1
|
Effect of Tin(II) Chloride Amount on 99mTc-Labeling of One 6-Hydrazinonicotinamide-Conjugated Peptide in the Presence of Tricine/Nicotinic Acid. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Li M, Chang J, Ren H, Song D, Guo J, Peng L, Zhou X, Zhao K, Lu S, Liu Z, Hu P. Downregulation of CCKBR Expression Inhibits the Proliferation of Gastric Cancer Cells, Revealing a Potential Target for Immunotoxin Therapy. Curr Cancer Drug Targets 2022; 22:257-268. [PMID: 34994328 DOI: 10.2174/1568009622666220106113616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
Background Increased CCKBR expression density or frequency has been reported in many neoplasms. Objective We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. Methods A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Wound-healing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. Results Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. Conclusion The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Jiang Chang
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Honglin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Defeng Song
- China-Japan Union Hospital, Jilin University; Changchun 130062, China
| | - Jian Guo
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Lixiong Peng
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Xiaoshi Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Ke Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Shiying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Zengshan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| |
Collapse
|
3
|
Maina T, Nock BA. Gamma camera imaging by radiolabeled gastrin/cholecystokinin analogs. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021; 221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
Natural peptides extracted from natural components such are known to have a relatively short in-vivo half-life and can readily metabolize by endo- and exo-peptidases. Fortunately, synthetic peptides can be easily manipulated to increase in-vivo stability, membrane permeability and target specificity with some well-known natural families. Many natural as well as synthetic peptides target to their endogenous receptors for diagnosis and therapeutic applications. In order to detect these peptides externally, they must be modified with radionuclides compatible with single photon emission computed tomography (SPECT) or positron emission tomography (PET). Although, these techniques mainly rely on physiological changes and have profound diagnostic strength over anatomical modalities such as MRI and CT. However, both SPECT and PET observed to possess lack of anatomical reference frame which is a key weakness of these techniques, and unfortunately, cannot be available freely in most clinical centres especially in under-developing countries. Hence, it is need of the time to design and develop economic, patient friendly and versatile strategies to grapple with existing problems without any hazardous side effects. Optical molecular imaging (OMI) has emerged as a novel technique in field of medical science using fluorescent probes as imaging modality and has ability to couple with organic drugs, small molecules, chemotherapeutics, DNA, RNA, anticancer peptide and protein without adding chelators as necessary for radionuclides. Furthermore, this review focuses on difference in imaging modalities and provides ample knowledge about reliable, economic and patient friendly optical imaging technique rather radionuclide-based imaging techniques.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China.
| |
Collapse
|
5
|
Kaihani S, Sadeghzadeh N. Study of the 99m Tc-labeling conditions of 6-hydrazinonicotinamide-conjugated peptides from a new perspective: Introduction to the term radio-stoichiometry. J Labelled Comp Radiopharm 2020; 63:582-596. [PMID: 32997359 DOI: 10.1002/jlcr.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 09/20/2020] [Indexed: 11/07/2022]
Abstract
Specific tumor uptake of peptide radiopharmaceuticals depends on tumor binding affinity and their radiochemical purity. Several important parameters that influence the 99m Tc-labeling and consequently the radiochemical purity of 6-hydrazinonicotinamide (HYNIC)-conjugated peptide are radionuclide activity, the amount of peptide, the amount of coligands, and the amount of reducing agents (stannous ion). In this review article, we have attempted studying these parameters in the HYNIC-conjugated peptides (somatostatin, cholecystokinin/gastrin, bombesin, and RGD analogs) from a new perspective to obtain most used and optimized radio-stoichiometric relationships. One of the most important results in this review is that for 99m Tc-labeling of HYNIC-conjugated peptides, it is better to consider the most calculated mole ratio between technetium-99m and the peptide (mole ratio of technetium-99m to the peptide 1:200-400). The statistical results also show that among these 99m Tc-labeled peptides, the most used and favorable coligand is tricine/EDDA with two to one (2:1) mole ratio. These optimized radio-stoichiometric relationships, favorable coligand mole ratio, and applicable radiolabeling points can greatly improve the labeling process of the HYNIC-conjugated peptides, by reducing trial and error, increasing specific activity, and saving materials.
Collapse
Affiliation(s)
- Sajad Kaihani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging. Bioorg Chem 2020; 99:103802. [DOI: 10.1016/j.bioorg.2020.103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
7
|
Klingler M, Hörmann AA, Guggenberg EV. Cholecystokinin-2 Receptor Targeting with Radiolabeled Peptides: Current Status and Future Directions. Curr Med Chem 2020; 27:7112-7132. [PMID: 32586246 PMCID: PMC7116483 DOI: 10.2174/0929867327666200625143035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
A wide variety of radiolabeled peptide analogs for specific targeting of cholecystokinin- 2 receptors (CCK2R) has been developed in the last decades. Peptide probes based on the natural ligands Minigastrin (MG) and Cholecystokinin (CCK) have a high potential for molecular imaging and targeted radiotherapy of different human tumors, such as Medullary Thyroid Carcinoma (MTC) and Small Cell Lung Cancer (SCLC). MG analogs with high persistent uptake in CCK2R expressing tumors have been preferably used for the development of radiolabeled peptide analogs. The clinical translation of CCK2R targeting has been prevented due to high kidney uptake or low metabolic stability of the different radiopeptides developed. Great efforts in radiopharmaceutical development have been undertaken to overcome these limitations. Various modifications in the linear peptide sequence of MG have been introduced mainly with the aim to reduce kidney retention. Furthermore, improved tumor uptake could be obtained by in situ stabilization of the radiopeptide against enzymatic degradation through coinjection of peptidase inhibitors. Recent developments focusing on the stabilization of the Cterminal receptor binding sequence (Trp-Met-Asp-Phe-NH2) have led to new radiolabeled MG analogs with highly improved tumor uptake and tumor-to-kidney ratio. In this review, all the different aspects in the radiopharmaceutical development of CCK2R targeting peptide probes are covered, giving also an overview on the clinical investigations performed so far. The recent development of radiolabeled MG analogs, which are highly stabilized against enzymatic degradation in vivo, promises to have a high impact on the clinical management of patients with CCK2R expressing tumors in the near future.
Collapse
Affiliation(s)
- Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
8
|
Farzipour S, Hosseinimehr SJ. Correlation between in vitro and in vivo Data of Radiolabeled Peptide for Tumor Targeting. Mini Rev Med Chem 2019; 19:950-960. [DOI: 10.2174/1389557519666190304120011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/28/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Tumor-targeting peptides have been generally developed for the overexpression of tumor specific receptors in cancer cells. The use of specific radiolabeled peptide allows tumor visualization by single photon emission computed tomography (SPECT) and positron emission tomography (PET) tools. The high affinity and specific binding of radiolabeled peptide are focusing on tumoral receptors. The character of the peptide itself, in particular, its complex molecular structure and behaviors influence on its specific interaction with receptors which are overexpressed in tumor. This review summarizes various strategies which are applied for the expansion of radiolabeled peptides for tumor targeting based on in vitro and in vivo specific tumor data and then their data were compared to find any correlation between these experiments. With a careful look at previous studies, it can be found that in vitro unblock-block ratio was unable to correlate the tumor to muscle ratio and the success of radiolabeled peptide for in vivo tumor targeting. The introduction of modifiers’ approaches, nature of peptides, and type of chelators and co-ligands have mixed effect on the in vitro and in vivo specificity of radiolabeled peptides.
Collapse
Affiliation(s)
- Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Ritler A, Shoshan MS, Deupi X, Wilhelm P, Schibli R, Wennemers H, Béhé M. Elucidating the Structure-Activity Relationship of the Pentaglutamic Acid Sequence of Minigastrin with Cholecystokinin Receptor Subtype 2. Bioconjug Chem 2019; 30:657-666. [PMID: 30608664 DOI: 10.1021/acs.bioconjchem.8b00849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Derivatized minigastrin analogues make up a promising class of candidates for targeting cholecystokinin receptor subtype 2 (CCK2R), which is overexpressed on cancer cells of various neuroendocrine tumors. The pentaglutamic acid sequence of minigastrin influences its biological properties. In particular, it plays a crucial role in the kidney reuptake mechanism. However, the importance of the binding affinity and interaction of this region with the receptor on a molecular level remains unclear. To elucidate its structure-activity relationship with CCK2R, we replaced this sequence with various linkers differing in their amount of anionic charge, structural characteristics, and flexibility. Specifically, a flexible aliphatic linker, a linker with only three d-Glu residues, and a structured linker with four adjacent β3-glutamic acid residues were evaluated and compared to the lead compound PP-F11N (DOTA-[d-Glu1-6,Nle11]gastrin-13). 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the minigastrin derivatives, which allowed radiolabeling with Lutetium-177. The levels of In vitro internalization into MZ-CRC1 cells and in vivo tumor uptake as well as human blood plasma stability increased in the following order: aliphatic linker < three d-Glu < (β3-Glu)4 < (d-Glu)6. The in vitro and in vivo behavior was therefore significantly improved with anionic charges. Computational modeling of a CCK2 receptor-ligand complex revealed ionic interactions between cationic residues (Arg and His) of the receptor and anionic residues of the ligand in the linker.
Collapse
Affiliation(s)
- Andreas Ritler
- Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Organic Chemistry (LOC) , ETH , CH-8093 Zurich , Switzerland.,Department of Chemistry and Applied Biosciences (D-CHAB), Institute of Pharmaceutical Sciences (IPW) , ETH , CH-8093 Zurich , Switzerland.,Research Department of Biology and Chemistry, Center for Radiopharmaceutical Sciences (CRS) , Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | - Michal S Shoshan
- Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Organic Chemistry (LOC) , ETH , CH-8093 Zurich , Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group , Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | - Patrick Wilhelm
- Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Organic Chemistry (LOC) , ETH , CH-8093 Zurich , Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute of Pharmaceutical Sciences (IPW) , ETH , CH-8093 Zurich , Switzerland.,Research Department of Biology and Chemistry, Center for Radiopharmaceutical Sciences (CRS) , Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | - Helma Wennemers
- Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Organic Chemistry (LOC) , ETH , CH-8093 Zurich , Switzerland
| | - Martin Béhé
- Research Department of Biology and Chemistry, Center for Radiopharmaceutical Sciences (CRS) , Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| |
Collapse
|
10
|
Rezazadeh F, Sadeghzadeh N. Tumor targeting with 99m Tc radiolabeled peptides: Clinical application and recent development. Chem Biol Drug Des 2018; 93:205-221. [PMID: 30299570 DOI: 10.1111/cbdd.13413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/19/2018] [Accepted: 09/23/2018] [Indexed: 01/16/2023]
Abstract
Targeting overexpressed receptors on the cancer cells with radiolabeled peptides has become very important in nuclear oncology in the recent years. Peptides are small and have easy preparation and easy radiolabeling protocol with no side-effect and toxicity. These properties made them a valuable tool for tumor targeting. Based on the successful imaging of neuroendocrine tumors with 111 In-octreotide, other receptor-targeting peptides such as bombesin (BBN), cholecystokinin/gastrin analogues, neurotensin analogues, glucagon-like peptide-1, and RGD peptides are currently under development or undergoing clinical trials. The most frequently used radionuclides for tumor imaging are 99m Tc and 111 In for single-photon emission computed tomography and 68 Ga and 18 F for positron emission tomography imaging. This review presents some of the 99m Tc-labeled peptides, with regard to their potential for radionuclide imaging of tumors in clinical and preclinical application.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Lipiński PFJ, Garnuszek P, Maurin M, Stoll R, Metzler-Nolte N, Wodyński A, Dobrowolski JC, Dudek MK, Orzełowska M, Mikołajczak R. Structural studies on radiopharmaceutical DOTA-minigastrin analogue (CP04) complexes and their interaction with CCK2 receptor. EJNMMI Res 2018; 8:33. [PMID: 29663167 PMCID: PMC5902437 DOI: 10.1186/s13550-018-0387-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Background The cholecystokinin receptor subtype 2 (CCK-2R) is an important target for diagnostic imaging and targeted radionuclide therapy (TRNT) due to its overexpression in certain cancers (e.g., medullary thyroid carcinoma (MTC)), thus matching with a theranostic principle. Several peptide conjugates suitable for the TRNT of MTC have been synthesized, including a very promising minigastrin analogue DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 (CP04). In this contribution, we wanted to see whether CP04 binding affinity for CCK-2R is sensitive to the type of the complexed radiometal, as well as to get insights into the structure of CP04-CCK2R complex by molecular modeling. Results In vitro studies demonstrated that there is no significant difference in CCK-2R binding affinity and specific cellular uptake between the CP04 conjugates complexed with [68Ga]Ga3+ or [177Lu]Lu3+. In order to investigate the background of this observation, we proposed a binding model of CP04 with CCK-2R based on homology modeling and molecular docking. In this model, the C-terminal part of the molecule enters the cavity formed between the receptor helices, while the N-terminus (including DOTA and the metal) is located at the binding site outlet, exposed in large extent to the solvent. The radiometals do not influence the conformation of the molecule except for the direct neighborhood of the chelating moiety. Conclusions The model seems to be in agreement with much of structure-activity relationship (SAR) studies reported for cholecystokinin and for CCK-2R-targeting radiopharmaceuticals. It also explains relative insensitivity of CCK-2R affinity for the change of the metal. The proposed model partially fits the reported site-directed mutagenesis data.
Collapse
Affiliation(s)
- Piotr F J Lipiński
- Neuropeptides Department, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 Str., 02-106, Warszawa, Poland.
| | - Piotr Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Michał Maurin
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Artur Wodyński
- Świerk Computing Centre, National Centre for Nuclear Research, A. Sołtana 7 Str., 05-400, Otwock, Poland.,Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Jan Cz Dobrowolski
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Street, 03-195, Warszawa, Poland.,National Medicines Institute, Chełmska 30/34 Str., 00-725, Warszawa, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Monika Orzełowska
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Renata Mikołajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| |
Collapse
|
12
|
Roy J, Putt KS, Coppola D, Leon ME, Khalil FK, Centeno BA, Clark N, Stark VE, Morse DL, Low PS. Assessment of cholecystokinin 2 receptor (CCK2R) in neoplastic tissue. Oncotarget 2016; 7:14605-15. [PMID: 26910279 PMCID: PMC4924738 DOI: 10.18632/oncotarget.7522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/29/2016] [Indexed: 01/13/2023] Open
Abstract
The expression of cholecystokinin 2 receptor (CCK2R, CCKBR or gastrin receptor) has been reported on a diverse range of cancers such as colorectal, liver, lung, pancreatic, ovarian, stomach, thyroid and numerous neuroendocrine/carcinoid tumors. Some cancers of the colorectum, lung, pancreas and thyroid have been shown to overexpress CCK2R in relation to normal matched tissues of the same organ. This reported overexpression has led to the development of a number of CCK2R-ligand targeted imaging and therapeutic agents. However, no comprehensive study comparing the expression of CCK2R in multiple cancers to multiple normal tissues has been performed. Herein, we report the immunohistochemical analysis of cancer samples from gastrointestinal stromal tumor (GIST), hepatocellular carcinoma (HCC), non-small cell lung cancer (NSCLC), pancreatic adenocarcinoma, and thyroid cancer against multiple normal tissue samples from esophagus, liver, lung, pancreas, stomach, spleen and thyroid. These results show that CCK2R expression is present in nearly all cancer and normal samples tested and that none of the cancer samples had expression that was statistically greater than that of all of the normal samples.
Collapse
Affiliation(s)
- Jyoti Roy
- Center for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
- Department of Chemistry, Purdue University, West Lafayette IN 47907 USA
| | - Karson S. Putt
- Center for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa FL 33612 USA
| | - Marino E. Leon
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa FL 33612 USA
| | - Farah K. Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa FL 33612 USA
| | - Barbara A. Centeno
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa FL 33612 USA
| | - Noel Clark
- Tissue Core, H. Lee Moffitt Cancer Center, Tampa FL 33612 USA
| | - Valerie E. Stark
- Department of Cancer Imaging and Metabolism, Imaging and Technology Center of Excellence, H. Lee Moffitt Cancer Center, Tampa FL 33612 USA
| | - David L. Morse
- Department of Cancer Imaging and Metabolism, Imaging and Technology Center of Excellence, H. Lee Moffitt Cancer Center, Tampa FL 33612 USA
| | - Philip S. Low
- Center for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
- Department of Chemistry, Purdue University, West Lafayette IN 47907 USA
| |
Collapse
|
13
|
Min K, Ji B, Zhao M, Ji T, Chen B, Fang X, Ma Q. Development of a Radiolabeled Peptide-Based Probe Targeting MT1-MMP for Breast Cancer Detection. PLoS One 2015; 10:e0139471. [PMID: 26437463 PMCID: PMC4593522 DOI: 10.1371/journal.pone.0139471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/12/2015] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is one of the most frequent and aggressive primary tumors among women of all races. Matrix metalloproteinase (MMPs), a family of zinc- and calcium-dependent secreted or membrane anchored endopeptidases, is overexpressed in varieties of diseases including breast cancer. Therefore, noninvasive visualization and quantification of MMP in vivo are of great interest in basic research and clinical application for breast cancer early diagnosis. Herein, we developed a 99mTc labeled membrane type I matrix metalloproteinase (MT1-MMP) specific binding peptide, [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS), for in vivo detection of MDA-MB-231 breast tumor by single photon emission computed tomography (SPECT). [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS) demonstrated nice biostability and high MT1-MMP binding affinity in vitro and in vivo. Tumor-to-muscle ratio was found to reach to the highest (4.17±0.49) at 2 hour after intravenously administration of [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) into MDA-MB-231 tumor bearing mice. Overall, [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) demonstrated great potential for MT1-MMP targeted detection in vivo and it would be a promising molecular imaging probe that are probably beneficial to breast cancer early diagnoses.
Collapse
Affiliation(s)
- Kaiyin Min
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Min Zhao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Tiefeng Ji
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Bin Chen
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xuedong Fang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
- * E-mail: (QM); (XF)
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
- * E-mail: (QM); (XF)
| |
Collapse
|
14
|
Kolenc Peitl P, Tamma M, Kroselj M, Braun F, Waser B, Reubi JC, Sollner Dolenc M, Maecke HR, Mansi R. Stereochemistry of amino acid spacers determines the pharmacokinetics of (111)In-DOTA-minigastrin analogues for targeting the CCK2/gastrin receptor. Bioconjug Chem 2015; 26:1113-9. [PMID: 25971921 DOI: 10.1021/acs.bioconjchem.5b00187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The metabolic instability and high kidney retention of minigastrin (MG) analogues hamper their suitability for use in peptide-receptor radionuclide therapy of CCK2/gastrin receptor-expressing tumors. High kidney retention has been related to N-terminal glutamic acids and can be substantially reduced by coinjection of polyglutamic acids or gelofusine. The aim of the present study was to investigate the influence of the stereochemistry of the N-terminal amino acid spacer on the enzymatic stability and pharmacokinetics of (111)In-DOTA-(d-Glu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ((111)In-PP11-D) and (111)In-DOTA-(l-Glu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ((111)In-PP11-L). Using circular dichroism measurements, we demonstrate the important role of secondary structure on the pharmacokinetics of the two MG analogues. The higher in vitro serum stability together with the improved tumor-to-kidney ratio of the (d-Glu)6 congener indicates that this MG analogue might be a good candidate for further clinical study.
Collapse
Affiliation(s)
- Petra Kolenc Peitl
- †Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloska cesta 7, SI-1000 Ljubljana, Slovenia
| | - MariaLuisa Tamma
- ‡Division of Radiological Chemistry, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Marko Kroselj
- †Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloska cesta 7, SI-1000 Ljubljana, Slovenia
| | - Friederike Braun
- §Department of Nuclear Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Beatrice Waser
- ∥Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Murtenstrasse 31, CH-3010 Berne, Switzerland
| | - Jean Claude Reubi
- ∥Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Murtenstrasse 31, CH-3010 Berne, Switzerland
| | - Marija Sollner Dolenc
- ⊥Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Helmut R Maecke
- ‡Division of Radiological Chemistry, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.,§Department of Nuclear Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Rosalba Mansi
- ‡Division of Radiological Chemistry, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.,§Department of Nuclear Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| |
Collapse
|
15
|
Ringhieri P, Diaferia C, Galdiero S, Palumbo R, Morelli G, Accardo A. Liposomal doxorubicin doubly functionalized with CCK8 and R8 peptide sequences for selective intracellular drug delivery. J Pept Sci 2015; 21:415-25. [PMID: 25754969 DOI: 10.1002/psc.2759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 01/09/2023]
Abstract
A new dual-ligand liposomal doxorubicin delivery system, which couples targeting to enhanced cellular uptake and may lead to a more efficient drug delivery system, is here designed and synthetized. Liposomes based on the composition 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-Peg2000-R8/(C18)2-L5-SS-CCK8 (87/8/5 mol/mol/mol) were prepared and loaded with doxorubicin. Presence of the two peptides on the external surface is demonstrated by fluorescence resonance energy transfer assay. The combination of the R8 cell-penetrating peptide and of the CCK8 targeting peptide (homing peptide) on the liposome surface is obtained by combining pre-modification and post-modification methods. In the dual-ligand system, the CCK8 peptide is anchored to the liposome surface by using a disulfide bond. This chemical function is inserted in order to promote the selective cleavage of the homing peptide under the reductive conditions expected in proximity of the tumor site, thus allowing targeting and internalization of the liposomal drug.
Collapse
Affiliation(s)
- Paola Ringhieri
- Department of Pharmacy and CIRPeB, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi - University of Naples 'Federico II', Via Mezzocannone 16, 80134, Naples, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Roosenburg S, Laverman P, Joosten L, Eek A, Rutjes FP, van Delft FL, Boerman OC. In Vitro and In Vivo Characterization of Three
68
Ga- and
111
In-Labeled Peptides for Cholecystokinin Receptor Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Susan Roosenburg
- From the Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, and Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Peter Laverman
- From the Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, and Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lieke Joosten
- From the Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, and Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Annemarie Eek
- From the Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, and Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Floris P.J.T. Rutjes
- From the Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, and Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Floris L. van Delft
- From the Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, and Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Otto C. Boerman
- From the Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, and Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Laverman P, Sosabowski JK, Boerman OC, Oyen WJG. Radiolabelled peptides for oncological diagnosis. Eur J Nucl Med Mol Imaging 2012; 39 Suppl 1:S78-92. [PMID: 22388627 PMCID: PMC3304069 DOI: 10.1007/s00259-011-2014-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The 111In-labelled somatostatin analogue octreotide (OctreoScan™) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours.
Collapse
Affiliation(s)
- Peter Laverman
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Fani M, Maecke HR. Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 2012; 39 Suppl 1:S11-30. [PMID: 22388624 DOI: 10.1007/s00259-011-2001-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as (99m)Tc, M(3+) radiometals ((111)In, (86/90)Y, (177)Lu, (67/68)Ga), (64/67)Cu, (18)F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin, bombesin, cholecystokinin/gastrin, GLP-1/exendin and RGD.
Collapse
Affiliation(s)
- Melpomeni Fani
- Department of Nuclear Medicine, University Hospital Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany.
| | | |
Collapse
|
19
|
Fani M, Maecke HR, Okarvi SM. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Am J Cancer Res 2012; 2:481-501. [PMID: 22737187 PMCID: PMC3364555 DOI: 10.7150/thno.4024] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/31/2012] [Indexed: 12/17/2022] Open
Abstract
Human cancer cells overexpress many peptide receptors as molecular targets. Radiolabeled peptides that bind with high affinity and specificity to the receptors on tumor cells hold great potential for both diagnostic imaging and targeted radionuclide therapy. The advantage of solid-phase peptide synthesis, the availability of different chelating agents and prosthetic groups and bioconjugation techniques permit the facile preparation of a wide variety of peptide-based targeting molecules with diverse biological and tumor targeting properties. Some of these peptides, including somatostatin, bombesin, vasoactive intestinal peptide, gastrin, neurotensin, exendin and RGD are currently under investigation. It is anticipated that in the near future many of these peptides may find applications in nuclear oncology. This article presents recent developments in the field of small peptides, and their applications in the diagnosis and treatment of cancer.
Collapse
|
20
|
Comparative biodistribution of 12 ¹¹¹In-labelled gastrin/CCK2 receptor-targeting peptides. Eur J Nucl Med Mol Imaging 2011; 38:1410-6. [PMID: 21461732 PMCID: PMC3127012 DOI: 10.1007/s00259-011-1806-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/15/2011] [Indexed: 10/25/2022]
Abstract
PURPOSE Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed and some have been tested in patients. Here we aimed to compare the in vivo tumour targeting properties of 12 (111)In-labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated gastrin/CCK2 receptor-binding peptides. METHODS Two CCK8-based peptides and ten gastrin-based peptide analogues were tested. All peptides were conjugated with DOTA and labelled with (111)In. Biodistribution studies were performed in mice with subcutaneous CCK2/gastrin receptor-expressing tumours and with receptor-negative tumours contralaterally. Biodistribution was studied by counting dissected tissues at 1 and 4 h after injection. RESULTS Both the CCK analogues displayed relatively low tumour uptake (approximately 2.5%ID/g) as compared to minigastrin analogues. Two linear minigastrin peptides (MG0 and sargastrin) displayed moderate tumour uptake at both 1 and 4 h after injection, but also very high kidney uptake (both higher than 48%ID/g). The linear MG11, lacking the penta-Glu sequence, showed lower tumour uptake and also low kidney uptake. Varying the N-terminal Glu residues in the minigastrin analogues led to improved tumour targeting properties, with PP-F11 displaying the optimal biodistribution. Besides the monomeric linear peptides, a cyclized peptide and a divalent peptide were tested. CONCLUSION Based on these studies, optimal peptides for peptide receptor radionuclide targeting of CCK2/gastrin receptor-expressing tumours were the linear minigastrin analogue with six D-Glu residues (PP-F11), the divalent analogue MGD5 and the cyclic peptide cyclo-MG1. These peptides combined high tumour uptake with low kidney retention, and may therefore be good candidates for future clinical studies.
Collapse
|
21
|
Correia JDG, Paulo A, Raposinho PD, Santos I. Radiometallated peptides for molecular imaging and targeted therapy. Dalton Trans 2011; 40:6144-67. [DOI: 10.1039/c0dt01599g] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Oliva A, Llabrés M, Fariña JB. Application of a validated stability-indicating chromatographic method to evaluate the reproducibility between batches of small peptides in solution. Anal Chim Acta 2010; 675:83-90. [DOI: 10.1016/j.aca.2010.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/09/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Alexis Oliva
- Departamento Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de La Laguna, 28200 La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
23
|
Roosenburg S, Laverman P, Joosten L, Eek A, Oyen WJG, de Jong M, Rutjes FPJT, van Delft FL, Boerman OC. Stabilized (111)in-labeled sCCK8 analogues for targeting CCK2-receptor positive tumors: synthesis and evaluation. Bioconjug Chem 2010; 21:663-70. [PMID: 20302291 DOI: 10.1021/bc900465y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radiolabeled cholecystokinin-8 (CCK8) peptide analogues can be used for peptide receptor radionuclide imaging and therapy for tumors expressing CCK2/gastrin receptors. Earlier findings indicated that sulfated CCK8 (sCCK8, Asp-Tyr(OSO(3)H)-Met-Gly-Trp-Met-Asp-Phe-NH(2)) may have better characteristics for peptide receptor radionuclide therapy (PRRT) than gastrin analogues. However, sCCK8 contains an easily hydrolyzable sulfated tyrosine residue and two methionine residues which are prone to oxidation. Here, we describe the synthesis of stabilized sCCK8 analogues, resistant to hydrolysis and oxidation. Hydrolytic stability was achieved by replacement of the Tyr(OSO(3)H) moiety by a robust isosteric sulfonate, Phe(p-CH(2)SO(3)H). Replacement of methionine by norleucine (Nle) or homopropargylglycine (HPG) avoided undesired oxidation side-reactions. The phenylalanine analogue Phe(p-CH(2)SO(3)H) of l-tyrosine, synthesized by a modification of known synthetic routes, was incorporated in three peptides: sCCK8[Phe(2)(p-CH(2)SO(3)H),Met(3,6)], sCCK8[Phe(2)(p-CH(2)SO(3)H),Nle(3,6)], and sCCK8[Phe(2)(p-CH(2)SO(3)H),HPG(3,6)]. All peptides were N-terminally conjugated with the macrocyclic chelator DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and radiolabeled with In-111. In vitro binding assays on CCK2R-expressing HEK293 cells revealed that all three peptides showed specific binding and receptor-mediated internalization, with binding affinity values (IC(50)) in the nanomolar range. In vitro oxidation studies demonstrated that peptides with Nle or HPG indeed were resistant to oxidation. In vivo targeting studies in mice with AR42J tumors showed that tumor uptake was highest for (111)In-DOTA-sCCK8 and (111)In-DOTA-sCCK8[Phe(2)(p-CH(2)SO(3)H),Nle(3,6)] (4.78 +/- 0.64 and 4.54 +/- 1.15%ID/g, respectively, 2 h p.i.). The peptide with the methionine residues replaced by norleucine ((111)In-DOTA-sCCK8[Phe(2)(p-CH(2)SO(3)H), Nle(3,6)]) showed promising in vivo characteristics and will be further investigated for radionuclide imaging and therapy of CCK2R-expressing tumors.
Collapse
Affiliation(s)
- Susan Roosenburg
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Roosenburg S, Laverman P, van Delft FL, Boerman OC. Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids 2010; 41:1049-58. [PMID: 20198494 PMCID: PMC3205271 DOI: 10.1007/s00726-010-0501-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/25/2010] [Indexed: 11/30/2022]
Abstract
Cholecystokinin (CCK) receptors are overexpressed in numerous human cancers, like medullary thyroid carcinomas, small cell lung cancers and stromal ovarian cancers. The specific receptor-binding property of the endogenous ligands for these receptors can be exploited by labeling peptides with a radionuclide and using these as carriers to guide the radioactivity to the tissues that express the receptors. In this way, tumors can be visualized using positron emission tomography and single photon emission computed tomography imaging. A variety of radiolabeled CCK/gastrin-related peptides has been synthesized and characterized for imaging. All peptides have the C-terminal CCK receptor-binding tetrapeptide sequence Trp-Met-Asp-Phe-NH2 in common or derivatives thereof. This review focuses on the development and application of radiolabeled CCK/gastrin peptides for radionuclide imaging and radionuclide therapy of tumors expressing CCK receptors. We discuss both preclinical studies as well as clinical studies with CCK and gastrin peptides.
Collapse
Affiliation(s)
- Susan Roosenburg
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Synthesis, characterization and in vitro evaluation of new oxorhenium- and oxotechnetium-CCK4 derivatives as molecular imaging agents for CCK2-receptor targeting. Eur J Med Chem 2010; 45:423-9. [DOI: 10.1016/j.ejmech.2009.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/18/2009] [Accepted: 09/23/2009] [Indexed: 11/19/2022]
|
26
|
von Guggenberg E, Sallegger W, Helbok A, Ocak M, King R, Mather SJ, Decristoforo C. Cyclic Minigastrin Analogues for Gastrin Receptor Scintigraphy with Technetium-99m: Preclinical Evaluation. J Med Chem 2009; 52:4786-93. [DOI: 10.1021/jm900400w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elisabeth von Guggenberg
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Werner Sallegger
- piCHEM Research and Development GmbH, Kahngasse 20, A-8045 Graz, Austria
| | - Anna Helbok
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Meltem Ocak
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Robert King
- Centre for Molecular Oncology and Imaging, Barts and the London School of Medicine, London, EC1M 6BQ, United Kingdom
| | - Stephen J. Mather
- Centre for Molecular Oncology and Imaging, Barts and the London School of Medicine, London, EC1M 6BQ, United Kingdom
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
27
|
Schottelius M, Wester HJ. Molecular imaging targeting peptide receptors. Methods 2009; 48:161-77. [DOI: 10.1016/j.ymeth.2009.03.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/11/2009] [Indexed: 02/08/2023] Open
|
28
|
Oliva A, Hidalgo M, Alvarez C, Llabrés M, Fariña JB. Evaluation of Cholecystokinin (CCK-8) Peptide Thermal Stability for Use as Radiopharmaceutical by Means Isothermal and Nonisothermal Approaches. Drug Dev Ind Pharm 2008; 32:947-53. [PMID: 16954107 DOI: 10.1080/03639040600599855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this research was to study the thermal stability of cholecystokinin octapeptide (CCK-8) in aqueous solution at pH 12 and ionic strength 0.01 M, which were kept as constants, by using isothermal and nonisothermal methods. The isothermal decomposition of CCK-8 was investigated as a function of temperature (40 degrees C to 70 degrees C). Nonisothermal stability studies were performed using a linear increasing temperature program. Two different nonisothermal studies were carried out at 0.25 degrees K and 0.5 degrees K per hour, and the temperature interval varied from 40 degrees C to 82 degrees C. The degradation of CCK-8 followed first-order kinetics, obeying the Arrhenius equation in the experimental temperature range. This indicated that the degradation mechanism of CCK-8 could be the equal within the temperature range studied. The nonisothermal approach resulted in activation energy (Ea) and shelf-life (t90%) values that agree well with those obtained by the isothermal method. The level of uncertainty in the estimates of t90% and Ea values is determined mainly by the extent of drug degradation and temperature change during the experiment. Therefore, nonisothermal experiments save time, labor and materials (i.e. the amount of drugs necessary to conduct the experiment) compared to the classic isothermal experiments, if they are performed using a suitable experimental design and a precise analytical method.
Collapse
Affiliation(s)
- A Oliva
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de La Laguna, 38200, La Laguna, Tenerife, Spain.
| | | | | | | | | |
Collapse
|
29
|
D'Andrea LD, Testa I, Panico M, Di Stasi R, Caracò C, Tarallo L, Arra C, Barbieri A, Romanelli A, Aloj L. In vivo and in vitro characterization of CCK8 bearing a histidine-based chelator labeled with 99mTc-tricarbonyl. Biopolymers 2008; 90:707-12. [DOI: 10.1002/bip.21041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Liu S, Kim YS, Hsieh WY, Gupta Sreerama S. Coligand effects on the solution stability, biodistribution and metabolism of the (99m)Tc-labeled cyclic RGDfK tetramer. Nucl Med Biol 2008; 35:111-21. [PMID: 18158950 PMCID: PMC2278016 DOI: 10.1016/j.nucmedbio.2007.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 08/17/2007] [Accepted: 08/30/2007] [Indexed: 11/25/2022]
Abstract
In this study, we present the evaluation of two new ternary ligand (99m)Tc complexes [(99m)Tc(HYNIC tetramer)(tricine)(L)] [L=isonicotinic acid (ISONIC) and 2,5-pyridinedicarboxylic acid (PDA)] as potential radiotracers for tumor imaging. Athymic nude mice bearing MDA-MB-435 human breast cancer xenografts were used to evaluate their biodistribution and metabolic properties. Solution stability data showed that [(99m)Tc(HYNIC tetramer)(tricine)(L)] (L=ISONIC and PDA) had significant decomposition (14% and 35%, respectively) at 6 h in the absence of excess ISONIC or PDA coligand. Biodistribution data clearly showed that [(99m)Tc(HYNIC tetramer)(tricine)(PDA)] had a much lower uptake in most organs of interest than [(99m)Tc(HYNIC tetramer)(tricine)(ISONIC)] during the 2-h study period. Results from metabolism studies revealed that approximately 50% of [(99m)Tc(HYNIC tetramer)(tricine)(ISONIC)] remained intact in fecal samples at 120 min postinjection, whereas only 10% of [(99m)Tc(HYNIC tetramer)(tricine)(PDA)] remained intact in fecal samples. The extent of metabolism correlated well with radiotracer solution stability. The results from this and our previous studies clearly demonstrated that coligands [trisodium triphenylphosphine-3,3',3''-trisulfonate (TPPTS), ISONIC and PDA] have a significant impact on the tumor uptake, excretion kinetics and metabolism of the (99m)Tc-labeled cyclic RGDfK tetramer. Among the three radiotracers evaluated in this tumor-bearing animal model, [(99m)Tc(HYNIC tetramer)(tricine)(TPPTS)] remained the best with respect to blood clearance, tumor uptake and target/background ratios.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
31
|
Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol 2007; 7:583-92. [PMID: 17997137 DOI: 10.1016/j.coph.2007.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/28/2007] [Indexed: 01/09/2023]
Abstract
Gastrin and cholecystokinin (CCK) are two of the oldest hormones and within the past 15 years there has been an exponential increase in knowledge of their pharmacology, cell biology, receptors (CCK1R and CCK2R), and roles in physiology and pathological conditions. Despite these advances there is no approved disease indication for CCK receptor antagonists and only a minor use of agonists. In this review, the important factors determining this slow therapeutic development are reviewed. To assess this it is necessary to briefly review what is known about the roles of CCK receptors (CCK1R and CCK2R) in normal human physiology, their role in pathologic conditions, the selectivity of available potent CCKR agonists/antagonists as well as to review their use in human conditions to date and the results. Despite extensive studies in animals and in humans, recent studies suggest that monotherapy with CCK1R agonists will not be effective in obesity, nor CCK2R antagonists in panic disorders or CCK2R antagonists to inhibit growth of pancreatic cancer. Areas that require more study include the use of CCK2R agonists for imaging tumors and radiotherapy, CCK2R antagonists in hypergastrinemic states especially with long-term PPI use and for potentiation of analgesia as well as use of CCK1R antagonists for a number of gastrointestinal disorders [motility disorders (irritable bowel syndrome, dyspepsia, and constipation) and pancreatitis (acute and chronic)].
Collapse
|
32
|
Laverman P, Roosenburg S, Gotthardt M, Park J, Oyen WJG, de Jong M, Hellmich MR, Rutjes FPJT, van Delft FL, Boerman OC. Targeting of a CCK(2) receptor splice variant with (111)In-labelled cholecystokinin-8 (CCK8) and (111)In-labelled minigastrin. Eur J Nucl Med Mol Imaging 2007; 35:386-92. [PMID: 17934729 DOI: 10.1007/s00259-007-0604-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 09/04/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE Radiolabelled cholecystokinin (CCK) and gastrin-derived peptides potentially can be used for peptide receptor radionuclide therapy (PRRT). Recently, a splice variant version of the CCK2R has been identified, designated CCK2i4svR. Constitutive expression of this receptor has been demonstrated in human colorectal cancer and in pancreatic cancer, but not in normal tissue. So far, it has never been shown whether radiolabelled peptides can target the CCK2i4svR in vivo. In this paper, we investigated the potential of sulfated (111)In-labelled DOTA-CCK8 (sCCK8), a pan-CCKR-binding peptide, and [(111)In]DOTA-minigastrin (MG0), a CCK2R selective peptide, for the targeting of the CCK2i4svR. MATERIALS AND METHODS The receptor binding affinity of [(111)In]DOTA-sCCK8 and [(111)In]DOTA-MG0 for the CCK2R and CCK2i4svR was determined using stably transfected HEK293 cell lines, expressing either CCK2R or CCK2i4svR. Tumour targeting was studied in HEK293-CCK2i4svR tumour-bearing athymic mice. RESULTS [(111)In]DOTA-sCCK8 as well as [(111)In]DOTA-MG0 specifically bound both CCK2R and CCK2i4svR with affinities in the low nanomolar range. In vivo experiments revealed that accumulation of both peptides in CCK2i4svR-positive tumours was similar (3.21 +/- 0.77 and 3.01 +/- 0.67%ID/g, sCCK8 and MG0, respectively, 24 h p.i.). Kidney retention of [(111)In]DOTA-MG0 (32.4 +/- 7.5%ID/g, 24 h p.i.) was markedly higher than that of [(111)In]DOTA-sCCK8 (2.75 +/- 0.31%ID/g, 24 h p.i.). CONCLUSION We demonstrated that the CCK2i4svR is a potential target for PRRT using a radiolabelled sulfated CCK8 peptide. As this receptor is expressed on colorectal and pancreatic tumours, but not in normal tissue, these tumours are potentially new targets for PRRT with CCK8 and gastrin analogs.
Collapse
Affiliation(s)
- Peter Laverman
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Okarvi SM. Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat Rev 2007; 34:13-26. [PMID: 17870245 DOI: 10.1016/j.ctrv.2007.07.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/28/2007] [Accepted: 07/25/2007] [Indexed: 02/08/2023]
Abstract
A hope for the diagnosis and treatment of cancer is the development of new tumor-specific peptide-based radiopharmaceuticals. The overexpression of many peptide receptors on human tumors makes such receptors an attractive potential target for diagnostic imaging and radiotherapy with specifically designed radiolabeled peptides. The use of solid-phase peptide synthesis, and the availability of a wide range of bifunctional chelating agents for the convenient radiolabeling of bioactive peptides with different radionuclides have produced a wide variety of medicinally useful peptide radiopharmaceuticals. A few of these peptides, such as somatostatin, bombesin, cholecystokinin/gastrin, neurotensin and vasoactive intestinal peptide are currently under investigation for their possible clinical applications in nuclear oncology. This article presents the recent development in radiolabeled small peptides, with major emphasis on somatostatin and bombesin analogs.
Collapse
Affiliation(s)
- S M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
34
|
von Guggenberg E, Dietrich H, Skvortsova I, Gabriel M, Virgolini IJ, Decristoforo C. 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. Eur J Nucl Med Mol Imaging 2007; 34:1209-18. [PMID: 17308920 DOI: 10.1007/s00259-006-0348-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Different attempts have been made to develop a suitable radioligand for targeting CCK-2 receptors in vivo, for staging of medullary thyroid carcinoma (MTC) and other receptor-expressing tumours. After initial successful clinical studies with [DTPA(0),D: Glu(1)]minigastrin (DTPA-MG0) radiolabelled with (111)In and (90)Y, our group developed a (99m)Tc-labelled radioligand, based on HYNIC-MG0. A major drawback observed with these derivatives is their high uptake by the kidneys. In this study we describe the preclinical evaluation of the optimised shortened peptide analogue, [HYNIC(0),D: Glu(1),desGlu(2-6)]minigastrin (HYNIC-MG11). METHODS (99m)Tc labelling of HYNIC-MG11 was performed using tricine and EDDA as coligands. Stability experiments were carried out by reversed phase HPLC analysis in PBS, PBS/cysteine and plasma as well as rat liver and kidney homogenates. Receptor binding and cell uptake experiments were performed using AR4-2J rat pancreatic tumour cells. Animal biodistribution was studied in AR4-2J tumour-bearing nude mice. RESULTS Radiolabelling was performed at high specific activities and radiochemical purity was >90%. (99m)Tc-EDDA-HYNIC-MG11 showed high affinity for the CCK-2 receptor and cell internalisation comparable to that of (99m)Tc-EDDA-HYNIC-MG0. Despite high stability in solution, a low metabolic stability in rat tissue homogenates was found. In a nude mouse tumour model, very low unspecific retention in most organs, rapid renal excretion with reduced renal retention and high tumour uptake were observed. CONCLUSION (99m)Tc-EDDA-HYNIC-MG11 shows advantages over (99m)Tc-EDDA-HYNIC-MG0 in terms of lower kidney retention with unchanged uptake in tumours and CCK-2 receptor-positive tissue. However, the lower metabolic stability and impurities formed in the labelling process still leave room for further improvement.
Collapse
Affiliation(s)
- E von Guggenberg
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
35
|
Agostini S, Bolzati C, Didonè E, Cavazza-Ceccato M, Refosco F, Aloj L, Arra C, Aurilio M, Tornesello AL, Tesauro D, Morelli G. The [Tc(N)(PNP)]2+ metal fragment labeled cholecystokinin-8 (CCK8) peptide for CCK-2 receptors imaging:in vitro andin vivo studies. J Pept Sci 2007; 13:211-9. [PMID: 17269133 DOI: 10.1002/psc.834] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The radiolabeling of the natural octapeptide CCK8, derivatized with a cysteine residue (Cys-Gly-CCK8), by using the metal fragment [99mTc(N)(PNP3)]2+ (PNP3 = N,N-bis(dimethoxypropylphosphinoethyl)methoxyethylamine) is reported. The [99mTc(N)(NS-Cys-Gly-CCK8)(PNP3)]+ complex was obtained according to two methods (one-step or two-step procedure) that gave the desired compound in high yield. The complex is stable in aqueous solution and in phosphate buffer. In vitro challenge experiments with an excess of cysteine and glutathione indicate that no transchelation reactions occur, confirming the high thermodynamic stability and kinetic inertness of this compound. Stability studies carried out in human and mouse serum, as well as in mouse liver homogenates, show that the radiolabeled compound remains intact for prolonged incubation at 37 degrees C. Binding properties give Kd (19.0 +/- 4.6 nmol/l) and Bmax (approximately 10(6) sites/cell) values in A431 cells overexpressing the CCK2-R. In vivo evaluation of the compound shows rapid and specific targeting to CCK2-R, a fourfold higher accumulation compared to nonreceptor expressing tumors.
Collapse
Affiliation(s)
- Stefania Agostini
- Department of Pharmaceutical Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
37
|
Jeong JM, Lee J, Paik CH, Kim DK, Lee DS, Chung JK, Lee MC. Site-specific 99mTc-labeling of antibody using dihydrazinophthalazine (DHZ) conjugation to Fc region of heavy chain. Arch Pharm Res 2005; 27:961-7. [PMID: 15473668 DOI: 10.1007/bf02975851] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development of an antibody labeling method with 99mTc is important for cancer imaging. Most bifunctional chelate methods for 99mTc labeling of antibody incorporate a 99mTc chelator through a linkage to lysine residue. In the present study, a novel site-specific 99mTc labeling method at carbohydrate side chain in the Fc region of 2 antibodies (T101 and rabbit anti-human serum albumin antibody (RPAb)) using dihydrazinophthalazine (DHZ) which has 2 hydrazino groups was developed. The antibodies were oxidized with sodium periodate to produce aldehyde on the Fc region. Then, one hydrazine group of DHZ was conjugated with an aldehyde group of antibody through the formation of a hydrazone. The other hydrazine group was used for labeling with 99mTc. The number of conjugated DHZ was 1.7 per antibody. 99mTc labeling efficiency was 46-85% for T101 and 67-87% for RPAb. Indirect labeling with DHZ conjugated antibodies showed higher stability than direct labeling with reduced antibodies. High immunoreactivities were conserved for both indirectly and directly labeled antibodies. A biodistribution study found high blood activity related to directly labeled T101 at early time point as well as low liver activity due to indirectly labeled T101 at later time point. However, these findings do not affect practical use. No significantly different biodistribution was observed in the other organs. The research concluded that DHZ can be used as a site-specific bifunctional chelating agent for labeling antibody with 99mTc. Moreover, 99mTc labeled antibody via DHZ was found to have excellent chemical and biological properties for nuclear medicine imaging.
Collapse
Affiliation(s)
- Jae Min Jeong
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea.
| | | | | | | | | | | | | |
Collapse
|