1
|
Oti VB. Nanoparticles and Its Implications in HIV/AIDS Therapy. Curr Drug Discov Technol 2021; 17:448-456. [PMID: 31250759 DOI: 10.2174/1570163816666190620111652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023]
Abstract
The use of Antiretroviral drugs in treating HIV/ AIDS patients has enormously increased their life spans with serious disadvantages. The virus infection still remains a public health problem worldwide with no cure and vaccine for the viral agent until now. The use of nanoparticles (NPs) for the treatment and prevention of HIV/AIDS is an emerging technology of the 21st century. NPs are solid and colloid particles with 10 nm to <1000 nm size range; although, less than 200 nm is the recommended size for nanomedical usage. There are NPs with therapeutic capabilities such as liposomes, micelles, dendrimers and nanocapsules. The particle enters the body mainly via oral intake, direct injection and inhalation. It has been proven to have potentials of advancing the prevention and treatment of the viral agent. Certain NPs have been shown to have selftherapeutic activity for the virus in vitro. Strategies that are novel are emerging which can be used to improve nanotechnology, such as genetic treatment and immunotherapy. In this review, nanoparticles, the types and its characteristics in drug delivery were discussed. The light was furthermore shed on its implications in the prevention and treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Victor B Oti
- Department of Microbiology, Nasarawa State University, PMB 1022, Keffi, Nigeria
| |
Collapse
|
2
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
3
|
Thota C, Berger AA, Elomaa L, Nie C, Böttcher C, Koksch B. Coassembly Generates Peptide Hydrogel with Wound Dressing Material Properties. ACS OMEGA 2020; 5:8557-8563. [PMID: 32337417 PMCID: PMC7178367 DOI: 10.1021/acsomega.9b04371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 05/21/2023]
Abstract
Multicomponent self-assembly of peptides is a powerful strategy to fabricate novel functional materials with synergetic properties that can be used for several nanobiotechnological applications. In the present study, we used a coassembly strategy to generate an injectable ultrashort bioactive peptide hydrogel formed by mixing a dipeptide hydrogelator with a macrophage attracting short chemotactic peptide ligand. Coassembly does not impede hydrogelation as shown by cryo-transmission electron microscopy (cryo-TEM), scanning electron microscopy, and rheology. Biocompatibility was shown by cytotoxicity assays and confocal microscopy. The hydrogels release the entrapped skin antibiotic ciprofloxacin, among others, in a slow and continuous manner. Such bioinspired advanced functional materials can find applications as wound dressing materials to treat chronic wound conditions like diabetic foot ulcer.
Collapse
Affiliation(s)
- Chaitanya
Kumar Thota
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Allison A. Berger
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Laura Elomaa
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Chaunxiong Nie
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Christoph Böttcher
- Research
Center for Electron Microscopy, Freie Universität
Berlin, Fabeckstrasse
36a, 14195 Berlin, Germany
| | - Beate Koksch
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
4
|
Wang J, Chen M, Li S, Ye RD. Targeted Delivery of a Ligand-Drug Conjugate via Formyl Peptide Receptor 1 through Cholesterol-Dependent Endocytosis. Mol Pharm 2019; 16:2636-2647. [PMID: 31067065 DOI: 10.1021/acs.molpharmaceut.9b00188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) undergo ligand-induced internalization that carries the cognate ligands into intracellular compartments. The present study explores this property for the use of formyl peptide receptor 1 (FPR1), a class A GPCR that binds formylated peptides, as a potential target for drug delivery. A pH-sensitive peptide-drug conjugate consisting of doxorubicin (DOX), N-ε-maleimidocaproic acid hydrazide (EMCH), and the formyl peptide fMet-Leu-Phe-Cys (abbreviated as DEF) was prepared. DEF retained pharmacological activities of formyl peptides in binding to FPR1 and mobilization of Ca2+ from intracellular stores. However, the conjugated DOX was no longer cell membrane-permeable and relied on FPR1 for cellular entry. DOX was released from DEF into acidic compartments labeled with fluorescent trackers for endosomes. Treatment of cells with pharmacological inhibitors that block clathrin- or caveolae-mediated endocytosis did not abrogate FPR1-dependent DEF internalization, nor did inhibition of macropinocytosis and phagocytosis. In contrast, cholesterol depletion abrogated DEF internalization through FPR1, suggesting characteristics of cholesterol-dependent uptake mediated by a cell surface receptor. These results demonstrate the possibility of using FPR1 for targeted drug delivery.
Collapse
Affiliation(s)
- Junlin Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine , University of Macau , Macau Special Administrative Region 999078 , China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine , University of Macau , Macau Special Administrative Region 999078 , China
| | - Shaoping Li
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine , University of Macau , Macau Special Administrative Region 999078 , China
| | - Richard D Ye
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine , University of Macau , Macau Special Administrative Region 999078 , China
| |
Collapse
|
5
|
Thomas MB, Gnanadhas DP, Dash PK, Machhi J, Lin Z, McMillan J, Edagwa B, Gelbard H, Gendelman HE, Gorantla S. Modulating cellular autophagy for controlled antiretroviral drug release. Nanomedicine (Lond) 2018; 13:2139-2154. [PMID: 30129397 DOI: 10.2217/nnm-2018-0224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM Pharmacologic agents that affect autophagy were tested for their abilities to enhance macrophage nanoformulated antiretroviral drug (ARV) depots and its slow release. METHODS These agents included URMC-099, rapamycin, metformin, desmethylclomipramine, 2-hydroxy-β-cyclodextrin (HBC) and clonidine. Each was administered with nanoformulated atazanavir (ATV) nanoparticles to human monocyte-derived macrophages. ARV retention, antiretroviral activity and nanocrystal autophagosomal formation were evaluated. RESULTS URMC-099, HBC and clonidine retained ATV. HBC, URMC-099 and rapamycin improved intracellular ATV retention. URMC-099 proved superior among the group in affecting antiretroviral activities. CONCLUSION Autophagy inducing agents, notably URMC-099, facilitate nanoformulated ARV depots and lead to sustained release and improved antiretroviral responses. As such, they may be considered for development as part of long acting antiretroviral treatment regimens.
Collapse
Affiliation(s)
- Midhun B Thomas
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Divya Prakash Gnanadhas
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Prasanta K Dash
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Jatin Machhi
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Harris Gelbard
- Department of Neurology, University of Rochester Medical Centre, Rochester, NY 14618, USA
| | - Howard E Gendelman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Heon Lee I, Palombo MS, Zhang X, Szekely Z, Sinko PJ. Design and evaluation of a CXCR4 targeting peptide 4DV3 as an HIV entry inhibitor and a ligand for targeted drug delivery. Eur J Pharm Biopharm 2018; 138:11-22. [PMID: 29894816 DOI: 10.1016/j.ejpb.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 12/09/2022]
Abstract
The feasibility of utilizing the cell surface chemokine receptor CXCR4 for human immunodeficiency virus (HIV) entry inhibition and as an intracellular portal for targeted drug delivery was evaluated. Novel DV3 ligands (1DV3, 2DV3, and 4DV3) were designed, synthesized and conjugated to various probes (fluorescein isothiocyanate (FITC) or biotin) and cargos with sizes ranging from 10 to 50 nm (polyethylene glycol (PEG), streptavidin, and a polymeric nanoparticle). 4DV3 conjugated probes inhibited HIV-1 entry into the CXCR4-expressing reporter cell line TZM-bl (IC50 at 553 nM) whereas 1DV3 and 2DV3 did not. 4DV3 also inhibited binding of anti-CXCR4 antibody 44,708 to TZM-bl cells with nanomolar potency, while the small-molecule CXCR4 antagonist AMD3100 did not. Molecular modeling suggested simultaneous binding of a single 4DV3 molecule to four CXCR4 molecules. Differences in CXCR4-binding sites could explain the discrete inhibitory effects observed for 4DV3, the 44,708 antibody and AMD3100. In the Sup-T1 cell chemotaxis assay, the 4DV3 ligand functioned as a CXCR4 allosteric enhancer. In addition, 4DV3 ligand-conjugated cargos with sizes ranging from 10 to 50 nm were taken up into CXCR4-expressing Sup-T1 and TZM-bl cells, demonstrating that CXCR4 could serve as a drug delivery portal for nanocarriers. The uptake of 4DV3 functionalized nanocarriers combined with the allosteric interaction with CXCR4 suggests enhanced endocytosis occurs when 4DV3 is the targeting ligand. The current results indicate that 4DV3 might serve as a prototype for a new type of dual function ligand, one that acts as a HIV-1 entry inhibitor and a CXCR4 drug delivery targeting ligand.
Collapse
Affiliation(s)
- In Heon Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| | - Matthew S Palombo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| | - Xiaoping Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Ali A, Hwang EY, Choo J, Lim DW. PEGylated nanographene-mediated metallic nanoparticle clusters for surface enhanced Raman scattering-based biosensing. Analyst 2018; 143:2604-2615. [DOI: 10.1039/c8an00329g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We demonstrate PEGylated nano-sized graphene-induced AuNP clusters, which could serve as SERS nanotags for highly sensitive SERS-based biosensing.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Bionano Engineering and Bionanotechnology
- College of Engineering Sciences
- Hanyang University
- Ansan
- Republic of Korea
| | - Eun Young Hwang
- Department of Bionano Engineering and Bionanotechnology
- College of Engineering Sciences
- Hanyang University
- Ansan
- Republic of Korea
| | - Jaebum Choo
- Department of Bionano Engineering and Bionanotechnology
- College of Engineering Sciences
- Hanyang University
- Ansan
- Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering and Bionanotechnology
- College of Engineering Sciences
- Hanyang University
- Ansan
- Republic of Korea
| |
Collapse
|
8
|
Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 2016; 103:202-217. [PMID: 26944096 PMCID: PMC4935582 DOI: 10.1016/j.addr.2016.02.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022]
Abstract
In spite of significant advances in antiretroviral (ARV) therapy, the elimination of human immunodeficiency virus (HIV) reservoirs from the periphery and the central nervous system (CNS) remains a formidable task. The incapability of ARV to go across the blood-brain barrier (BBB) after systemic administration makes the brain one of the dominant HIV reservoirs. Thus, screening, monitoring, and elimination of HIV reservoirs from the brain remain a clinically daunting and key task. The practice and investigation of nanomedicine possesses potentials for therapeutics against neuroAIDS. This review highlights the advancements in nanoscience and nanotechnology to design and develop specific size therapeutic cargo for efficient navigation across BBB so as to recognize and eradicate HIV brain reservoirs. Different navigation and drug release strategies, their biocompatibility and efficacy with related challenges and future prospects are also discussed. This review would be an excellent platform to understand nano-enable multidisciplinary research to formulate efficient nanomedicine for the management of neuroAIDS.
Collapse
Key Words
- Anti-retroviral (ARV) therapy
- Blood–brain barrier (BBB)
- Bradykinin (PubChem CID: 439,201)
- CNS drug delivery
- Enfuvirtide (PubChem CID: 16,130,199), Lamivudine & Zidovudine (PubChem CID: 160,352)
- Ferrous oxide or iron (II) oxide (PubChem CID: 14,945)
- Foscarnet sodium (PubChem CID: 44,561)
- HIV monitoring
- HIV-1
- Magnetic nanoparticle
- Mannitol (PubChem CID: 6251)
- Nanotechnology
- Neopterin (PubChem CID: 4455)
- NeuroAIDS
- Pluronic-P85 (PubChem CID: 24,751)
- Saquinavir mesylate (PubChem CID: 60,934)
- Tenofovir disoproxil fumarate (PubChem CID: 6,398,764)
Collapse
Affiliation(s)
- Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C. Optimization of dendrimer structure for sentinel lymph node imaging: Effects of generation and terminal group. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2119-27. [DOI: 10.1016/j.nano.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/04/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
|
10
|
Jiang W, Luo J, Nangia S. Multiscale approach to investigate self-assembly of telodendrimer based nanocarriers for anticancer drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4270-4280. [PMID: 25532019 PMCID: PMC4760677 DOI: 10.1021/la503949b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 12/21/2014] [Indexed: 05/29/2023]
Abstract
Delivery of poorly soluble anticancer drugs can be achieved by employing polymeric drug delivery systems, capable of forming stable self-assembled nanocarriers with drug encapsulated within their hydrophobic cores. Computational investigations can aid the design of efficient drug-delivery platforms; however, simulations of nanocarrier self-assembly process are challenging due to high computational cost associated with the large system sizes (millions of atoms) and long time scales required for equilibration. In this work, we overcome this challenge by employing a multiscale computational approach in conjunction with experiments to analyze the role of the individual building blocks in the self-assembly of a highly tunable linear poly(ethylene glycol)-b-dendritic oligo(cholic acid) block copolymer called telodendrimer. The multiscale approach involved developing a coarse grained description of the telodendrimer, performing simulations over several microseconds to capture the self-assembly process, followed by reverse mapping of the coarse grained system to atomistic representation for structural analysis. Overcoming the computational bottleneck allowed us to run multiple self-assembly simulations and determine average size, drug-telodendrimer micellar stoichiometry, optimal drug loading capacity, and atomistic details such hydrogen-bonding and solvent accessible area of the nanocarrier. Computed results are in agreement with the experimental data, highlighting the success of the multiscale approach applied here.
Collapse
Affiliation(s)
| | - Juntao Luo
- †Department of Pharmacology, Upstate Cancer Research Institute, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | | |
Collapse
|
11
|
Vinogradov S, Warren G, Wei X. Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine (Lond) 2015; 9:695-707. [PMID: 24827844 DOI: 10.2217/nnm.14.13] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mϕ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs.
Collapse
Affiliation(s)
- Serguei Vinogradov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | | | |
Collapse
|
12
|
Qin Y, Li ZW, Yang Y, Yu CM, Gu DD, Deng H, Zhang T, Wang X, Wang AP, Luo WZ. Liposomes formulated with fMLP-modified cholesterol for enhancing drug concentration at inflammatory sites. J Drug Target 2014; 22:165-74. [PMID: 24392736 DOI: 10.3109/1061186x.2013.851683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Improving efficacy of inflammation treatment by increasing drug delivery to the inflammatory sites is a challenging endeavor. N-formyl-methionyl-leucyl-phenylalanine (fMLP), the first discovered leukocyte chemotaxis peptide, is composed of formyl methionine, leucine and phenylalanine. It conjugates with formyl peptide receptors on the target cells with high receptor expression on the surface such as macrophages. With this in mind, we developed a novel fMLP-modified liposome (fMLP-LIP) for enhancing drug delivery to the inflammatory sites and resolving the systemic reaction issue with conventional anti-inflammatory drugs. Being a more stable and cheaper liposomal component than phospholipids, cholesterol (CHO) has been thoroughly investigated as an alternative anchor. In this study, fMLP was covalently conjugated with CHO with polyethylene glycol link to prepare the liposomes, cellular uptake of liposomes by differentiated human U937 cells was examined and cellular uptake experiment in vitro was employed to optimize fMLP-LIP prescription and investigate the uptake mechanism. An in vivo inflammatory model was established to evaluate the targeting performance of fMLP-LIP to inflammatory site. The in vitro and in vivo findings indicate that the fMLP ligands playing an important role in increasing drug delivery to inflammatory sites and fMLP-LIP as a promising anti-inflammatory drug carrier.
Collapse
Affiliation(s)
- Yao Qin
- Department of Medicinal Chemistry, Chongqing Institute of Traditional Chinese Medicine , Chongqing , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ramana LN, Anand AR, Sethuraman S, Krishnan UM. Targeting strategies for delivery of anti-HIV drugs. J Control Release 2014; 192:271-83. [PMID: 25119469 PMCID: PMC7114626 DOI: 10.1016/j.jconrel.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 02/01/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection remains a significant cause of mortality globally. Though antiretroviral therapy has significantly reduced AIDS-related morbidity and mortality, there are several drawbacks in the current therapy, including toxicity, drug–drug interactions, development of drug resistance, necessity for long-term drug therapy, poor bio-availability and lack of access to tissues and reservoirs. To circumvent these problems, recent anti-HIV therapeutic research has focused on improving drug delivery systems through drug delivery targeted specifically to host cells infected with HIV or could potentially get infected with HIV. In this regard, several surface molecules of both viral and host cell origin have been described in recent years, that would enable targeted drug delivery in HIV infection. In the present review, we provide a comprehensive overview of the need for novel drug delivery systems, and the successes and challenges in the identification of novel viral and host-cell molecules for the targeted drug delivery of anti-HIV drugs. Such targeted anti-retroviral drug delivery approaches could pave the way for effective treatment and eradication of HIV from the body.
Collapse
Affiliation(s)
- Lakshmi Narashimhan Ramana
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | | | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India.
| |
Collapse
|
14
|
Wong DYQ, Yeo CHF, Ang WH. Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents. Angew Chem Int Ed Engl 2014; 53:6752-6. [PMID: 24844571 DOI: 10.1002/anie.201402879] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 12/22/2022]
Abstract
There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off-target immune-modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt-based chemotherapeutic agents to exploit their immune-activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal Pt(IV) prodrug containing a FPR1/2-targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.
Collapse
Affiliation(s)
- Daniel Yuan Qiang Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore (Singapore)
| | | | | |
Collapse
|
15
|
Wong DYQ, Yeo CHF, Ang WH. Immuno-Chemotherapeutic Platinum(IV) Prodrugs of Cisplatin as Multimodal Anticancer Agents. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402879] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Palombo M, Deshmukh M, Myers D, Gao J, Szekely Z, Sinko PJ. Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery. Annu Rev Pharmacol Toxicol 2013; 54:581-98. [PMID: 24160695 DOI: 10.1146/annurev-pharmtox-010611-134615] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel engineered nanomaterials (ENMs) are being developed to enhance therapy. The physicochemical properties of ENMs can be manipulated to control/direct biodistribution and target delivery, but these alterations also have implications for toxicity. It is well known that size plays a significant role in determining ENM effects since simply nanosizing a safe bulk material can render it toxic. However, charge, shape, rigidity, and surface modifications also have a significant influence on the biodistribution and toxicity of nanoscale drug delivery systems (NDDSs). In this review, NDDSs are considered in terms of platform technologies, materials, and physical properties that impart their pharmaceutical and toxicological effects. Moving forward, the development of safe and effective nanomedicines requires standardized protocols for determining the physical characteristics of ENMs as well as assessing their potential long-term toxicity. When such protocols are established, the remarkable promise of nanomedicine to improve the diagnosis and treatment of human disease can be fulfilled.
Collapse
Affiliation(s)
- Matthew Palombo
- School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854;
| | | | | | | | | | | |
Collapse
|
17
|
Mahajan SD, Aalinkeel R, Law WC, Reynolds JL, Nair BB, Sykes DE, Yong KT, Roy I, