encouraging to carry out further experiments for non-invasive receptor targeting potential diagnostinc and therapeutic agent for tumors.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, West Bengal, India.
| | - Indranil Banerjee
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, West Bengal, India
| | - Samarendu Sinha
- Regional Radiation Medicine Center, Thakurpukur Cancer Center and Welfare Home Campus, Kolkata, 700 063, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Center and Welfare Home Campus, Kolkata, 700 063, India
| |
Collapse
|
13
|
Feng Y, Phelps TE, Carroll V, Gallazzi F, Sieckman G, Hoffman TJ, Barnes CL, Ketring AR, Hennkens HM, Jurisson SS. Chemistry and radiochemistry of As, Re and Rh isotopes relevant to radiopharmaceutical applications: high specific activity radionuclides for imaging and treatment. Dalton Trans 2017; 46:14677-14690. [DOI: 10.1039/c7dt02407j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in production, separation, target recovery, and chelation chemistry of high specific activity radionuclides will promote new theranostic agent development.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Chemistry
- University of Missouri
- Columbia
- USA
| | - Tim E. Phelps
- Department of Chemistry
- University of Missouri
- Columbia
- USA
| | | | - Fabio Gallazzi
- Structural Biology Core
- University of Missouri
- Columbia
- USA
| | - Gary Sieckman
- Research Division
- Harry S. Truman Memorial Veterans’ Hospital
- Columbia
- USA
| | | | | | - Alan R. Ketring
- University of Missouri Research Reactor Center (MURR)
- University of Missouri
- Columbia
- USA
| | - Heather M. Hennkens
- University of Missouri Research Reactor Center (MURR)
- University of Missouri
- Columbia
- USA
| | | |
Collapse
|
14
|
De Tommaso G, Celentano V, Malgieri G, Fattorusso R, Romanelli A, D'Andrea LD, Iuliano M, Isernia C. fac-[Re(H2O)3(CO)3]+Complexed with Histidine and Imidazole in Aqueous Solution: Speciation, Affinity and Binding Features. ChemistrySelect 2016. [DOI: 10.1002/slct.201600817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences; University of Naples “Federico II”; Cupa Nuova Cintia 21- 80126 Naples ITALY
| | - Veronica Celentano
- Institute of Biostructure and Bioimaging CNR; Via Mezzocannone 16-80134 Naples ITALY
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Alessandra Romanelli
- Department of Pharmacy; University of Naples “Federico II”; Via Mezzocannone 16-80134 Naples Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Luca Domenico D'Andrea
- Institute of Biostructure and Bioimaging CNR; Via Mezzocannone 16-80134 Naples ITALY
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Mauro Iuliano
- Department of Chemical Sciences; University of Naples “Federico II”; Cupa Nuova Cintia 21- 80126 Naples ITALY
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| |
Collapse
|
15
|
Valverde IE, Vomstein S, Fischer CA, Mascarin A, Mindt TL. Probing the Backbone Function of Tumor Targeting Peptides by an Amide-to-Triazole Substitution Strategy. J Med Chem 2015; 58:7475-84. [DOI: 10.1021/acs.jmedchem.5b00994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ibai E. Valverde
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Sandra Vomstein
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Christiane A. Fischer
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Alba Mascarin
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Thomas L. Mindt
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| |
Collapse
|
16
|
KIM MINHWAN, PARK JIAE, WOO SANGKEUN, LEE KYOCHUL, AN GWANGIL, KIM BYOUNGSOO, KIM KWANGIL, LEE TAESUP, KIM CHANWHA, KIM KYEONGMIN, KANG JOOHYUN, LEE YONGJIN. Evaluation of a 64Cu-labeled 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA)-galactose-bombesin analogue as a PET imaging probe in a gastrin-releasing peptide receptor-expressing prostate cancer xenograft model. Int J Oncol 2015; 46:1159-68. [PMID: 25586565 DOI: 10.3892/ijo.2015.2832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/23/2014] [Indexed: 11/06/2022] Open
|
17
|
Suresh D, Zambre A, Chanda N, Hoffman TJ, Smith CJ, Robertson JD, Kannan R. Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis. Bioconjug Chem 2014; 25:1565-79. [PMID: 25020251 DOI: 10.1021/bc500295s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The nature of interaction and mechanism of internalization of receptor-avid peptide nanoparticles with cells is not yet completely understood. This article describes the cellular internalization mechanism and intracellular trafficking of peptide conjugated receptor targeted porous Gold nanocages (AuNCs) in cancer cells. We synthesized and characterized a library of AuNCs conjugated with bombesin (BBN) peptide. Evidence of selective affinity of AuNC-BBN toward gastrin releasing peptide receptors (GRPR) was obtained using radiolabeled competitive cell binding assay. Endocytic mechanism was investigated using cell inhibitor studies and monitored using optical and transmission electron microscopy (TEM). Results show AuNC-BBN uptake in PC3 cells is mediated by clathrin mediated endocytosis (CME). Indeed, in the presence of CME inhibitors, AuNC-BBN uptake in cells is reduced up to 84%. TEM images further confirm CME characteristic clathrin coated pits and lysosomal release of AuNCs. These results demonstrate that peptide ligands conjugated to the surface of nanoparticles maintain their target specificity. This bolsters the case for peptide robustness and its persisting functionality in intracellular vehicular delivery systems.
Collapse
Affiliation(s)
- Dhananjay Suresh
- Departments of †Bioengineering, ‡Radiology, ¥Medicine and §Chemistry, ⊥University of Missouri Research Reactor, and #International Center for Nano/Micro Systems and Nanotechnology, University of Missouri , Columbia, Missouri 65211, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Radiochemical and radiobiological assessment of a pyridyl-S-cysteine functionalized bombesin derivative labeled with the 99mTc core. Bioorg Med Chem 2013; 21:6699-707. [DOI: 10.1016/j.bmc.2013.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/12/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022]
|
19
|
Inkster J, Lin KS, Ait-Mohand S, Gosselin S, Bénard F, Guérin B, Pourghiasian M, Ruth T, Schaffer P, Storr T. 2-Fluoropyridine prosthetic compounds for the 18F labeling of bombesin analogues. Bioorg Med Chem Lett 2013; 23:3920-6. [PMID: 23683595 DOI: 10.1016/j.bmcl.2013.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/12/2013] [Accepted: 04/22/2013] [Indexed: 12/28/2022]
Abstract
Acetylene-bearing 2-[(18)F]fluoropyridines [(18)F]FPy5yne and PEG-[(18)F]FPyKYNE were prepared via efficient nucleophilic heteroaromatic [(18)F]fluorination of their corresponding 2-trimethylammoniumpyrdinyl precursors. The prosthetic groups were conjugated to azide- and PEG3-modified bombesin(6-14) analogues via copper-catalyzed azide-alkyne cycloaddition couplings to yield mono- and di-mini-PEGylated ligands for PET imaging of the gastrin- releasing peptide receptor. The PEG3- and PEG2/PEG3-bearing (18)F peptides showed decreased lipophilicity relative to an analogous non-mini-PEGylated (18)F peptide. Assessment of water-soluble peptide pharmacokinetics and tumour-targeting capabilities in a mouse model of prostate cancer is currently underway.
Collapse
Affiliation(s)
- James Inkster
- TRIUMF, Nuclear Medicine Division, 4004 Wesbrook Mall, Vancouver, Canada BC V6T 2A3.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g. peptide, antibody fragment) and a γ-radiation emitting radionuclide (e.g. (99m)Tc, (123)I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
Affiliation(s)
- Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland.
| | | |
Collapse
|
21
|
Reaction of technetium hexacarbonyl cation with acetonitrile: Kinetics, product structure, DFT calculations. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Morais GR, Paulo A, Santos I. Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. Organometallics 2012. [DOI: 10.1021/om300501d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Goreti Ribeiro Morais
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - António Paulo
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - Isabel Santos
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| |
Collapse
|
23
|
Abstract
Technetium and Rhenium are the two lower elements in the manganese triad. Whereas rhenium is known as an important part of high resistance alloys, technetium is mostly known as a cumbersome product of nuclear fission. It is less known that its metastable isotope 99mTc is of utmost importance in nuclear medicine diagnosis. The technical application of elemental rhenium is currently complemented by investigations of its isotope 188Re , which could play a central role in the future for internal, targeted radiotherapy. This article will briefly describe the basic principles behind diagnostic methods with radionuclides for molecular imaging, review the 99mTc -based radiopharmaceuticals currently in clinical routine and focus on the chemical challenges and current developments towards improved, radiolabeled compounds for diagnosis and therapy in nuclear medicine.
Collapse
Affiliation(s)
- ROGER ALBERTO
- University of Zürich, Institute of Inorganic Chemistry, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
24
|
Däpp S, Müller C, Garayoa EG, Bläuenstein P, Maes V, Brans L, Tourwé DA, Schibli R. PEGylation, increasing specific activity and multiple dosing as strategies to improve the risk-benefit profile of targeted radionuclide therapy with 177Lu-DOTA-bombesin analogues. EJNMMI Res 2012; 2:24. [PMID: 22681935 PMCID: PMC3478187 DOI: 10.1186/2191-219x-2-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/09/2012] [Indexed: 12/05/2022] Open
Abstract
Background Radiolabelled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumours, in which BN2/gastrin-releasing peptide receptors are overexpressed. We describe the influence of the specific activity of a 177Lu-DOTA-PEG5k-Lys-B analogue on its therapeutic efficacy and compare it with its non-PEGylated counterpart. Methods Derivatisation of a stabilised DOTA-BN(7–14)[Cha13,Nle14] analogue with a linear PEG molecule of 5 kDa (PEG5k) was performed by PEGylation of the ϵ-amino group of a β3hLys-βAla-βAla spacer between the BN sequence and the DOTA chelator. The non-PEGylated and the PEGylated analogues were radiolabelled with 177Lu. In vitro evaluation was performed in human prostate carcinoma PC-3 cells, and in vivo studies were carried out in nude mice bearing PC-3 tumour xenografts. Different specific activities of the PEGylated BN analogue and various dose regimens were evaluated concerning their therapeutic efficacy. Results The specificity and the binding affinity of the BN analogue for BN2/GRP receptors were only slightly reduced by PEGylation. In vitro binding kinetics of the PEGylated analogue was slower since steady-state condition was reached after 4 h. PEGylation improved the stability of BN conjugate in vitro in human plasma by a factor of 5.6. The non-PEGylated BN analogue showed favourable pharmacokinetics already, i.e. fast blood clearance and renal excretion, but PEGylation improved the in vivo behaviour further. One hour after injection, the tumour uptake of the PEG5k-BN derivative was higher compared with that of the non-PEGylated analogue (3.43 ± 0.63% vs. 1.88 ± 0.4% ID/g). Moreover, the increased tumour retention resulted in a twofold higher tumour accumulation at 24 h p.i., and increased tumour-to-non-target ratios (tumour-to-kidney, 0.6 vs. 0.4; tumour-to-liver, 8.8 vs. 5.9, 24 h p.i.). In the therapy study, both 177Lu-labelled BN analogues significantly inhibited tumour growth. The therapeutic efficacy was highest for the PEGylated derivative of high specific activity administered in two fractions (2 × 20 MBq = 40 MBq) at day 0 and day 7 (73% tumour growth inhibition, 3 weeks after therapy). Conclusions PEGylation and increasing the specific activity enhance the pharmacokinetic properties of a 177Lu-labelled BN-based radiopharmaceutical and provide a protocol for targeted radionuclide therapy with a beneficial anti-tumour effectiveness and a favourable risk-profile at the same time.
Collapse
Affiliation(s)
- Simone Däpp
- Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, 5232, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liolios CC, Fragogeorgi EA, Zikos C, Loudos G, Xanthopoulos S, Bouziotis P, Paravatou-Petsotas M, Livaniou E, Varvarigou AD, Sivolapenko GB. Structural modifications of ⁹⁹mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting. Int J Pharm 2012; 430:1-17. [PMID: 22459664 DOI: 10.1016/j.ijpharm.2012.02.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE The main goal of the present study was to investigate the importance of the addition of a positively charged aa in the naturally occurring bombesin (BN) peptide for its utilization as radiodiagnostic agent, taking into consideration the biodistribution profile, the pharmacokinetic characteristics and the tumor targeting ability. METHODS Two BN-derivatives of the general structure [M-chelator]-(spacer)-BN(2-14)-NH(2), where M: (99m)Tc or (185/187)Re, chelator: Gly-Gly-Cys-, spacer: -(arginine)(3)-, M-BN-A; spacer: -(ornithine)(3)-, M-BN-O; have been prepared and evaluated as tumor imaging agents. RESULTS The peptides under study presented high radiolabelling efficiency (>98%), significant stability in human plasma (>60% intact radiolabelled peptide after 1h incubation) and comparable receptor binding affinity with the standard [(125)I-Tyr(4)]-BN. Their internalization rates in the prostate cancer PC-3 cells differed, although the amount of internalized peptide was the same. The biodistribution and the dynamic γ-camera imaging studies in normal and PC-3 tumor-bearing SCID mice have shown significant tumor uptake, combined with fast blood clearance, through the urinary pathway. CONCLUSION The addition of the charged aa spacer in the BN structure was advantageous for biodistribution, pharmacokinetics and tumor targeting ability, because it reduced the upper abdominal radioactivity levels and increased tumor/normal tissue contrast ratios.
Collapse
Affiliation(s)
- Christos C Liolios
- Institute of Radioisotopes & Radiodiagnostic Products, NCSR Demokritos, 15310 Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Däpp S, García Garayoa E, Maes V, Brans L, Tourwé DA, Müller C, Schibli R. PEGylation of (99m)Tc-labeled bombesin analogues improves their pharmacokinetic properties. Nucl Med Biol 2011; 38:997-1009. [PMID: 21982571 DOI: 10.1016/j.nucmedbio.2011.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/17/2011] [Accepted: 02/27/2011] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Radiolabeled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumors in which BN(2)/gastrin-releasing peptide (GRP) receptors are overexpressed. However, the low in vivo stability of BN conjugates may limit their clinical application. In an attempt to improve their pharmacokinetics and counteract their rapid enzymatic degradation, we prepared a series of polyethylene glycol (PEG)-ylated BN(7-14) analogues for radiolabeling with (99m)Tc(CO)(3) and evaluated them in vitro and in vivo. METHODS Derivatization of a stabilized (N(α)His)Ac-BN(7-14)[Cha(13),Nle(14)] analogue with linear PEG molecules of various sizes [5 kDa (PEG(5)), 10 kDa (PEG(10)) and 20 kDa (PEG(20))] was performed by PEGylation of the ɛ-amino group of a β(3)hLys-βAla-βAla spacer between the stabilized BN sequence and the (N(α)His)Ac chelator. The analogues were then radiolabeled by employing the (99m)Tc-tricarbonyl technique. Binding affinity and internalization/externalization studies were performed in vitro in human prostate carcinoma PC-3 cells. Stability was investigated in vitro in human plasma and in vivo in Balb/c mice. Finally, single photon emission computed tomography (SPECT)/X-ray computed tomography studies were performed in nude mice bearing PC-3 tumor xenografts. RESULTS PEGylation did not affect the binding affinity of BN analogues, as the binding affinity for BN(2)/GRP receptors remained high (K(d)<0.9 nM). However, in vitro binding kinetics of the PEGylated analogues were slower. Steady-state condition was reached after 4 h, and the total cell binding was 10 times lower than that for the non-PEGylated counterpart. Besides, PEGylation improved the stability of BN conjugates in vitro and in vivo. The BN derivative conjugated with a PEG(5) molecule showed the best pharmacokinetics in vivo, i.e., faster blood clearance and preferential renal excretion. The tumor uptake of the (99m)Tc-PEG(5)-Lys-BN conjugate was slightly higher compared to that of the non-PEGylated analogue (3.91%±0.44% vs. 2.80%±0.28% injected dose per gram 1 h postinjection, p.i.). Tumor retention was also increased, resulting in a threefold higher amount of radioactivity in the tumor at 24 h p.i. Furthermore, decreased hepatobiliary excretion and increased tumor-to-nontarget ratios (tumor-to-blood: 17.1 vs. 2.1; tumor-to-kidney: 1.1 vs. 0.4; tumor-to-liver: 5.8 vs. 1.0, 24 h p.i.) were observed and further confirmed via small-animal SPECT images 1 h p.i. CONCLUSION PEGylation proved to be an effective strategy to enhance the tumor-targeting potential of (99m)Tc-labeled BN-based radiopharmaceuticals and probably other radiolabeled peptides.
Collapse
Affiliation(s)
- Simone Däpp
- Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, CH-5232 Villigen-PSI, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Synthesis and evaluation of a new bombesin analog labeled with 99mTc as a GRP receptor imaging agent. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-0985-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Correia JDG, Paulo A, Raposinho PD, Santos I. Radiometallated peptides for molecular imaging and targeted therapy. Dalton Trans 2011; 40:6144-67. [DOI: 10.1039/c0dt01599g] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Faintuch BL, Núñez GEF, Teodoro R, Moro AM, Mengatti J. Radiolabeled nano-peptides show specificity for an animal model of human PC3 prostate cancer cells. Clinics (Sao Paulo) 2011; 66:327-36. [PMID: 21484054 PMCID: PMC3059864 DOI: 10.1590/s1807-59322011000200024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/09/2010] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES Cancer has been investigated using various pre-targeting techniques or models focusing on radiobombesin analogues; however, both are not offered together. In this study, nano-bombesin labeling by a pre-targeting system was undertaken to develop an alternative approach for prostate tumor treatment. METHODS A two-step pre-targeting system utilizing a combination of streptavidin (SA), biotinylated morpholino (B-MORF), biotinylated BBN (B-BBN) with two different spacers (b-Ala and PEG), and a radiolabeled cMORF was evaluated in vitro and in vivo. RESULTS Final conjugation conditions consisted of a 1:1:2 ratio of SA:B-MORF:B-BBN, followed by addition of 99mTc-cMORF to compensate for free MORF. In vitro binding experiments with prostate cancer cells (PC-3) revealed that total binding was time-dependent for the Ala spacer but not for the PEG spacer. The highest accumulation (5.06 ± 1.98 %) was achieved with 1 hour of incubation, decreasing as time progressed. Specific binding fell to 1.05 ± 0.35 %. The pre-targeting biodistribution in healthy Swiss mice was measured at different time points, with the best responses observed for 7-h and 15-h incubations. The effector, 99mTc-MAG3-cMORF, was administered 2 h later. Strong kidney excretion was always documented. The greatest tumor uptake was 2.58 ± 0.59 %ID/g at 7 h for B-bAla-BBN, with a region of interest (ROI) value of 3.9 % during imaging. The tumor/blood ratio was low due to the slow blood clearance; however, the tumor/muscle ratio was 5.95. CONCLUSIONS The pre-targeting approach with a peptide was a viable concept. Further evaluation with modified sequences of MORF, including less cytosine, and additional test intervals could be worthwhile.
Collapse
|
30
|
Zelenka K, Borsig L, Alberto R. Trifunctional 99mTc based radiopharmaceuticals: metal-mediated conjugation of a peptide with a nucleus targeting intercalator. Org Biomol Chem 2010; 9:1071-8. [PMID: 21186394 DOI: 10.1039/c0ob00504e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of molecular imaging agents with multiple functions has become a major trend in radiopharmaceutical chemistry. We present herein the syntheses of trifunctional compounds, combining an acridine orange (AO) based intercalator with a GRP receptor specific bombesin like peptide (BBN). Metal-mediated conjugation of these two functions via the [2 + 1] approach to the third function, the [M(CO)(3)](+) (M = (99m)Tc, Re) moiety, yielded the final trifunctional molecules. The strongly fluorescent acridine orange, a nuclear targeting agent, has been derivatised with 4-imidazolecarboxylate as a bidentate ligand and bombesin with an isonitrile group as a monodentate ligand. For cell and nuclear uptake studies, [Re(L(1)-BBN)(L(2)-Ical)(CO)(3)] type complexes were synthesized and characterized. For radiopharmaceutical purposes, the (99m)Tc analogues have been prepared in a stepwise synthesis. Fluorescence microscopy studies on PC-3 cells, bearing the BBN receptor, showed high and rapid uptake into the cytoplasm. For the bifunctional molecule, lacking the BBN peptide, no internalization was observed.
Collapse
Affiliation(s)
- Karel Zelenka
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Fragogeorgi EA, Zikos C, Gourni E, Bouziotis P, Paravatou-Petsotas M, Loudos G, Mitsokapas N, Xanthopoulos S, Mavri-Vavayanni M, Livaniou E, Varvarigou AD, Archimandritis SC. Spacer site modifications for the improvement of the in vitro and in vivo binding properties of (99m)Tc-N(3)S-X-bombesin[2-14] derivatives. Bioconjug Chem 2010; 20:856-67. [PMID: 19344122 DOI: 10.1021/bc800475k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been shown that gastrin releasing peptide receptors (GRPRs) are overexpressed in various types of cancer cells. Bombesin is an analogue of the mammalian GRP that binds with high specificity and affinity to GRPRs. Significant research efforts have been lately devoted to the design of radiolabeled 8 or 14 aminoacid bombesin (BN) peptides for the detection (either with gamma or positron emitting radionuclides) and therapy (with beta(-) emitting radionuclides) of cancer. The specific aim of the present study was to further investigate the radiolabeled peptide structure and to determine whether the total absence of a linker or the use of a basic diverse amino acid linker could influence the biodistribution profile of the new compounds for specific targeting of human prostate cancer. Thus, two new derivatives with the structure Gly-Gly-Cys-X-BN[2-14], where linker X is either zero (I) or Orn-Orn-Orn (Orn: ornithine) (II) were designed and synthesized. The corresponding (99m)Tc-BN derivatives were obtained with high radiochemical yield (>98%) and had almost identical retention times in RP-HPLC with the (185/187)Re complexes, which were also characterized by ESI-MS. Metabolic stability was found to be high in human plasma, moderate in PC-3 cells, and rather low in mouse liver and kidney homogenates for both BN derivatives studied. The BN derivative without the spacer was less stable in cell culture and liver homogenates. A satisfactory binding affinity to GRPRs, in the nanomolar range, was obtained for both BN derivatives as well as for their Re complexes, with BN (II) demonstrating the highest one. In vitro internalization/externalization assays indicated that approximately 6% of BN (I) and approximately 25% of BN (II) were internalized into PC-3 cells. In vivo evaluation in normal Swiss mice and in tumor bearing SCID mice showed that BN (II) presented higher tumor and pancreas uptake than BN (I). Small animal SPECT dynamic imaging, carried out after an injection of BN (II) in mice bearing PC-3 tumors, resulted in PC-3 tumor delineation with low background activity. Overall, this study performed for two new N(3)S-X-BN[2-14] derivatives indicated that hydrophilicity and charge strongly affected the in vitro and in vivo binding properties and the biodistribution pattern. This finding is confirmed by SPECT imaging of BN (II), which is under further in vivo evaluation for detecting cancer-positive GRPRs.
Collapse
Affiliation(s)
- Eirini A Fragogeorgi
- Institute of Radioisotopes-Radiodiagnostic Products, National Center for Scientific Research, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yurt Lambrecht F, Durkan K, Bayrak E. Labeling bombesin-like peptide with 99mTc via hydrazinonicotinamide: description of optimized radiolabeling conditions. J Radioanal Nucl Chem 2010. [DOI: 10.1007/s10967-010-0530-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Virgolini IJ, Gabriel M, von Guggenberg E, Putzer D, Kendler D, Decristoforo C. Role of radiopharmaceuticals in the diagnosis and treatment of neuroendocrine tumours. Eur J Cancer 2010; 45 Suppl 1:274-91. [PMID: 19775625 DOI: 10.1016/s0959-8049(09)70042-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irene J Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
34
|
Martin AL, Hickey JL, Ablack AL, Lewis JD, Luyt LG, Gillies ER. Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2009; 12:1599-1608. [PMID: 22328862 PMCID: PMC3276591 DOI: 10.1007/s11051-009-9681-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The imaging of molecular markers associated with disease offers the possibility for earlier detection and improved treatment monitoring. Receptors for gastrin-releasing peptide are overexpressed on prostate cancer cells offering a promising imaging target, and analogs of bombesin, an amphibian tetradecapeptide have been previously demonstrated to target these receptors. Therefore, the pan-bombesin analog [β-Ala11, Phe13, Nle14]bombesin-(7-14) was conjugated through a linker to dye-functionalized superparamagnetic iron oxide nanoparticles for the development of a new potential magnetic resonance imaging probe. The peptide was conjugated via click chemistry, demonstrating a complementary alternative methodology to conventional peptide-nanoparticle conjugation strategies. The peptide-functionalized nanoparticles were then demonstrated to be selectively taken up by PC-3 prostate cancer cells relative to unfunctionalized nanoparticles and this uptake was inhibited by the presence of free peptide, confirming the specificity of the interaction. This study suggests that these nanoparticles have the potential to serve as magnetic resonance imaging probes for the detection of prostate cancer.
Collapse
Affiliation(s)
- Amanda L Martin
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Rosita D, Dewit MA, Luyt LG. Fluorine and rhenium substituted ghrelin analogues as potential imaging probes for the growth hormone secretagogue receptor. J Med Chem 2009; 52:2196-203. [PMID: 19323558 DOI: 10.1021/jm8014519] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In our effort to create imaging probes targeting the growth hormone secretagogue receptor (GHSR), we now report on the design and synthesis of fluorine and rhenium containing ghrelin analogues through modification of the n-octanoyl Ser-3 side chain. Fluorine analogues were designed whereby the fluorine atom is situated at the terminus of an aliphatic chain using diaminopropionic acid (Dpr) as residue-3. Truncated ghrelin(1-5) and ghrelin(1-14) fluorine-bearing analogues were prepared, the best of which had a 28 nM IC(50) for GHSR. Ghrelin(1-14) analogues were also prepared containing rhenium, as a surrogate metal for technetium-99m, with a cyclopentadienylrhenium tricarbonyl being situated at the terminus of the residue-3 side chain, yielding compounds the best of which had a 35 nM IC(50). This represents a rare case of incorporating rhenium into a peptide structure where the metal complex is required for biological activity. These fluorine and rhenium derivatives demonstrate the ability to modify the Ser-3 side chain of ghrelin in order to create imaging probes for the GHSR.
Collapse
Affiliation(s)
- Dina Rosita
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | | | | |
Collapse
|
36
|
Juran S, Walther M, Stephan H, Bergmann R, Steinbach J, Kraus W, Emmerling F, Comba P. Hexadentate Bispidine Derivatives as Versatile Bifunctional Chelate Agents for Copper(II) Radioisotopes. Bioconjug Chem 2009; 20:347-59. [DOI: 10.1021/bc800461e] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefanie Juran
- Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PF 510119, D-01314 Dresden, Germany, Bundesanstalt für Materialforschung and -prüfung, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany, and Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Martin Walther
- Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PF 510119, D-01314 Dresden, Germany, Bundesanstalt für Materialforschung and -prüfung, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany, and Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Holger Stephan
- Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PF 510119, D-01314 Dresden, Germany, Bundesanstalt für Materialforschung and -prüfung, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany, and Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Ralf Bergmann
- Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PF 510119, D-01314 Dresden, Germany, Bundesanstalt für Materialforschung and -prüfung, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany, and Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Jörg Steinbach
- Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PF 510119, D-01314 Dresden, Germany, Bundesanstalt für Materialforschung and -prüfung, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany, and Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Werner Kraus
- Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PF 510119, D-01314 Dresden, Germany, Bundesanstalt für Materialforschung and -prüfung, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany, and Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Franziska Emmerling
- Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PF 510119, D-01314 Dresden, Germany, Bundesanstalt für Materialforschung and -prüfung, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany, and Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Peter Comba
- Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, PF 510119, D-01314 Dresden, Germany, Bundesanstalt für Materialforschung and -prüfung, Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany, and Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
37
|
Schweinsberg C, Maes V, Brans L, Bläuenstein P, Tourwé DA, Schubiger PA, Schibli R, Garayoa EG. Novel Glycated [99mTc(CO)3]-Labeled Bombesin Analogues for Improved Targeting of Gastrin-Releasing Peptide Receptor-Positive Tumors. Bioconjug Chem 2008; 19:2432-9. [PMID: 19053304 DOI: 10.1021/bc800319g] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Schweinsberg
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Veronique Maes
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Luc Brans
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Peter Bläuenstein
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dirk A. Tourwé
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - P. August Schubiger
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Elisa García Garayoa
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium, and Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
38
|
García Garayoa E, Schweinsberg C, Maes V, Brans L, Bläuenstein P, Tourwé DA, Schibli R, Schubiger PA. Influence of the Molecular Charge on the Biodistribution of Bombesin Analogues Labeled with the [99mTc(CO)3]-Core. Bioconjug Chem 2008; 19:2409-16. [DOI: 10.1021/bc800262m] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elisa García Garayoa
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, and Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Christian Schweinsberg
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, and Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Veronique Maes
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, and Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luc Brans
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, and Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Peter Bläuenstein
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, and Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dirk A. Tourwé
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, and Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - R. Schibli
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, and Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - P. August Schubiger
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland, and Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
39
|
Brans L, Maes V, García-Garayoa E, Schweinsberg C, Daepp S, Bläuenstein P, Schubiger PA, Schibli R, Tourwé DA. Glycation methods for bombesin analogs containing the (NalphaHis)Ac chelator for 99mTc(CO)3 radiolabeling. Chem Biol Drug Des 2008; 72:496-506. [PMID: 19016795 DOI: 10.1111/j.1747-0285.2008.00727.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The overexpression of peptide receptors in a variety of human carcinomas has generated considerable interest in peptide-based radiopharmaceuticals for peptide receptor imaging and peptide receptor radiotherapy. The gastrin-releasing peptide receptor is overexpressed in human prostate-, breast-, colon- and small cell lung carcinoma cells. We have developed metabolically stable (99m)Tc-radiolabeled bombesin ([Cha(13), Nle(14)]BBS(7-14)) analogs, which bind with high affinity to the gastrin-releasing peptide receptors. However, because of their lipophilicity, they showed unfavorable biodistribution with high hepatic accumulation and hepatobiliary excretion. We now report a study of different glycation methods for [Cha(13), Nle(14)]BBS(7-14) analogs to improve their biodistribution profile. Whereas the glycation using the Maillard reaction was problematic, resulting in low yields, selective introduction of the glycomimetic shikimic acid to the side chain of a Lys residue was possible. A chemoselective ligation of alpha-D-glucose to an amino-oxyacetylated [Cha(13), Nle(14)]BBS(7-14) analog could be achieved, but was complicated by the co-elution of starting peptide and glycopeptide. The best procedure consisted of the [1,3]-cycloaddition of N(3)-beta-D-glucose to a propargylglycine-containing [Cha(13), Nle(14)]BBS(7-14) analog, using a catalytic amount of Cu(I)I. All glycated [Cha(13), Nle(14)]BBS(7-14) analogs showed high affinity for the gastrin-releasing peptide receptor and rapid accumulation into PC-3 tumor cells.
Collapse
Affiliation(s)
- Luc Brans
- Department of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lane SR, Veerendra B, Rold TL, Sieckman GL, Hoffman TJ, Jurisson SS, Smith CJ. 99mTc(CO)3-DTMA bombesin conjugates having high affinity for the GRP receptor. Nucl Med Biol 2008; 35:263-72. [PMID: 18355681 DOI: 10.1016/j.nucmedbio.2007.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 10/26/2007] [Accepted: 11/17/2007] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Targeted diagnosis of specific human cancer types continues to be of significant interest in nuclear medicine. 99mTc is ideally suited as a diagnostic radiometal for in vivo tumor targeting due to its ideal physical characteristics and diverse labeling chemistries in numerous oxidation states. METHODS In this study, we report a synthetic approach toward design of a new tridentate amine ligand for the organometallic aqua-ion [99mTc(H2O)3(CO)3]+. The new chelating ligand framework, 2-(N,N'-Bis(tert-butoxycarbonyl)diethylenetriamine) acetic acid (DTMA), was synthesized from a diethylenetriamine precursor and fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy (1H and 13C). DTMA was conjugated to H2N-(X)-BBN(7-14)NH2, where X=an amino acid or aliphatic pharmacokinetic modifier and BBN=bombesin peptide, by means of solid phase peptide synthesis. DTMA-(X)-BBN(7-14)NH2 conjugates were purified by reversed-phase high-performance chromatography and characterized by electrospray-ionization mass spectrometry. RESULTS The new conjugates were radiolabeled with [99mTc(H2O)3(CO)3]+ produced via Isolink radiolabeling kits to produce [99mTc(CO)3-DTMA-(X)-BBN(7-14)NH2]. Radiolabeled conjugates were purified by reversed-phase high-performance chromatography. Effective receptor binding behavior was evaluated in vitro and in vivo. CONCLUSIONS [99mTc(CO)3-DTMA-(X)-BBN(7-14)NH2] conjugates displayed very high affinity for the gastrin releasing peptide receptor in vitro and in vivo. Therefore, these conjugates hold some propensity to be investigated as molecular imaging agents that specifically target human cancers uniquely expressing the gastrin releasing peptide receptor subtypes.
Collapse
Affiliation(s)
- Stephanie R Lane
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
D'Andrea LD, Testa I, Panico M, Di Stasi R, Caracò C, Tarallo L, Arra C, Barbieri A, Romanelli A, Aloj L. In vivo and in vitro characterization of CCK8 bearing a histidine-based chelator labeled with 99mTc-tricarbonyl. Biopolymers 2008; 90:707-12. [DOI: 10.1002/bip.21041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Shi J, Jia B, Liu Z, Yang Z, Yu Z, Chen K, Chen X, Liu S, Wang F. 99mTc-labeled bombesin(7-14)NH2 with favorable properties for SPECT imaging of colon cancer. Bioconjug Chem 2008; 19:1170-8. [PMID: 18491928 DOI: 10.1021/bc700471z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this report, we present the synthesis and evaluation of the (99m)Tc-labeled beta-Ala-BN(7-14)NH2 (ABN = beta-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) as a new radiotracer for tumor imaging in the BALB/c nude mice bearing HT-29 human colon cancer xenografts. The gastrin releasing peptide receptor binding affinity of ABN and HYNIC-ABN (6-hydrazinonicotinamide) was assessed via a competitive displacement of (125)I-[Tyr4]BBN bound to the PC-3 human prostate carcinoma cells. The IC 50 values were calculated to be 24 +/- 2 nM and 38 +/- 1 nM for ABN and HYNIC-ABN, respectively. HYNIC is the bifunctional coupling agent for (99m)Tc-labeling, while tricine and TPPTS (trisodium triphenylphosphine-3,3',3''-trisulfonate) are used as coligands to prepare the ternary ligand complex [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] in very high yield and high specific activity. Because of its high hydrophilicity (log P = -2.39 +/- 0.06), [(99m)Tc(HYNIC-ABN)(tricine)(TPPS)] was excreted mainly through the renal route with little radioactivity accumulation in the liver, lungs, stomach, and gastrointestinal tract. The tumor uptake at 30 min postinjection (p.i.) was 1.59 +/- 0.23%ID/g with a steady tumor washout over the 4 h study period. As a result, it had the best T/ B ratios in the blood (2.37 +/- 0.68), liver (1.69 +/- 0.41), and muscle (11.17 +/- 3.32) at 1 h p.i. Most of the injected radioactivity was found in the urine sample at 1 h p.i., and there was no intact [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] detectable in the urine, kidney, and liver samples. Its metabolic instability may contribute to its rapid clearance from the liver, lungs, and stomach. Despite the steady radioactivity washout, the tumors could be clearly visualized in planar images of the BALB/c nude mice bearing the HT-29 human colon xenografts at 1 and 4 h p.i. The favorable excretion kinetics from the liver, lungs, stomach, and gastrointestinal tract makes [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] a promising SPECT radiotracer for imaging colon cancer.
Collapse
Affiliation(s)
- Jiyun Shi
- Medical Isotopes Research Center, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fuks L, Gniazdowska E, Mieczkowski J, Sadlej-Sosnowska N. Structural features of tricarbonyl(N-methyl-2-pyridinecarboxyamide)chloro-rhenium(I)-potential precursor of radiopharmaceuticals. Polyhedron 2008. [DOI: 10.1016/j.poly.2007.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Lim NC, Ewart CB, Bowen ML, Ferreira CL, Barta CA, Adam MJ, Orvig C. Pyridine−tert-Nitrogen−Phenol Ligands: N,N,O-Type Tripodal Chelates for the [M(CO)3]+ Core (M = Re, Tc). Inorg Chem 2008; 47:1337-45. [DOI: 10.1021/ic701822n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nathaniel C. Lim
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| | - Charles B. Ewart
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| | - Meryn L. Bowen
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| | - Cara L. Ferreira
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| | - Cheri A. Barta
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| | - Michael J. Adam
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1, and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| |
Collapse
|
45
|
Synthesis, in vitro and in vivo behavior of 188Re(I)-tricarbonyl complexes for the future functionalization of biomolecules. J Radioanal Nucl Chem 2007. [DOI: 10.1007/s10967-007-6757-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Agorastos N, Borsig L, Renard A, Antoni P, Viola G, Spingler B, Kurz P, Alberto R. Cell-Specific and Nuclear Targeting with [M(CO)3]+ (M=99mTc, Re)-Based Complexes Conjugated to Acridine Orange and Bombesin. Chemistry 2007; 13:3842-52. [PMID: 17385203 DOI: 10.1002/chem.200700031] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor-specific nuclear targeting requires trifunctional metal complexes. We have synthesized [M(L(2)-pept)(L(1)-acr)(CO)(3)] (pept=peptide; acr=acridine-based agent) in which the fac-[M(CO)(3)](+) moiety (1st function, M=(99m)Tc, Re) couples an acridine-based nuclear-targeting agent (2nd function, L(1)-acr) and the specific cell-receptor-binding peptide bombesin (3rd function, L(2)-pept). The metal-mediated coupling is based on the mixed ligand [2+1] principle. The nuclear targeting agents have been derivatised with an isocyanide group for monodentate (L(1)) and bombesin (BBN) with a bidentate ligand (L(2)) for complexation to fac-[M(CO)(3)](+). For nuclear uptake studies, the model complexes [Re(L(2))(L(1)-acr)(CO)(3)] (L(2)=pyridine-2-carboxylic acid and pyridine-2,4-dicarboxylic acid) were synthesized and structurally characterized. We selected acridine derivatives as nuclear-targeting agents, because they are very good nucleus-staining agents and exhibit strong fluorescence. Despite the bulky metal complexes attached to acridine, all [Re(L(2))(L(1)-acr)(CO)(3)] showed high accumulation in the nuclei of PC3 and B16F1 cells, as evidenced by fluorescence microscopy. For radiopharmaceutical purposes, the (99m)Tc analogues have been prepared and radioactivity distribution confirmed the fluorescence results. Coupling of BBN to L(2) gave the receptor-selective complexes [M(L(2)-BBN)(L(1)-acr)(CO)(3)]. Whereas no internalization was found with B16F1 cells, fluorescence microscopy on PC3 cells bearing the BBN receptor showed high and rapid uptake by receptor-mediated endocytosis into the cytoplasm, but not into the nucleus.
Collapse
Affiliation(s)
- Nikos Agorastos
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
García Garayoa E, Rüegg D, Bläuenstein P, Zwimpfer M, Khan IU, Maes V, Blanc A, Beck-Sickinger AG, Tourwé DA, Schubiger PA. Chemical and biological characterization of new Re(CO)3/[99mTc](CO)3 bombesin analogues. Nucl Med Biol 2007; 34:17-28. [PMID: 17210458 DOI: 10.1016/j.nucmedbio.2006.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 06/26/2006] [Accepted: 10/17/2006] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Bombesin, a neuropeptide with potential for breast and prostate tumor targeting, is rapidly metabolized in vivo, and as a result, uptake in tumor xenografts in mice is poor. An improvement can be expected from the introduction of nonnatural amino acids and spacers. Leu13 was replaced by cyclohexylalanine and Met14 by norleucine. Two spacers, -betaAla-betaAla- and 3,6-dioxa-8-aminooctanoic acid, were inserted between the receptor-binding amino acid sequence (7-14) of bombesin (BBS) and the retroN(alpha)-carboxymethyl histidine chelator used for labeling with the [99mTc](CO)3 core and the rhenium (Re) congener. METHODS The biological characterization of the new compounds was performed both in vitro on prostate carcinoma PC-3 cells (binding affinity, internalization/externalization) and in vivo (biodistribution in nude mice with tumor xenografts). The stability was also investigated in human plasma. The Re analogues were prepared for chemical characterization. RESULTS The nonnatural amino acids led to markedly slower degradation in human plasma and PC-3 cell cultures. The receptor affinity of the new technetium 99m ([99mTc])-labeled BBS analogues was similar to the unmodified compound with Kd<1 nM. Uptake in the pancreas and in PC-3 tumor xenografts in nude mice was blocked by unlabeled BBS. The best target-to-nontarget uptake ratio was clearly due to the presence of the more polar spacer, -betaAla-betaAla-. CONCLUSIONS The different spacers did not have a significant effect on stability or receptor affinity but had a clear influence on the uptake in healthy organs and tumors. Uptake in the kidneys was lower than in the liver, which is likely to be due to the lipophilicity of the compounds. A specific, high uptake was also observed in the gastrin-releasing peptide receptor-rich pancreas. Thus, with the introduction of spacers the in vivo properties of the compounds can be improved while leaving the affinity unaffected.
