1
|
Takahashi A, Fujii C, Takahashi Y, Kunisawa T, Nagayasu Y, Yoshimoto N, Yoshimoto M. Liposome-Papain Conjugates for Catalytic Digestion of Antibody Producing Fab Fragments. ACS APPLIED BIO MATERIALS 2024; 7:5566-5578. [PMID: 39010295 DOI: 10.1021/acsabm.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Papain is useful for the enzymatic digestion of various proteins to produce functional peptides or protein fragments. Immobilized papain being reactive toward proteins and easily removable from a reaction mixture is worth developed. In the present work, liposomes were applied as colloidal carriers of papain for the catalytic digestion of polyclonal immunoglobulin G (IgG). Papain was covalently conjugated at pH = 7.0 via tris-succinimidyl aminotriacetate (TSAT) to liposomes incorporated with 5 mol % poly(ethylene glycol)-tethered lipid with a reactive amino group. The papain-conjugated liposome (liposome-papain) catalyzed the hydrolysis of Nα-benzoyl-l-arginine 4-nitroanilide hydrochloride (BAPNA) at pH = 5.0-7.0. The activity of liposome-papain significantly increased with increasing temperature from 25 to 50 °C. The Michaelis constant Km was determined with respect to the liposome-papain- and free papain-catalyzed reactions with BAPNA at 37 °C as Km = 1.11 ± 0.13 and 11.6 ± 2.9 mM, respectively. Liposome-papain was applied to the catalytic digestion of 10 mg·mL-1 IgG at 37 °C for 24 h at pH = 5.0-7.0. The reaction mixture could be analyzed without pretreatment by using the affinity columns immobilized with the protein A or protein L ligand because colloidal liposome-papain quickly flowed through the chromatographic stationary phase, exhibiting little proteolytic effect on the proteinaceous ligands. The analysis clearly demonstrated the catalytic production of antigen-binding fragments (Fab) from IgG in an enzyme concentration- and pH-dependent manner. Liposome-papain with 15 or 50 mol % anionic lipids also catalyzed the formation of Fab from IgG. The above results demonstrated that liposome-papain was useful to digest IgG and to purify Fab formed with the affinity chromatography.
Collapse
Affiliation(s)
- Azusa Takahashi
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Chisaki Fujii
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Yuya Takahashi
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Tatsuki Kunisawa
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Yuto Nagayasu
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Noriko Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|
2
|
Nagata H, Yoshimoto M, Walde P. Preparation and Catalytic Properties of Carbonic Anhydrase Conjugated to Liposomes through a Bis-Aryl Hydrazone Bond. ACS OMEGA 2023; 8:18637-18652. [PMID: 37273636 PMCID: PMC10233673 DOI: 10.1021/acsomega.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Liposomes (lipid vesicles) with sizes of about 100-200 nm carrying surface-bound (immobilized) water-soluble enzymes are functionalized molecular compartment systems for possible applications, for example, as therapeutic materials or as catalytic reaction units for running reactions in aqueous media in vitro. One way of covalently attaching enzyme molecules under mild conditions in a controlled way to the surface of preformed liposomes is to apply the spectrophotometrically traceable bis-aryl hydrazone (BAH) bond between the liposome and the enzyme molecules of interest. Using bovine carbonic anhydrase (BCA), an aqueous dispersion of liposome-BAH-BCA - conjugates of defined composition was prepared. The liposomes used consisted of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-(methylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG), and N-(aminopropylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG-NH2). The amino group of some of the DSPE-PEG-NH2 molecules present in the liposomes were converted into an aromatic aldehyde, which (after purification) reacted with (purified) BCA molecules that had on their surface on average one acetone protected aromatic hydrazine. After purification of the liposome-BAH-BCA conjugate dispersion obtained, it was characterized in terms of (i) BCA activity, (ii) overall BCA structure, and (iii) storage stability. For an average liposome of 138 nm diameter, about 1200 BCA molecules were attached to the outer liposome surface. Liposomally bound BCA was found to exhibit (i) similar catalytic activity at 25 °C and (ii) similar storage stability when stored in a dispersed state in aqueous solution at 4 °C as free BCA. Measurements at 5 °C clearly showed that liposome-BAH-BCA is able to catalyze the hydration of carbon dioxide to hydrogen carbonate.
Collapse
Affiliation(s)
- Hikaru Nagata
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Peter Walde
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| |
Collapse
|
3
|
Taniguchi H, Ishimime Y, Minamihata K, Santoso P, Komada T, Saputra H, Uchida K, Goto M, Taira T, Kamiya N. Liposomal Amphotericin B Formulation Displaying Lipid-Modified Chitin-Binding Domains with Enhanced Antifungal Activity. Mol Pharm 2022; 19:3906-3914. [PMID: 36066555 DOI: 10.1021/acs.molpharmaceut.2c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal infections affect more than one billion people worldwide and cause more than one million deaths per year. Amphotericin B (AmB), a polyene antifungal drug, has been used as the gold standard for many years because of its broad antifungal spectrum, high activity, and low tendency of drug resistance. However, the side effects of AmB, such as nephrotoxicity and hepatotoxicity, have hampered its widespread use, leading to the development of a liposome-type AmB formulation, AmBisome. Herein, we report a simple but highly effective strategy to enhance the antifungal activity of AmBisome with a lipid-modified protein. The chitin-binding domain (LysM) of the antifungal chitinase, Pteris ryukyuensis chitinase A (PrChiA), a small 5.3 kDa protein that binds to fungal cell wall chitin, was engineered to have a glutamine-containing peptide tag at the C-terminus for the microbial transglutaminase (MTG)-catalyzed crosslinking reaction (LysM-Q). LysM-Q was site-specifically modified with a lysine-containing lipid peptide substrate of MTG with a palmitoyl moiety (Pal-K). The resulting palmitoylated LysM (LysM-Pal) exhibited negligible cytotoxicity to mammalian cells and can be easily anchored to yield LysM-presenting AmBisome (LysM-AmBisome). LysM-AmBisome exhibited a dramatic enhancement of antifungal activity toward Trichoderma viride and Cryptococcus neoformans, demonstrating the marked impact of displaying a cell-wall binder protein on the targeting ability of antifungal liposomal formulations. Our simple strategy with enzymatic protein lipidation provides a potent approach to upgrade other types of lipid-based drug formulations.
Collapse
Affiliation(s)
- Hiromasa Taniguchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yugo Ishimime
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pugoh Santoso
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuya Komada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hendra Saputra
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angew Chem Int Ed Engl 2022; 61:e202111266. [PMID: 34611966 PMCID: PMC9303669 DOI: 10.1002/anie.202111266] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Julia Kriegesmann
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
5
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemische Synthese und Semisynthese von lipidierten Proteinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111266. [PMID: 38504765 PMCID: PMC10947004 DOI: 10.1002/ange.202111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/11/2022]
Abstract
AbstractLipidierung ist eine ubiquitäre Modifikation von Peptiden und Proteinen, die entweder co‐ oder posttranslational auftreten kann. Für die Vielzahl von Lipidklassen wurde gezeigt, dass diese viele entscheidende biologische Aktivitäten, z. B. die Regulierung der Signalweiterleitung, Zell‐Zell‐Adhäsion sowie die Anlagerung von Proteinen an Lipid‐Rafts und Phospholipidmembranen, beeinflussen. Während die Natur Enzyme nutzt, um Lipidmodifikationen in Proteine einzubringen, ist ihre Nutzung für die chemoenzymatische Herstellung von lipidierten Proteinen häufig ineffizient. Eine Alternative ist die Kombination moderner synthetischer und semisynthetischer Techniken, um lipidierte Proteine in reiner und homogen modifizierter Form zu erhalten. Dieser Aufsatz erörtert Fortschritte in der Entwicklung der Lipidierungs‐ und Ligationschemie und deren Anwendung in der Synthese und Semisynthese homogen lipidierter Proteine, die es ermöglichen, den Einfluss dieser Modifikationen auf die Proteinstruktur und ‐funktion zu untersuchen.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australien
| | - Julia Kriegesmann
- Institut für Biologische ChemieFakultät für ChemieUniversität WienWienÖsterreich
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| |
Collapse
|
6
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
7
|
Garst EH, Das T, Hang HC. Chemical approaches for investigating site-specific protein S-fatty acylation. Curr Opin Chem Biol 2021; 65:109-117. [PMID: 34333222 PMCID: PMC8671186 DOI: 10.1016/j.cbpa.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Protein S-fatty acylation or S-palmitoylation is a reversible and regulated lipid post-translational modification (PTM) in eukaryotes. Loss-of-function mutagenesis studies have suggested important roles for protein S-fatty acylation in many fundamental biological pathways in development, neurobiology, and immunity that are also associated with human diseases. However, the hydrophobicity and reversibility of this PTM have made site-specific gain-of-function studies more challenging to investigate. In this review, we summarize recent chemical biology approaches and methods that have enabled site-specific gain-of-function studies of protein S-fatty acylation and the investigation of the mechanisms and significance of this PTM in eukaryotic biology.
Collapse
Affiliation(s)
- Emma H Garst
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Departments of Immunology and Microbiology and Chemistry, Scripps Research, La Jolla, CA 92037, United States.
| |
Collapse
|
8
|
Ferrauto G, Tripepi M, Di Gregorio E, Bitonto V, Aime S, Delli Castelli D. Detection of U-87 Tumor Cells by RGD-Functionalized/Gd-Containing Giant Unilamellar Vesicles in Magnetization Transfer Contrast Magnetic Resonance Images. Invest Radiol 2021; 56:301-312. [PMID: 33273375 DOI: 10.1097/rli.0000000000000742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The targeting of tumor cells and their visualization with magnetic resonance imaging (MRI) is an important task in biomedicine. The low sensitivity of this technique is a significant drawback and one that may hamper the detection of the imaging reporters used.To overcome this sensitivity issue, this work explores the synergy between 2 strategies: (1) arginine, glycine, aspartic acid peptide (RGD)-functionalized giant unilamellar vesicles (GUVs) loaded with Gd complexes to accumulate large amounts of MRI contrast agent at the targeting site; and (2) the use of magnetization transfer contrast (MTC), which is a sensitive MRI technique for the detection of Gd complexes in the tumor region. MATERIALS AND METHODS Giant unilamellar vesicles were prepared using the gentle swelling method, and the cyclic RGD targeting moiety was introduced onto the external membrane. Paramagnetic Gd-containing complexes and the fluorescent probe rhodamine were both part of the vesicle membranes and Gd-complexes were also the payload within the inner aqueous cavity. Giant unilamellar vesicles that were loaded with the imaging reporters, but devoid of the RGD targeting moiety, were used as controls. U-87 MG human glioblastoma cells, which are known to overexpress the targets for RGD moieties, were used. In the in vivo experiments, U-87 MG cells were subcutaneously injected into nu/nu mice, and the generated tumors were imaged using MRI, 15 days after cell administration. Magnetic resonance imaging was carried out at 7 T, and T2W, T1W, and MTC/Z-spectra were acquired. Confocal microscopy images and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were used for result validation. RESULTS In vitro results show that RGD GUVs specifically bind to U-87 MG cells. Microscopy demonstrates that (1) RGD GUVs were anchored onto the external surface of the tumor cells without any internalization; (2) a low number of GUVs per cell were clustered at specific regions; and (3) there is no evidence for macrophage uptake or cell toxicity. The MRI of cell pellets after incubation with RGD GUVs and untargeted ctrl-GUVs was performed. No difference in T1 signal was detected, whereas a 15% difference in MT contrast is present between the RGD GUV-treated cells and the ctrl-GUV-treated cells.Magnetic resonance imaging scans of tumor-bearing mice were acquired before and after (t = 0, 4 hours and 24 hours) the administration of RGD GUVs and ctrl-GUVs. A roughly 16% MTC difference between the 2 groups was observed after 4 hours. Immunofluorescence analyses and ICP-MS analyses (for Gd-detection) of the explanted tumors confirmed the specific accumulation of RGD GUVs in the tumor region. CONCLUSIONS RGD GUVs seem to be interesting carriers that can facilitate the specific accumulation of MRI contrast agents at the tumor region. However, the concentration achieved is still below the threshold needed for T1w-MRI visualization. Conversely, MTC proved to be sufficiently sensitive for the visualization of detectable contrast between pretargeting and posttargeting images.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Takahara M, Mochizuki S, Wakabayashi R, Minamihata K, Goto M, Sakurai K, Kamiya N. Extending the Half-Life of a Protein in Vivo by Enzymatic Labeling with Amphiphilic Lipopeptides. Bioconjug Chem 2021; 32:655-660. [PMID: 33689283 DOI: 10.1021/acs.bioconjchem.1c00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of lipid-protein conjugates is one of the significant techniques in drug delivery systems of proteins; however, the intact conjugation of a lipid and protein is yet challenging due to the hydrophobicity of lipid molecules. In order to facilitate easy handling of the lipid moiety in conjugation, we have focused on a microbial transglutaminase (MTG) that can ligate specific lysine (K) and glutamine (Q) residues in lipopeptides and a protein of interest. As MTG substrates, monolipid- and dilipid-fused amphiphilic short lipopeptide substrates (lipid-G3S-RHK or lipid2-KG3S-RHK) were designed. These amphiphilic lipopeptides and a model protein (enhanced green fluorescent protein, EGFP) fused with LLQG (LQ-EGFP) were both water-soluble, and thus lipid-protein conjugates were efficiently obtained through the MTG reaction with a >80% conversion rate of LQ-EGFP even using cholesterol-G3S-RHK. In vitro cell adhesion and in vivo half-life stability of the successfully obtained lipid-protein conjugates were evaluated, showing that the monocholesterol-G3S-RHK modification of a protein gave the highest cell adhesion efficiency and longest half-life time by formation of a stable albumin/lipid-protein complex.
Collapse
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminamiku, Kitakyushu 802-0985, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, the University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu 808-0135, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, the University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu 808-0135, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Aires Fernandes M, O. Eloy J, Tavares Luiz M, Ramos Junior SL, Borges JC, Rodríguez de la Fuente L, Ortega-de San Luis C, Maldonado Marchetti J, Santos-Martinez MJ, Chorilli M. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Yadollahpour A. Nanotechnology in Targeted Drug Delivery in Medical Theranostics: From Lab to Bed. Curr Top Med Chem 2020; 20:2735-2736. [PMID: 33292118 DOI: 10.2174/156802662030201110091740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ali Yadollahpour
- Department of Psychology University of Sheffield Sheffield, United Kingdom
| |
Collapse
|
13
|
Hossain MS, Maller C, Dai Y, Nangia S, Mozhdehi D. Non-canonical lipoproteins with programmable assembly and architecture. Chem Commun (Camb) 2020; 56:10281-10284. [PMID: 32734969 DOI: 10.1039/d0cc03271a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substrate promiscuity of an acyltransferase is leveraged to synthesize artificial lipoproteins bearing a non-canonical PTM (ncPTM). The non-canonical functionality of these lipoproteins results in a distinctive hysteretic assembly-absent from the canonical lipoproteins-and is used to prepare hybrid multiblock materials with precise and programmable patterns of amphiphilicity. This study demonstrates the promise of expanding the repertoire of PTMs for the development of nanomaterials with a unique assembly and function.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244, USA.
| | | | | | | | | |
Collapse
|
14
|
Takahara M, Kamiya N. Synthetic Strategies for Artificial Lipidation of Functional Proteins. Chemistry 2020; 26:4645-4655. [DOI: 10.1002/chem.201904568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical EngineeringNational Institute of TechnologyKitakyushu College 5-20-1 Shii Kokuraminamiku Kitakyushu 802-0985 Japan
| | - Noriho Kamiya
- Department of Applied ChemistryGraduate School of Engineering 744 Motooka Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
15
|
Xiao Y, Liu Q, Clulow AJ, Li T, Manohar M, Gilbert EP, de Campo L, Hawley A, Boyd BJ. PEGylation and surface functionalization of liposomes containing drug nanocrystals for cell-targeted delivery. Colloids Surf B Biointerfaces 2019; 182:110362. [PMID: 31351271 DOI: 10.1016/j.colsurfb.2019.110362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/04/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
Liposomal formulations have important therapeutic applications in anti-cancer treatments but current formulations suffer from serious side effects, high dosage requirements and prolonged treatment. In this study, PEGylated azide-functionalized liposomes containing drug nanocrystals were investigated with the aim of increasing the drug payload and achieving functionalization for targeted delivery. Liposomes were characterized using cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small and ultra-small angle neutron scattering (SANS/USANS) and small and wide angle X-ray scattering (SAXS/WAXS). Cryo-TEM experiments revealed the dimensions of the nanocrystal-loaded liposomes and the change of shape from spherical to elongated after the formation of nanocrystals. Results from SANS/USANS experiments confirmed the asymmetric particle shape. SAXS/WAXS experiments confirmed that the crystalline drug only occurred in freeze-thawed samples and correlated with a new unidentified polymorphic form of ciprofloxacin. Using a small molecule dye, dibenzocyclooctyne (DBCO)-cy5, specific conjugation between DBCO groups and surface azide groups on the liposomes was confirmed; this indicates the promise of this system for tumour-targeted delivery.
Collapse
Affiliation(s)
- Yunxin Xiao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Tang Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Madhura Manohar
- National Deuteration Facility (NDF), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Adrian Hawley
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia.
| |
Collapse
|
16
|
de la Fuente-Herreruela D, Monnappa AK, Muñoz-Úbeda M, Morallón-Piña A, Enciso E, Sánchez L, Giusti F, Natale P, López-Montero I. Lipid-peptide bioconjugation through pyridyl disulfide reaction chemistry and its application in cell targeting and drug delivery. J Nanobiotechnology 2019; 17:77. [PMID: 31226993 PMCID: PMC6587267 DOI: 10.1186/s12951-019-0509-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Background The design of efficient drug delivery vectors requires versatile formulations able to simultaneously direct a multitude of molecular targets and to bypass the endosomal recycling pathway of cells. Liposomal-based vectors need the decoration of the lipid surface with specific peptides to fulfill the functional requirements. The unspecific binding of peptides to the lipid surface is often accompanied with uncontrolled formulations and thus preventing the molecular mechanisms of a successful therapy. Results We present a simple synthesis pathway to anchor cysteine-terminal peptides to thiol-reactive lipids for adequate and quantitative liposomal formulations. As a proof of concept, we have synthesized two different lipopeptides based on (a) the truncated Fibroblast Growth Factor (tbFGF) for cell targeting and (b) the pH sensitive and fusogenic GALA peptide for endosomal scape. Conclusions The incorporation of these two lipopeptides in the liposomal formulation improves the fibroblast cell targeting and promotes the direct delivery of cargo molecules to the cytoplasm of the cell. Electronic supplementary material The online version of this article (10.1186/s12951-019-0509-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego de la Fuente-Herreruela
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Ajay K Monnappa
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Mónica Muñoz-Úbeda
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Aarón Morallón-Piña
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Enciso
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Luis Sánchez
- Dto. Química Orgánica, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Fabrice Giusti
- Institut de Chimie Séparative de Marcoule, ICSM, UMR 5257, Site de Marcoule-Bât, 426 BP 17 171, 30207, Bagnols sur Ceze, France
| | - Paolo Natale
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain. .,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
17
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
18
|
Takahara M, Wakabayashi R, Fujimoto N, Minamihata K, Goto M, Kamiya N. Enzymatic Cell‐Surface Decoration with Proteins using Amphiphilic Lipid‐Fused Peptide Substrates. Chemistry 2019; 25:7315-7321. [DOI: 10.1002/chem.201900370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical EngineeringNational Institute of Technology, Kitakyushu College 5-20-1 Shii, Kokuraminamiku Kitakyushu 802-0985 Japan
| | - Rie Wakabayashi
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Naoki Fujimoto
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Kosuke Minamihata
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Masahiro Goto
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Noriho Kamiya
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
19
|
Takahara M, Wakabayashi R, Minamihata K, Goto M, Kamiya N. Design of Lipid–Protein Conjugates Using Amphiphilic Peptide Substrates of Microbial Transglutaminase. ACS APPLIED BIO MATERIALS 2018; 1:1823-1829. [DOI: 10.1021/acsabm.8b00271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminamiku, Kitakyushu, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
20
|
Silvius JR, Leventis R. A Novel “Prebinding” Strategy Dramatically Enhances Sortase-Mediated Coupling of Proteins to Liposomes. Bioconjug Chem 2017; 28:1271-1282. [DOI: 10.1021/acs.bioconjchem.7b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John R. Silvius
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, Canada H3G 1A9
| | - Rania Leventis
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, Canada H3G 1A9
| |
Collapse
|
21
|
Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1478-1489. [DOI: 10.1080/21691401.2017.1290647] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shabnam Tarvirdipour
- Biomedical Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Wilner SE, Levy M. Synthesis and Characterization of Aptamer-Targeted SNALPs for the Delivery of siRNA. Methods Mol Biol 2016; 1380:211-24. [PMID: 26552829 DOI: 10.1007/978-1-4939-3197-2_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aptamers selected against cell surface receptors represent a unique set of ligands that can be used to target nanoparticles and other therapeutics to specific cell types. Here, we describe a method for using aptamers to deliver stable nucleic acid lipid particles (SNALPs) encapsulating small interfering RNA (siRNA) to cells in vitro. Using this method, we have demonstrated the ability of aptamer-conjugated SNALPs to achieve target-specific delivery and siRNA-mediated knockdown of a gene of interest. We also describe methods to characterize SNALP size, siRNA encapsulation efficiency, and aptamer conjugation efficiency.
Collapse
Affiliation(s)
- Samantha E Wilner
- Department of Biochemistry, Michael F. Price Center for Genetic and Translational Medicine, Albert Einstein College of Medicine, Room 519, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Matthew Levy
- Department of Biochemistry, Michael F. Price Center for Genetic and Translational Medicine, Albert Einstein College of Medicine, Room 519, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
23
|
Janssen BMG, van Ommeren SPFI, Merkx M. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation. Int J Mol Sci 2015; 16:12631-47. [PMID: 26053396 PMCID: PMC4490465 DOI: 10.3390/ijms160612631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 01/02/2023] Open
Abstract
The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py-Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py-Im polyamides. The effect of Py-Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py-Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py-Im-polyamide conjugates. The practical use of protein-Py-Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.
Collapse
Affiliation(s)
- Brian M G Janssen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands.
| | - Sven P F I van Ommeren
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands.
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
24
|
Islam M, Shaikh AY, Hotha S. Transition Metals for the Synthesis of Glycopolymers and Glycopolypeptides. Isr J Chem 2015. [DOI: 10.1002/ijch.201400202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Brea RJ, Cole CM, Devaraj NK. In situ vesicle formation by native chemical ligation. Angew Chem Int Ed Engl 2014; 53:14102-5. [PMID: 25346090 PMCID: PMC4418804 DOI: 10.1002/anie.201408538] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 01/07/2023]
Abstract
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non-enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water-soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self-assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.
Collapse
Affiliation(s)
- Roberto J. Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| | - Christian M. Cole
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| |
Collapse
|
26
|
Zhang J, Chen L, Tse WH, Bi R, Chen L. Inorganic Nanoparticles: Engineering for Biomedical Applications. IEEE NANOTECHNOLOGY MAGAZINE 2014. [DOI: 10.1109/mnano.2014.2355277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Shi C, Gao F, Gao X, Liu Y. A novel anti-VEGF165 monoclonal antibody-conjugated liposomal nanocarrier system: physical characterization and cellular uptake evaluation in vitro and in vivo. Biomed Pharmacother 2014; 69:191-200. [PMID: 25661357 DOI: 10.1016/j.biopha.2014.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 01/18/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is an important target for cancer therapy. In the present study, we conjugated the novel fully-human anti-VEGF165 monoclonal antibody, mAb165, with a PEGylated liposome (lip) to produce a monoclonal antibody-conjugated PEGylated liposome (mAb-lip). Physical characterization of mAb-lips showed an average particle size of 108nm. Using a bicinchoninic acid (BCA) assay, the coupling efficiency of mAb165 conjugated to the liposome was 69.8±0.5μg mAb/μmol phospholipid. In addition, we confirmed that conjugation between mAb165 and the liposome did not affect the structure and VEGF binding affinity of the antibody. Cell uptake of mAb-lips was assessed in four cell lines: MCF-7, HepG-2, SGC-7901, and L02 cells. Confocal microscopy and flow cytometry demonstrated that there was no significant difference in cell uptake between mAb-lips and mAb-free liposome either in VEGF-expressing tumor cells or normal cells. Moreover, the cytotoxicity of paclitaxel encapsulated in mAb-lips was not increased in the four cell lines. However, in BALB/c nude mice bearing MCF-7 xenografts, mAb-lips showed superior targeting activity to tumor tissues when compared with the unmodified liposome, which was demonstrated by the fact that rhodamine-labeled mAb-lips exhibited higher fluorescence intensity in tumor tissues than the unmodified liposome. Thus, our study indicated that mAb-lips may have the potential to enhance the therapeutic index of anticancer agents through targeted delivery to tumor cells in vivo.
Collapse
Affiliation(s)
- Chenyang Shi
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fei Gao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiangdong Gao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yu Liu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
28
|
Brea RJ, Cole CM, Devaraj NK. In Situ Vesicle Formation by Native Chemical Ligation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Li D, Wang X, Shi F, Sha R, Seeman NC, Canary JW. Templated DNA ligation with thiol chemistry. Org Biomol Chem 2014; 12:8823-7. [DOI: 10.1039/c4ob01552e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Abstract
Bioorthogonal, chemoselective ligation methods are an essential part of the tools utilized to investigate biochemical pathways. Specifically enzymatic approaches are valuable methods in this context due to the inherent specificity of the deployed enzymes and the mild conditions of the modification reactions. One of the most common strategies is based on the transpeptidation catalyzed by sortase A derived from Staphylococcus aureus. The procedure is well established and a wide variety of applications have been published to date. Here, implementations of sortase A, which range from protein labeling using fluorescence dyes and the preparation of cyclic proteins to the modification of entire cells, are summarized. Furthermore, there is a focus on the optimization approaches established to solve the drawbacks of sortase-mediated transpeptidation.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Bielefeld University, Department of Chemistry, Organic and Bioorganic Chemistry (OCIII), Universitätsstrasse 25, 33615 Bielefeld (Germany).
| |
Collapse
|
31
|
Panda SS, Hall CD, Oliferenko AA, Katritzky AR. Traceless chemical ligation from S-, O-, and N-acyl isopeptides. Acc Chem Res 2014; 47:1076-87. [PMID: 24617996 DOI: 10.1021/ar400242q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peptides are ubiquitous in nature where they play crucial roles as catalysts (enzymes), cell membrane ion transporters, and structural elements (proteins) within biological systems. In addition, both linear and cyclic peptides have found use as pharmaceuticals and components of various conjugate molecular systems. Small wonder then that chemists throughout the ages have sought to mimic nature by synthesis of the amide polymers known as peptides and proteins. The fundamental reaction in the formation of a peptide bond is condensation of an amine of one amino acid with the activated carbonyl group of another. This "fragment condensation" has been achieved in many ways both in solution and by solid-phase peptide synthesis (SPSS) on resin. The most successful method for in-solution coupling is known as native chemical ligation (NCL), and the technique dates back to the pioneering work of Wieland (1953) and subsequently Kent (1994) among many others. This Account builds on the established principles of NCL as applied specifically to S-, O-, and N-isopeptides, molecules that are generally more soluble and less prone to aggregation than native peptides. This Account also covers NCL of isopeptides containing terminal and nonterminal S-acylated cysteine units, reactions that enable the synthesis of native peptides from S-acyl peptides without the use of auxiliaries. With C-terminal S-acyl isopeptides, NCL was carried out under microwave irradiation in phosphate buffer (pH 7.3) at 50 °C. Intramolecular acyl migration was observed through 5-19-membered transition states with relative rates, as assessed by product analysis, in the order, 5 > 10 > 11 > 14, 16, or 17 > 12 > 13, 15, or 19 > 18 ≫ 9 > 8. The rate/pH profile for the 15-membered TS showed a maximum for ligated product versus transacylation at pH 7.0-7.3 presumably associated with the pKa of the N-nucleophile in the hydrogen-bonded TS. Cysteine occurs at low abundance (1.7%) in natural peptides and is rarely available in a terminal position thus limiting the utility of the method. This Account reports, however, NCL at nonterminal acyl cysteine through 5-, 8-, 11-, and 14-membered TSs with relative rates of ligation in the order, 5 ≫ 14 > 11 ≫ 8, thus paralleling the results with acylated terminal cysteine residues. In an obvious sequel to the work with acylated cysteine, we discuss intramolecular O- to N-acyl shift in O-acyl serine and O-acyl tyrosine isopeptides where the story becomes more complex in terms of viable conditions and optimum size of the cyclic TS. N- to N-acyl migration in acyl tryptophan isopeptides is described, and finally, chemical ligation is applied to the synthesis of cyclic peptides. Conformational analysis and quantum chemical calculations are used to rationalize ligation through a range of cyclic transition states. This Account highlights the fact that NCL of acyl isopeptides is an extremely useful strategy for the synthesis of a wide variety of native peptides in good yields and under mild conditions. Mechanistic aspects of the ligations are not fully resolved, but theoretical studies indicate that hydrogen bonding within the various cyclic transition states plays a major role.
Collapse
Affiliation(s)
- Siva S. Panda
- Center
for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - C. Dennis Hall
- Center
for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Alexander A. Oliferenko
- Center
for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Alan R. Katritzky
- Center
for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
- Chemistry Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
32
|
Khan S, Sur S, Dankers PYW, da Silva RMP, Boekhoven J, Poor TA, Stupp SI. Post-assembly functionalization of supramolecular nanostructures with bioactive peptides and fluorescent proteins by native chemical ligation. Bioconjug Chem 2014; 25:707-17. [PMID: 24670265 PMCID: PMC3993887 DOI: 10.1021/bc400507v] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Post-assembly
functionalization of supramolecular nanostructures
has the potential to expand the range of their applications. We report
here the use of the chemoselective native chemical ligation (NCL)
reaction to functionalize self-assembled peptide amphiphile (PA) nanofibers.
This strategy can be used to incorporate specific bioactivity on the
nanofibers, and as a model, we demonstrate functionalization with
the RGDS peptide following self-assembly. Incorporation of bioactivity
is verified by the observation of characteristic changes in fibroblast
morphology following NCL-mediated attachment of the signal to PA nanofibers.
The NCL reaction does not alter the PA nanofiber morphology, and biotinylated
RGDS peptide was found to be accessible on the nanofiber surface after
ligation for binding with streptavidin-conjugated gold nanoparticles.
In order to show that this strategy is not limited to short peptides,
we utilized NCL to conjugate yellow fluorescent protein and/or cyan
fluorescent protein to self-assembled PA nanofibers. Förster
resonance energy transfer and fluorescence anisotropy measurements
are consistent with the immobilization of the protein on the PA nanofibers.
The change in electrophoretic mobility of the protein upon conjugation
with PA molecules confirmed the formation of a covalent linkage. NCL-mediated
attachment of bioactive peptides and proteins to self-assembled PA
nanofibers allows the independent control of self-assembly and bioactivity
while retaining the biodegradable peptide structure of the PA molecule
and thus can be useful in tailoring design of biomaterials.
Collapse
Affiliation(s)
- Saahir Khan
- Institute for BioNanotechnology in Medicine, Northwestern University 303 East Superior Avenue, Rm. 11-123, Chicago, Illinois 60611, United States
| | | | | | | | | | | | | |
Collapse
|
33
|
Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR IN BIOMEDICINE 2013; 26:728-44. [PMID: 23703874 DOI: 10.1002/nbm.2971] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 05/07/2023]
Abstract
Liposomes are a versatile class of nanoparticles with tunable properties, and multiple liposomal drug formulations have been clinically approved for cancer treatment. In recent years, an extensive library of gadolinium (Gd)-containing liposomal MRI contrast agents has been developed for molecular and cellular imaging of disease-specific markers and for image-guided drug delivery. This review discusses the advances in the development and novel applications of paramagnetic liposomes in molecular and cellular imaging, and in image-guided drug delivery. A high targeting specificity has been achieved in vitro using ligand-conjugated paramagnetic liposomes. On targeting of internalizing cell receptors, the effective longitudinal relaxivity r1 of paramagnetic liposomes is modulated by compartmentalization effects. This provides unique opportunities to monitor the biological fate of liposomes. In vivo contrast-enhanced MRI studies with nontargeted liposomes have shown the extravasation of liposomes in diseases associated with endothelial dysfunction, such as tumors and myocardial infarction. The in vivo use of targeted paramagnetic liposomes has facilitated the specific imaging of pathophysiological processes, such as angiogenesis and inflammation. Paramagnetic liposomes loaded with drugs have been utilized for therapeutic interventions. MR image-guided drug delivery using such liposomes allows the visualization and quantification of local drug delivery.
Collapse
Affiliation(s)
- Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research Eindhoven, Eindhoven, the Netherlands
| | | | | | | | | |
Collapse
|
34
|
Rodríguez-Pulido A, Kondrachuk AI, Prusty DK, Gao J, Loi MA, Herrmann A. Light-triggered sequence-specific cargo release from DNA block copolymer-lipid vesicles. Angew Chem Int Ed Engl 2013; 52:1008-12. [PMID: 23109173 PMCID: PMC3563227 DOI: 10.1002/anie.201206783] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Alberto Rodríguez-Pulido
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Alina I Kondrachuk
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Deepak K Prusty
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Jia Gao
- Department of Photophysics and Optoelectronics, University of Groningen(The Netherlands)
| | - Maria A Loi
- Department of Photophysics and Optoelectronics, University of Groningen(The Netherlands)
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| |
Collapse
|
35
|
Rodríguez-Pulido A, Kondrachuk AI, Prusty DK, Gao J, Loi MA, Herrmann A. Light-Triggered Sequence-Specific Cargo Release from DNA Block Copolymer-Lipid Vesicles. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Panda SS, El-Nachef C, Bajaj K, Al-Youbi AO, Oliferenko A, Katritzky AR. Study of Chemical LigationVia17-, 18- and 19-Membered Cyclic Transition States. Chem Biol Drug Des 2012; 80:821-7. [DOI: 10.1111/cbdd.12053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Wilner SE, Wengerter B, Maier K, de Lourdes Borba Magalhães M, Del Amo DS, Pai S, Opazo F, Rizzoli SO, Yan A, Levy M. An RNA alternative to human transferrin: a new tool for targeting human cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e21. [PMID: 23344001 PMCID: PMC3390244 DOI: 10.1038/mtna.2012.14] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transferrin receptor, CD71, is an attractive target for drug development because of its high expression on a number of cancer cell lines and the blood brain barrier. To generate serum-stabilized aptamers that recognize the human transferrin receptor, we have modified the traditional aptamer selection protocol by employing a functional selection step that enriches for RNA molecules which bind the target receptor and are internalized by cells. Selected aptamers were specific for the human receptor, rapidly endocytosed by cells and shared a common core structure. A minimized variant was found to compete with the natural ligand, transferrin, for receptor binding and cell uptake, but performed ~twofold better than it in competition experiments. Using this molecule, we generated aptamer-targeted siRNA-laden liposomes. Aptamer targeting enhanced both uptake and target gene knockdown in cells grown in culture when compared to nonmodified or nontargeted liposomes. The aptamer should prove useful as a surrogate for transferrin in many applications including cell imaging and targeted drug delivery.
Collapse
Affiliation(s)
- Samantha E Wilner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
van Bochove GS, Sanders HMHF, de Smet M, Keizer HM, Mulder WJM, Krams R, Strijkers GJ, Nicolay K. Molecular MR Imaging of Collagen in Mouse Atherosclerosis by Using Paramagnetic CNA35 Micelles. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Guo X, Wu Z, Guo Z. New method for site-specific modification of liposomes with proteins using sortase A-mediated transpeptidation. Bioconjug Chem 2012; 23:650-5. [PMID: 22372679 DOI: 10.1021/bc200694t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new method was developed for site-specific modifications of liposomes by proteins via sortase A (SrtA)-mediated transpeptidation reactions. In this regard, the enhanced green fluorescent protein (eGFP) was biologically engineered to carry at its polypeptide C-terminus the LPATG motif recognized by SrtA and used as the protein donor for linking to liposomes that were decorated with phospholipids carrying a diglycine motif as the other SrtA substrate and the eGFP acceptor. Under the influence of SrtA, eGFP was efficiently attached to liposomes, as proved by analyzing the enzymatic reaction products and the resultant fluorescent liposomes. It was observed that increasing the concentration and the distance of the diglycine motif on and from the liposome surface could significantly improve the efficiency of liposome modification by proteins. It is anticipated that this strategy can be widely useful for the modification of liposomes by other proteins.
Collapse
Affiliation(s)
- Xueqing Guo
- Department of Chemistry, Wayne State University, 5101, Cass Avenue, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
40
|
Ha K, Chahar M, Monbaliu JCM, Todadze E, Hansen FK, Oliferenko AA, Ocampo CE, Leino D, Lillicotch A, Stevens CV, Katritzky AR. Long-Range Intramolecular S → N Acyl Migration: A Study of the Formation of Native Peptide Analogues via 13-, 15-, and 16-Membered Cyclic Transition States. J Org Chem 2012; 77:2637-48. [DOI: 10.1021/jo2023125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Khanh Ha
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
| | - Mamta Chahar
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
| | - Jean-Christophe M. Monbaliu
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
- Department of Sustainable Organic Chemistry and Technology, Faculty
of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Ekaterina Todadze
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
| | - Finn K. Hansen
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Alexander A. Oliferenko
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
| | - Charles E. Ocampo
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
| | - David Leino
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
| | - Aaron Lillicotch
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
| | - Christian V. Stevens
- Department of Sustainable Organic Chemistry and Technology, Faculty
of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Alan R. Katritzky
- Center for Heterocyclic Compounds, Department
of Chemistry, University of Florida, Gainesville,
Florida 32611-7200, United States
- Chemistry Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
41
|
Wei M, Xu Y, Zou Q, Tu L, Tang C, Xu T, Deng L, Wu C. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur J Pharm Sci 2012; 46:131-41. [PMID: 22369856 DOI: 10.1016/j.ejps.2012.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/19/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
A hepatocellular carcinoma targeting lactoferrin (Lf) modified PEGylated liposome system was developed for improving drug efficacies to hepatic cancer cells. In this present work, PEGylated liposomes (PLS) were successfully prepared by the thin film hydration method combined with peglipid post insertion. Lf was covalently conjugated to the distal end of DSPE-PEG2000-COOH lipid by amide bound and loaded onto PEGylated liposomes surface as the targeting ligand. To confirm the targeting efficacies to hepatic cancer, coumarin-6 and DiR were encapsulated as fluorescent probes. The confocal microscopy and flow cytometry demonstrated that Lf conjugated PEGylated liposomes (Lf-PLS) were efficiently associated by HepG2 cells, while limited interaction was found for liposomes modified with a negative control protein. A similar pharmacokinetic behavior was observed in pharmacokinetics study of the liposomal formulations. Meanwhile, the in vivo imaging of liposomes in HepG2 tumor bearing mice indicated that Lf-PLS achieved more accumulation in tumor compared with PLS without Lf conjugated. The significant in vitro and in vivo results suggested that Lf-PLS might be a promising drug delivery system for hepatocellular carcinoma therapy with low toxicity.
Collapse
Affiliation(s)
- Minyan Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
New molecular rods — Characterization of their interaction with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2781-8. [DOI: 10.1016/j.bbamem.2011.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/15/2011] [Accepted: 08/03/2011] [Indexed: 11/20/2022]
|
43
|
Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 2011; 22:825-58. [PMID: 21585205 DOI: 10.1021/bc200065z] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interest in developing diverse nanoparticle (NP)-biological composite materials continues to grow almost unabated. This is motivated primarily by the desire to simultaneously exploit the properties of both NP and biological components in new hybrid devices or materials that can be applied in areas ranging from energy harvesting and nanoscale electronics to biomedical diagnostics. The utility and effectiveness of these composites will be predicated on the ability to assemble these structures with control over NP/biomolecule ratio, biomolecular orientation, biomolecular activity, and the separation distance within the NP-bioconjugate architecture. This degree of control will be especially critical in creating theranostic NP-bioconjugates that, as a single vector, are capable of multiple functions in vivo, including targeting, image contrast, biosensing, and drug delivery. In this review, a perspective is given on current and developing chemistries that can provide improved control in the preparation of NP-bioconjugates. The nanoscale properties intrinsic to several prominent NP materials are briefly described to highlight the motivation behind their use. NP materials of interest include quantum dots, carbon nanotubes, viral capsids, liposomes, and NPs composed of gold, lanthanides, silica, polymers, or magnetic materials. This review includes a critical discussion on the design considerations for NP-bioconjugates and the unique challenges associated with chemistry at the biological-nanoscale interface-the liabilities of traditional bioconjugation chemistries being particularly prominent therein. Select bioorthogonal chemistries that can address these challenges are reviewed in detail, and include chemoselective ligations (e.g., hydrazone and Staudinger ligation), cycloaddition reactions in click chemistry (e.g., azide-alkyne cyclyoaddition, tetrazine ligation), metal-affinity coordination (e.g., polyhistidine), enzyme driven modifications (e.g., HaloTag, biotin ligase), and other site-specific chemistries. The benefits and liabilities of particular chemistries are discussed by highlighting relevant NP-bioconjugation examples from the literature. Potential chemistries that have not yet been applied to NPs are also discussed, and an outlook on future developments in this field is given.
Collapse
Affiliation(s)
- W Russ Algar
- Center for Bio/Molecular Science and Engineering, Optical Sciences Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, DC 20375, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 2011; 83:4453-88. [PMID: 21545140 DOI: 10.1021/ac200853a] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA.
| | | | | | | | | |
Collapse
|
45
|
Maiseyeu A, Mihai G, Roy S, Kherada N, Simonetti OP, Sen CK, Sun Q, Parthasarathy S, Rajagopalan S. Detection of macrophages via paramagnetic vesicles incorporating oxidatively tailored cholesterol ester: an approach for atherosclerosis imaging. Nanomedicine (Lond) 2011; 5:1341-56. [PMID: 21128718 DOI: 10.2217/nnm.10.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM Macrophages play a key role in the initiation, progression and complications of atherosclerosis. In this article we describe the synthesis of biocompatible, paramagnetic, fluorescent phosphatidylserine vesicles containing cholesterol ester with a free carboxylic acid function and its use for targeted imaging of macrophages. METHODS & RESULTS We synthesized anionic vesicles containing a combination of phosphatidylserine and a novel synthetic oxidized cholesterol ester derivative (cholesterol-9-carboxynonanoate [9-CCN]). In vitro studies to characterize particle size, MRI relaxation times and stability were performed. Vesicles containing 9-CCN demonstrated enhanced ability to bind human low-density lipoprotein and to be internalized by macrophages. Experiments in cultured macrophages with 9-CCN vesicles, alone and in the presence of low-density lipoprotein, indicated uptake of vesicles through scavenger receptor and integrin-dependent pathways. In vivo MRI using 9-CCN vesicles containing gadolinium in a rabbit model of atherosclerosis revealed protracted enhancement of 9-CCN vesicles and colocalization with arterial macrophages not seen with control vesicles. Pharmacokinetic experiments demonstrated prolonged plasma residence time of 9-CCN vesicles, perhaps due to its capacity to bind to low-density lipoprotein. CONCLUSION Vesicles containing 9-CCN demonstrate prolonged plasma and plaque retention in experimental atherosclerosis. Such a strategy may represent a simple yet clinically relevant approach for macrophage imaging.
Collapse
Affiliation(s)
- Andrei Maiseyeu
- Davis Heart & Lung Research Institute, Room 110, 473 W 12th Avenue, Columbus, OH 43210-1252, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry. Chemistry 2011; 17:3326-31. [DOI: 10.1002/chem.201003131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Indexed: 12/21/2022]
|
47
|
Collagen targeting using multivalent protein-functionalized dendrimers. Bioorg Med Chem 2011; 19:1062-71. [DOI: 10.1016/j.bmc.2010.07.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/08/2010] [Accepted: 07/26/2010] [Indexed: 12/22/2022]
|
48
|
Sanders HMHF, Iafisco M, Pouget EM, Bomans PHH, Nudelman F, Falini G, de With G, Merkx M, Strijkers GJ, Nicolay K, Sommerdijk NAJM. The binding of CNA35 contrast agents to collagen fibrils. Chem Commun (Camb) 2011; 47:1503-5. [DOI: 10.1039/c0cc02901g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Lempens EHM, Helms BA, Merkx M. Chemoselective protein and peptide immobilization on biosensor surfaces. Methods Mol Biol 2011; 751:401-420. [PMID: 21674345 DOI: 10.1007/978-1-61779-151-2_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Site-specific immobilization of proteins and peptides on a sensor surface represents a significant challenge for bioanalytical applications such as surface plasmon resonance (SPR). The most common protocols for covalent protein immobilization usually result in heterogeneous presentation of the ligand at the surface, which can in some instances yield conflicting results with analogous data obtained in solution. Here, we discuss two complementary and generic bioconjugation methods that allow chemoselective immobilization of peptides and proteins via either their C-terminus (native chemical ligation) or their N-terminus (oxime ligation). While the protocols described in this chapter were designed for use in a Biacore instrument, the methods should also be applicable to other SPR instruments and, with slight adjustments, to many other types of bioanalytical applications that rely on protein-functionalized surfaces.
Collapse
|
50
|
Elias DR, Cheng Z, Tsourkas A. An intein-mediated site-specific click conjugation strategy for improved tumor targeting of nanoparticle systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2460-8. [PMID: 20925038 PMCID: PMC3019098 DOI: 10.1002/smll.201001095] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability to modify and directly target nanoparticulate carriers has greatly increased their applicability in diagnostic and therapeutic studies. Generally essential to the targeting of nanoparticles is the bioconjugation of targeting ligands to the agent's surface. While bioconjugation techniques have steadily improved in recent years, the field is still plagued with inefficient conjugations reactions and/or the lack of site-specific coupling. To overcome these limitations, click chemistry and expressed protein ligation (EPL) are combined to produce a highly efficient, site-specific reaction. This new EPL-click conjugation strategy is applied to create superparamagnetic iron oxide nanoparticles (SPIO) labeled with HER2/neu affibodies. These HER2-SPIO nanoparticles prove to be highly potent and receptor-specific in both in vitro cell studies and murine tumor models. Moreover, when EPL-click-derived HER2-SPIO are compared with SPIO that had been labeled with HER2 affibodies using other popular bioconjugation methods, they produce a statistically significant improvement in contrast enhancement upon cell binding. The EPL-click system is also successfully extended to other nanoparticle platforms (i.e., liposomes and dendrimers) highlighting the versatility of the approach.
Collapse
Affiliation(s)
- Drew R. Elias
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104 (USA)
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104 (USA)
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104 (USA)
| |
Collapse
|