1
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
2
|
A "Dock and Lock" Approach to Preparation of Targeted Liposomes. Methods Mol Biol 2016. [PMID: 27837532 DOI: 10.1007/978-1-4939-6591-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We developed a strategy for covalent coupling of targeting proteins to liposomes decorated with a standard adapter protein. This strategy is based on "dock and lock" interactions between two mutated fragments of human RNase I, a 1-15 aa fragment with the R4C amino acid substitution (Cys-tag), and a 21-127-aa fragment with the V118C substitution, (Ad-C). Upon binding to each other, Cys-tag and Ad-C spontaneously form a disulfide bond between the complementary 4C and 118C residues. Therefore, any targeting protein expressed with Cys-tag can be easily coupled to liposomes decorated with Ad-C. Here we describe the preparation of Ad-liposomes followed by coupling them to two Cys-tagged targeted proteins, human vascular endothelial growth factor expressed with N-terminal Cys-tag and a 254-aa long N-terminal fragment of anthrax lethal factor carrying C-terminal Cys-tag. Both proteins retain functional activity after coupling to Ad-C-decorated drug-loaded liposomes. We expect that our "dock and lock" strategy will open new opportunities for development of targeted therapeutic liposomes for research and clinical use.
Collapse
|
3
|
Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget 2016; 7:48753-48787. [PMID: 27145373 PMCID: PMC5217050 DOI: 10.18632/oncotarget.9066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/10/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.
Collapse
Affiliation(s)
- Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Umberto Veronesi Foundation, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Tecnomed Foundation, University of Milan-Bicocca, Monza, Italy
| | - Giovanni Lucignani
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Institute for Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
4
|
Liu HY, Zrazhevskiy P, Gao X. Solid-phase bioconjugation of heterobifunctional adaptors for versatile assembly of bispecific targeting ligands. Bioconjug Chem 2014; 25:1511-6. [PMID: 25010411 PMCID: PMC4140535 DOI: 10.1021/bc5002455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
High-throughput generation of bispecific
molecules promises to
expedite the discovery of new molecular therapeutics and guide engineering
of novel multifunctional constructs. However, high synthesis complexity
and cost have hampered the discovery of bispecific molecules in drug
development and biomedical research. Herein we describe a simple solid-phase
bioconjugation procedure for preparation of Protein A(G,L)-PEG-Streptavidin
heterobifunctional adaptors (with 1:1:1 stoichiometry), which enable
self-assembly of unmodified antibodies and biotinylated molecules
into bispecific targeting ligands in a versatile mix-and-use manner.
Utility of such adaptors is demonstrated by assembly of anti-CD3 and
anti-Her2 antibodies into bispecific CD3xHer2 targeting ligands, which
efficiently drive T-cell-mediated lysis of Her2-positive cancer cells.
In comparison to bioconjugation in solution, the solid-phase procedure
described here offers precise stoichiometry control, ease of purification,
and high yield of functional conjugates. Simplicity and versatility
should prove this methodology instrumental for preparation of bispecific
ligands, as well as for high-throughput screening of bispecific combinations,
before proceeding to synthesis of lead candidates via recombinant
engineering or chemical cross-linking.
Collapse
Affiliation(s)
- Hong Yan Liu
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | | | | |
Collapse
|
5
|
Abstract
Non-invasive optical imaging techniques, such as fluorescence imaging (FI) or bioluminescence imaging (BLI) have emerged as important tools in biomedical research. As demonstrated in different animal disease models, they enable visualization of physiological and pathophysiological processes at the cellular and molecular level in vivo with high specificity. Optical techniques are easy to use, fast, and affordable. Furthermore, they are characterized by their high sensitivity. In FI, very low amounts of the imaging agent (nano- to femtomol or even less) can be detected. Due to the absorption and scattering of light in tissue, optical techniques exhibit a comparably low spatial resolution in the millimeter range and a depth limit of a few centimeters. However, non-invasive imaging of biological processes in small animals and in outer or inner surfaces as well as during surgery even in humans is feasible. Currently two agents for fluorescence imaging are clinically approved, namely indocyanine green (ICG) and 5-aminolevulinic acid (5-ALA). In the past years, a number of new optical imaging agents for FI and reporter systems for BLI have been developed and successfully tested in animal models. Some of the FI agents might promise the application in clinical oncology. In this chapter, we describe the basic principles of non-invasive optical imaging techniques, give examples for the visualization of biological processes in animal models of cancer, and discuss potential clinical applications in oncology.
Collapse
|
6
|
Rossi EA, Goldenberg DM, Chang CH. Complex and defined biostructures with the dock-and-lock method. Trends Pharmacol Sci 2012; 33:474-81. [DOI: 10.1016/j.tips.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/24/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
|
7
|
Rossi EA, Goldenberg DM, Chang CH. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23:309-23. [PMID: 22168393 DOI: 10.1021/bc2004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in recombinant protein technology have facilitated the production of increasingly complex fusion proteins with multivalent, multifunctional designs for use in various in vitro and in vivo applications. In addition, traditional chemical conjugation remains a primary choice for linking proteins with polyethylene glycol (PEG), biotin, fluorescent markers, drugs, and others. More recently, site-specific conjugation of two or more interactive modules has emerged as a valid approach to expand the existing repertoires produced by either recombinant engineering or chemical conjugation alone, thus advancing the range of potential applications. Five such methods, each involving a specific binding event, are highlighted in this review, with a particular focus on the Dock-and-Lock (DNL) method, which exploits the natural interaction between the dimerization and docking domain (DDD) of cAMP-dependent protein kinase (PKA) and the anchoring domain (AD) of A-kinase anchoring proteins (AKAP). The various enablements of DNL to date include trivalent, tetravalent, pentavalent, and hexavalent antibodies of monospecificity or bispecificity; immnocytokines comprising multiple copies of interferon-alpha (IFNα); and site-specific PEGylation. These achievements attest to the power of the DNL platform technology to develop novel therapeutic and diagnostic agents from both proteins and nonproteins for unmet medical needs.
Collapse
Affiliation(s)
- Edmund A Rossi
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, USA.
| | | | | |
Collapse
|
8
|
Poh CK, Shi Z, Tan XW, Liang ZC, Foo XM, Tan HC, Neoh KG, Wang W. Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth. J Orthop Res 2011; 29:1424-30. [PMID: 21445991 DOI: 10.1002/jor.21409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/24/2011] [Indexed: 02/04/2023]
Abstract
Cobalt chromium (CoCr) alloys are widely used in orthopedic practice, however, lack of integration into the bone for long-term survival often occurs, leading to implant failure. Revision surgery to address such a failure involves increased risks, complications, and costs. Advances to enhancement of bone-implant interactions would improve implant longevity and long-term results. Therefore, we investigated the effects of BMP peptide covalently grafted to CoCr alloy on osteogenesis. The BMP peptide was derived from the knuckle epitope of bone morphogenic protein-2 (BMP-2) and was conjugated via a cysteine amino acid at the N-terminus. X-ray photoelectron spectroscopy and o-phthaldialdehyde were used to verify successful grafting at various stages of surface functionalization. Surface topography was evaluated from the surface profile determined by atomic force microscopy. Osteoblastic cells (MC3T3-E1) were seeded on the substrates, and the effects of BMP peptide on osteogenic differentiation were evaluated by measuring alkaline phosphatase (ALP) activity and calcium mineral deposition. The functionalized surfaces showed a twofold increase in ALP activity after 2 weeks incubation and a fourfold increase in calcium content after 3 weeks incubation compared to the pristine substrate. These findings are potentially useful in the development of improved CoCr implants for use in orthopedic applications.
Collapse
Affiliation(s)
- Chye Khoon Poh
- Department of Orthopaedic Surgery, National University of Singapore, Kent Ridge, Singapore 119074, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The S-peptide and S-protein components of bovine pancreatic ribonuclease form a noncovalent complex with restored ribonucleolytic activity. Although this archetypal protein-fragment complementation system has been the object of historic work in protein chemistry, intrinsic limitations compromise its utility. Modern methods are shown to overcome those limitations and enable new applications.
Collapse
Affiliation(s)
- Rex W Watkins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | |
Collapse
|
10
|
Bai M, Achilefu S. Synthesis and spectroscopy of near infrared fluorescent dyes for investigating dichromic fluorescence. Bioorg Med Chem Lett 2010; 21:280-4. [PMID: 21106373 DOI: 10.1016/j.bmcl.2010.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/30/2010] [Accepted: 11/02/2010] [Indexed: 11/24/2022]
Abstract
We developed a series of near infrared (NIR) cyanine dyes to study dichromic fluorescence phenomenon, which provides new protocols for in vivo optical imaging. Preliminary spectroscopic studies show that dichromic fluorescence correlates with structural symmetry. This feature suggests the potential use of dichromic fluorescent molecules to study biological processes that can alter the structural symmetry of the molecular probes.
Collapse
Affiliation(s)
- Mingfeng Bai
- Department of Radiology, Washington University, 4525 Scott Avenue, St Louis, MO 63110, United States
| | | |
Collapse
|
11
|
Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 2010; 11:1000-17. [PMID: 20426765 DOI: 10.2174/138945010791591395] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 04/14/2010] [Indexed: 12/12/2022]
Abstract
New blood vessel formation (angiogenesis) is fundamental to tumor growth, invasion, and metastatic dissemination. The vascular endothelial growth factor (VEGF) signaling pathway plays pivotal roles in regulating tumor angiogenesis. VEGF as a therapeutic target has been validated in various types of human cancers. Different agents including antibodies, aptamers, peptides, and small molecules have been extensively investigated to block VEGF and its pro-angiogenic functions. Some of these agents have been approved by FDA and some are currently in clinical trials. Combination therapies are also being pursued for better tumor control. By providing comprehensive real-time information, molecular imaging of VEGF pathway may accelerate the drug development process. Moreover, the imaging will be of great help for patient stratification and therapeutic effect monitoring, which will promote effective personalized molecular cancer therapy. This review summarizes the current status of tumor therapeutic agents targeting to VEGF and the applications of VEGF related molecular imaging.
Collapse
Affiliation(s)
- Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, 9 Memorial Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
12
|
Abstract
We developed a strategy for covalent coupling of targeting proteins to liposomes decorated with a standard adapter protein. This strategy is based on "dock and lock" the interactions between two mutated fragments of human RNase I, a 1-15-aa fragment with the R4C amino acid substitution, (Cys-tag), and a 21-127-aa fragment with the V118C substitution, (Ad-C). Upon binding to each other, Cys-tag and Ad-C spontaneously form a disulfide bond between the complimentary 4C and 118C residues. Therefore, any targeting protein expressed with Cys-tag can be easily coupled to liposomes decorated with Ad-C. Here, we describe the preparation of Ad-liposomes followed by coupling them to two Cys-tagged targeted proteins, human vascular endothelial growth factor expressed with N-terminal Cys-tag, and a 254-aa long N-terminal fragment of anthrax lethal factor carrying C-terminal Cys-tag. Both proteins retain functional activity after coupling to Ad-C-decorated drug-loaded liposomes. We expect that our "dock and lock" strategy will open new opportunities for development of targeted therapeutic liposomes for research and clinical use.
Collapse
|
13
|
Valadon P, Darsow B, Buss TN, Czarny M, Griffin NM, Nguyen HN, Oh P, Borgstrom P, Chrastina A, Schnitzer JE. Designed auto-assembly of nanostreptabodies for rapid tissue-specific targeting in vivo. J Biol Chem 2009; 285:713-22. [PMID: 19850928 DOI: 10.1074/jbc.m109.061838] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular medicine can benefit greatly from antibodies that deliver therapeutic and imaging agents to select organs and diseased tissues. Yet the development of complex and defined composite nanostructures remains a challenge that requires both designed stoichiometric assembly and superior in vivo testing ability. Here, we generate nanostructures called nanostreptabodies by controlled sequential assembly of biotin-engineered antibody fragments on a streptavidin scaffold with a defined capacity for additional biotinylated payloads such as other antibodies to create bispecific antibodies as well as organic and non-organic moieties. When injected intravenously, these novel and stable nanostructures exhibit exquisite targeting with tissue-specific imaging and delivery, including rapid transendothelial transport that enhances tissue penetration. This "tinkertoy construction" strategy provides a very flexible and efficient way to link targeting vectors with reporter and/or effector agents, thereby providing virtually endless combinations potentially useful for multipurpose molecular and functional imaging in vivo as well as therapies.
Collapse
Affiliation(s)
- Philippe Valadon
- Proteogenomics Research Institute for Systems Medicine, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Usui K, Maki T, Ito F, Suenaga A, Kidoaki S, Itoh M, Taiji M, Matsuda T, Hayashizaki Y, Suzuki H. Nanoscale elongating control of the self-assembled protein filament with the cysteine-introduced building blocks. Protein Sci 2009; 18:960-9. [PMID: 19384998 DOI: 10.1002/pro.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Self-assembly of artificially designed proteins is extremely desirable for nanomaterials. Here we show a novel strategy for the creation of self-assembling proteins, named "Nanolego." Nanolego consists of "structural elements" of a structurally stable symmetrical homo-oligomeric protein and "binding elements," which are multiple heterointeraction proteins with relatively weak affinity. We have established two key technologies for Nanolego, a stabilization method and a method for terminating the self-assembly process. The stabilization method is mediated by disulfide bonds between Cysteine-residues incorporated into the binding elements, and the termination method uses "capping Nanolegos," in which some of the binding elements in the Nanolego are absent for the self-assembled ends. With these technologies, we successfully constructed timing-controlled and size-regulated filament-shape complexes via Nanolego self-assembly. The Nanolego concept and these technologies should pave the way for regulated nanoarchitecture using designed proteins.
Collapse
Affiliation(s)
- Kengo Usui
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Anderson SM, Chen TT, Iruela-Arispe ML, Segura T. The phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) by engineered surfaces with electrostatically or covalently immobilized VEGF. Biomaterials 2009; 30:4618-28. [PMID: 19540581 DOI: 10.1016/j.biomaterials.2009.05.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Growth factors are a class of signaling proteins that direct cell fate through interaction with cell-surface receptors. Although a myriad of possible cell fates stems from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor--soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature.
Collapse
Affiliation(s)
- Sean M Anderson
- University of California, Los Angeles, Chemical and Biomolecular Engineering Department, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
16
|
Wang H, Chen K, Niu G, Chen X. Site-specifically biotinylated VEGF(121) for near-infrared fluorescence imaging of tumor angiogenesis. Mol Pharm 2009; 6:285-94. [PMID: 19099493 DOI: 10.1021/mp800185h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway is considered to be one of the most important regulators of angiogenesis and a key target in anticancer treatment. Imaging VEGFR expression can serve as a new paradigm for assessing the efficacy of antiangiogenic cancer therapy, improving cancer management, and elucidating the role and modulation of VEGF/VEGFR signaling during cancer development and intervention. In this study we developed an Avi-tagged VEGF(121) protein, which is site-specifically biotinylated in the presence of bacterial BirA biotin ligase. BirA biotinylated VEGF(121)-Avi (VEGF(121)-Avib) forms a stable complex with streptavidin-IRDye800 (SA800) that retains high affinity for VEGFR in vitro and allows receptor specific targeting in vivo in a 67NR murine xenograft model. In contrast, chemical coupling of IRDye800 abrogated the VEGFR binding ability of the modified protein both in vitro and in vivo. The VEGF(121)-Avib/SA800 complex (VEGF-Avib/SA800) may be used for quantitative and repetitive near-infrared fluorescence imaging of VEGFR expression and translated into clinic for evaluating cancer and other angiogenesis related diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305-5484, USA
| | | | | | | |
Collapse
|
17
|
Chen K, Cai W, Li ZB, Wang H, Chen X. Quantitative PET Imaging of VEGF Receptor Expression. Mol Imaging Biol 2008; 11:15-22. [DOI: 10.1007/s11307-008-0172-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/25/2008] [Accepted: 06/13/2008] [Indexed: 12/25/2022]
|
18
|
Abstract
Molecular imaging is a key component of 21st-century cancer management. The vascular endothelial growth factor (VEGF)/VEGF receptor signaling pathway and integrin alpha v beta 3, a cell adhesion molecule, play pivotal roles in regulating tumor angiogenesis, the growth of new blood vessels. This review summarizes the current status of tumor angiogenesis imaging with SPECT, PET, molecular MRI, targeted ultrasound, and optical techniques. For integrin alpha v beta 3 imaging, only nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are discussed. Once improvements in the in vivo stability, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made, translation to clinical applications will be critical for the maximum benefit of these novel agents. The future of tumor angiogenesis imaging lies in multimodality and nanoparticle-based approaches, imaging of protein-protein interactions, and quantitative molecular imaging. Combinations of multiple modalities can yield complementary information and offer synergistic advantages over any modality alone. Nanoparticles, possessing multifunctionality and enormous flexibility, can allow for the integration of therapeutic components, targeting ligands, and multimodality imaging labels into one entity, termed "nanomedicine," for which the ideal target is tumor neovasculature. Quantitative imaging of tumor angiogenesis and protein-protein interactions that modulate angiogenesis will lead to more robust and effective monitoring of personalized molecular cancer therapy. Multidisciplinary approaches and cooperative efforts from many individuals, institutions, industries, and organizations are needed to quickly translate multimodality tumor angiogenesis imaging into multiple facets of cancer management. Not limited to cancer, these novel agents can also have broad applications for many other angiogenesis-related diseases.
Collapse
Affiliation(s)
- Weibo Cai
- Department of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792-3252, USA.
| | | |
Collapse
|
19
|
Levashova Z, Backer M, Backer JM, Blankenberg FG. Direct Site-Specific Labeling of the Cys-Tag Moiety in scVEGF with Technetium 99m. Bioconjug Chem 2008; 19:1049-54. [DOI: 10.1021/bc7004818] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zoia Levashova
- Department of Radiology/MIPS, Stanford University School of Medicine, Stanford, California 94305, and Sibtech, Inc., Brookfield, Connecticut 06804
| | - Marina Backer
- Department of Radiology/MIPS, Stanford University School of Medicine, Stanford, California 94305, and Sibtech, Inc., Brookfield, Connecticut 06804
| | - Joseph M. Backer
- Department of Radiology/MIPS, Stanford University School of Medicine, Stanford, California 94305, and Sibtech, Inc., Brookfield, Connecticut 06804
| | - Francis G. Blankenberg
- Department of Radiology/MIPS, Stanford University School of Medicine, Stanford, California 94305, and Sibtech, Inc., Brookfield, Connecticut 06804
| |
Collapse
|
20
|
Lee SY, Youn JY, Kim BS, Cho YH, Kim MS, Khang G, Lee HB. Quantum dots-modified gradient polymer surface. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2007.04.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Abstract
Cancer, with more than 10 million new cases a year worldwide, is the third leading cause of death in developed countries. One critical requirement during cancer progression is angiogenesis, the formation of new blood vessels. Structural and functional imaging of tumor vasculature has been studied using various imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound. Molecular imaging, a key component of the 21st-century cancer-patient management strategy, takes advantage of these traditional imaging techniques and introduces molecular probes to determine the expression of indicative molecular markers at different stages of cancer development. In this chapter, we will focus on two tumor vasculature-related targets: integrin alpha(v)beta(3) and vascular endothelial growth factor receptor (VEGFR). For imaging of integrin alpha(v)beta(3) on the tumor vasculature, only nanoparticle-based probes will be discussed. VEGFR imaging will be discussed in depth, and we will give a detailed example of positron emission tomography (PET) imaging of VEGFR expression using radio-labeled VEGF(121) protein. Future clinical translation will be critical for maximum patient benefit from these agents. To achieve this goal, multidisciplinary approaches and cooperative efforts from many individuals, institutions, industries, and organizations are needed to quickly translate multimodality tumor vasculature imaging into multiple facets of cancer patient management.
Collapse
Affiliation(s)
- Weibo Cai
- Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
22
|
Kiick KL. Peptide- and protein-mediated assembly of heparinized hydrogels. SOFT MATTER 2008; 4:29-37. [PMID: 19960073 PMCID: PMC2787454 DOI: 10.1039/b711319f] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polymeric hydrogels have demonstrated significant promise in biomedical applications such as drug delivery and tissue engineering. A continued direction in hydrogel development includes the engineering of the biological responsiveness of these materials, via the inclusion of cell-binding domains and enzyme-sensitive domains. Ligand-receptor interactions offer additional opportunities in the design of responsive hydrogels, and strategies employing protein- polysaccharide interactions as a target may have unique relevance to materials intended to mimic the extracellular matrix (ECM). Accordingly, we have developed approaches for producing hydrogels via noncovalent interactions between heparin and heparin-binding peptides/proteins, and have demonstrated that such matrices are capable of both passive and receptor-mediated growth factor delivery. Further modification of these materials via the integration of these noncovalent strategies with chemical crosslinking methods will expand the range of their potential use and is under exploration. The combination of these approaches offers broad opportunities for the production of responsive matrices for biomedical applications.
Collapse
Affiliation(s)
- Kristi L Kiick
- University of Delaware, Department of Materials Science & Engineering, 201 DuPont Hall, Newark, DE 19716 and the Delaware Biotechnology Institute, 15 Innovation Way, Newark DE 19711, USA
| |
Collapse
|
23
|
Backer MV, Levashova Z, Levenson R, Blankenberg FG, Backer JM. Cysteine-containing fusion tag for site-specific conjugation of therapeutic and imaging agents to targeting proteins. Methods Mol Biol 2008; 494:275-294. [PMID: 18726580 DOI: 10.1007/978-1-59745-419-3_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Targeted delivery of therapeutic and imaging agents requires conjugation of a corresponding payload to a targeting peptide or protein. The ideal procedure should yield a uniform preparation of functionally active conjugates and be translatable for development of clinical products. We describe here our experience with site-specific protein modification via a novel cysteine-containing fusion tag (Cys-tag), which is a 15-amino-acid (aa) N-terminal fragment of human ribonuclease I with the R4C substitution. Several Cys-tagged proteins and peptides with different numbers of native cysteines were expressed and refolded into functionally active conformation, indicating that the tag does not interfere with the formation of internal disulfide bonds. We also describe standardized procedures for site-specific conjugation of very different payloads, such as functionalized lipids and liposomes, radionuclide chelators and radionuclides, fluorescent dyes, drug-derivatized dendrimers, scaffold proteins, biotin, and polyethyleneglycol to Cys-tagged peptides and proteins, as well as present examples of functional activity of targeted conjugates in vitro and in vivo. We expect that Cys-tag would provide new opportunities for development of targeted therapeutic and imaging agents for research and clinical use.
Collapse
|
24
|
Chang CH, Rossi EA, Goldenberg DM. The dock and lock method: a novel platform technology for building multivalent, multifunctional structures of defined composition with retained bioactivity. Clin Cancer Res 2007; 13:5586s-5591s. [PMID: 17875793 DOI: 10.1158/1078-0432.ccr-07-1217] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea, approach, and proof-of-concept of the dock and lock (DNL) method, which has the potential for making a large number of bioactive molecules with multivalency and multifunctionality, are reviewed. The key to the DNL method seems to be the judicious application of a pair of distinct protein domains that are involved in the natural association between protein kinase A (PKA; cyclic AMP-dependent protein kinase) and A-kinase anchoring proteins. In essence, the dimerization and docking domain found in the regulatory subunit of PKA and the anchoring domain of an interactive A-kinase anchoring protein are each attached to a biological entity, and the resulting derivatives, when combined, readily form a stably tethered complex of a defined composition that fully retains the functions of individual constituents. Initial validation of the DNL method was provided by the successful generation of several trivalent bispecific binding proteins, each consisting of two identical Fab fragments linked site-specifically to a different Fab. The integration of genetic engineering and conjugation chemistry achieved with the DNL method may not only enable the creation of novel human therapeutics but could also provide the promise and challenge for the construction of improved recombinant products over those currently commercialized, including cytokines, vaccines, and monoclonal antibodies.
Collapse
|
25
|
Yamaguchi N, Zhang L, Chae BS, Palla CS, Furst EM, Kiick KL. Growth factor mediated assembly of cell receptor-responsive hydrogels. J Am Chem Soc 2007; 129:3040-1. [PMID: 17315874 PMCID: PMC2606044 DOI: 10.1021/ja0680358] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nori Yamaguchi
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Backer MV, Patel V, Jehning BT, Claffey KP, Karginov VA, Backer JM. Inhibition of anthrax protective antigen outside and inside the cell. Antimicrob Agents Chemother 2007; 51:245-51. [PMID: 17074791 PMCID: PMC1797656 DOI: 10.1128/aac.00983-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 08/26/2006] [Accepted: 10/16/2006] [Indexed: 11/20/2022] Open
Abstract
In the course of Bacillus anthracis infection, B. anthracis lethal factor (LF) and edema factor bind to a protective antigen (PA) associated with cellular receptors ANTXR1 (TEM8) or ANTXR2 (CMG2), followed by internalization of the complex via receptor-mediated endocytosis. A new group of potential antianthrax drugs, beta-cyclodextrins, has recently been described. A member of this group, per-6-(3-aminopropylthio)-beta-cyclodextrin (AmPrbetaCD), was shown to inhibit the toxicity of LF in vitro and in vivo. In order to determine which steps in lethal factor trafficking are inhibited by AmPrbetaCD, we developed two targeted fluorescent tracers based on LFn, a catalytically inactive fragment of LF: (i) LFn site specifically labeled with the fluorescent dye AlexaFluor-594 (LFn-Al), and (ii) LFn-decorated liposomes loaded with the fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonic acid (LFn-Lip). Both tracers retained high affinity to PA/ANTXR complexes and were readily internalized via receptor-mediated endocytosis. Using fluorescent microscopy, we found that AmPrbetaCD inhibits receptor-mediated cell uptake but not the binding of LFn-Al to PA/ANTXR complexes, suggesting that AmPrbetaCD works outside the cell. Moreover, AmPrbetaCD and LFn-Al synergistically protect RAW 264.7 cells from PA-mediated LF toxicity, confirming that AmPrbetaCD did not affect the binding of LFn-Al to receptor-associated PA. In contrast, AmPrbetaCD did not inhibit PA-mediated internalization of LFn-Lip, suggesting that multiplexing of LFn on the liposomal surface overcomes the inhibiting effects of AmPrbetaCD. Notably, internalized LFn-Al and LFn-Lip protected cells that overexpressed anthrax receptor TEM8 from PA-induced, LF-independent toxicity, suggesting an independent mechanism for PA inhibition inside the cell. These data suggest the potential for the use of beta-cyclodextrins in combination with LFn-Lip loaded with antianthrax drugs against intracellular targets.
Collapse
Affiliation(s)
- Marina V Backer
- SibTech, Inc., 705 North Mountain Road, Newington, CT 06111, USA
| | | | | | | | | | | |
Collapse
|
28
|
Backer MV, Patel V, Jehning BT, Claffey KP, Backer JM. Surface immobilization of active vascular endothelial growth factor via a cysteine-containing tag. Biomaterials 2006; 27:5452-8. [PMID: 16843524 DOI: 10.1016/j.biomaterials.2006.06.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 06/29/2006] [Indexed: 02/04/2023]
Abstract
Developing tissue engineering scaffolds with immobilized growth factors requires facile and reliable methods for the covalent attachment of functionally active proteins. We describe here a new approach to immobilize recombinant proteins based on expression of the protein of interest with a 15-aa long fusion tag (Cys-tag), which avails a free sulfhydryl group for site-specific conjugation. To validate this approach, we conjugated a single-chain vascular endothelial growth factor expressed with an N-terminal Cys-tag (scVEGF) to fibronectin (FN) using a common thiol-directed bi-functional cross-linking agent. We found that the FN-scVEGF conjugate retains VEGF activity similar to that of free scVEGF when used as a soluble ligand. Cells expressing VEGF receptor VEGFR-2 grown on plates coated with FN-scVEGF displayed morphological phenotypes similar to those observed for cells grown on FN in the presence of equivalent amounts of free scVEGF. In addition, 293/KDR cell growth stimulation was observed in the same concentration range with either immobilized or free scVEGF. The effects of immobilized scVEGF, and soluble scVEGF were blocked by NVP-AAD777-NX, a VEGF receptor tyrosine kinase inhibitor. These data indicate that site-specific immobilization via Cys-tag provides a facile and reliable method for permanent deposition of functionally active growth factors on synthetic or protein scaffolds with applications for advanced tissue engineering.
Collapse
|