Collapse
Affiliation(s)
- Elisa García Garayoa
- Paul Scherrer Institute, Centre for Radiopharmaceutical Science, CH-5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The fact that a number of common human tumours, including those of breast and prostate, express increased levels of the gastrin-releasing peptide receptor (GRP-R) means that this receptor is a potential target for peptide receptor mediated scintigraphy and targeted radionuclide therapy. Although clinical application is yet in its infancy, there is a considerable literature on preclinical studies aimed at developing suitable radioligands for potential clinical application. This brief review provides an overview of this research and also describes some of the limited clinical studies that have been published.
Collapse
Affiliation(s)
- Theodosia Maina
- Institute of Radioisotopes--Radiodiagnostic Products, NCSR Demokritos, Athens, Greece
| | | | | |
Collapse
|
49
|
Zhang X, Chen X. Preparation and characterization of 99mTc(CO)3-BPy-RGD complex as alphav beta3 integrin receptor-targeted imaging agent. Appl Radiat Isot 2006; 65:70-8. [PMID: 17011200 DOI: 10.1016/j.apradiso.2006.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 01/08/2023]
Abstract
The aim of this study is to develop a novel arginine-glycine-aspartic acid (RGD) peptide-containing ligand for (99m)Tc labeling as alpha(v)beta(3) integrin receptor-targeted imaging agent. BPy-RGD conjugate was successfully synthesized by coupling of 5-carboxylate-2,2'-bipyridine and c(RGDyK) peptide through EDC/SNHS in aqueous solution and was characterized by MADLI-TOF-MS (m/z=802.72, C(38)H(48)N(11)O(9)). (99m)Tc(CO)(3)-BPy-RGD was prepared by exchange reaction between [(99m)Tc(H(2)O)(3)(CO)(3)](+) and BPy-RGD. Final product was purified by HPLC and tested for octanol/water partition coefficient. Cell-binding assays of BPy-RGD and unmodified c(RGDyK) were tested in MDA-MB-435 cells ((125)I-echistatin as radioligand). Preliminary biodistribution of the (99m)Tc(I)-labeled radiotracer in orthotopic MDA-MB-435 breast tumor xenograft model was also evaluated. The BPy-RGD conjugate had good integrin-binding affinity (50% inhibitory concentration (IC(50))=92.51+/-22.69 nM), slightly lower than unmodified c(RGDyK) (IC(50)=59.07+/-11.03 nM). The hydrophilic radiotracer also had receptor-mediated activity accumulation in MDA-MB-435 tumor (1.45+/-0.25 percentage of injected dose per gram (%ID/g) at 1.5h postinjection (p.i.)), which is known to be integrin positive. After blocking with c(RGDyK), the tumor uptake was reduced from 0.71+/-0.01%ID/g to 0.33+/-0.18%ID/g at 4h p.i. (99m)Tc(I) tricarbonyl complex of cyclic RGD peptide is a promising strategy for integrin targeting. Further modification of the bipyridine-conjugated RGD peptide by using more potent RGD peptides and fine tuning of the tether group between the RGD moiety and (99m)Tc(CO)(3)(+) core to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress.
Collapse
Affiliation(s)
- Xianzhong Zhang
- Department of Radiology, Molecular Imaging Program at Stanford and Bio-X, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
50
|
Parry JJ, Andrews R, Rogers BE. MicroPET Imaging of Breast Cancer Using Radiolabeled Bombesin Analogs Targeting the Gastrin-releasing Peptide Receptor. Breast Cancer Res Treat 2006; 101:175-83. [PMID: 16838112 DOI: 10.1007/s10549-006-9287-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Mammography is a well-established method for detecting primary breast cancer; however, it has some limitations that may be overcome using nuclear imaging methods. Current radiopharmaceuticals have limited sensitivity for detecting small primary lesions and it has been suggested that novel radiopharmaceuticals are necessary for detection of primary breast cancer, as well as for detecting metastases and recurrence, or for monitoring therapy. The gastrin-releasing peptide receptor (GRPR) is a seven-transmembrane G-protein coupled receptor that is overexpressed on primary breast cancer and lymph node metastases. Bombesin (BN) is a tetradecapeptide that binds with high affinity to GRPR and can be radiolabeled with the positron-emitter, copper-64 ((64)Cu) for imaging with positron-emission tomography (PET). The goal of this study was to evaluate BN analogs that could be radiolabeled with (64)Cu for PET imaging of breast cancer. A series of BN analogs containing 4, 5, 6, 8, and 12- carbon linkers were evaluated with regard to their binding and internalization into T-47D human breast cancer cells. The (64)Cu-labeled analogs were then evaluated in mice bearing T-47D xenografts by tissue biodistribution and microPET imaging. These studies showed that all of the analogs had IC(50) values <100 nM and were all internalized into T-47D cells. Biodistribution studies showed that the BN analog with the 8-carbon linker not only had the highest tumor uptake but also had high normal tissue uptake in the liver. The analogs containing the 6- or 8-carbon linkers demonstrated good tumor uptake as determined by microPET imaging. Overall, this study shows the feasibility of using positron-labeled BN analogs for PET detection of GRPR-expressing breast cancer.
Collapse
Affiliation(s)
- Jesse J Parry
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Blvd. Suite 411, St. Louis, MO 63108, USA
| | | | | |
Collapse
|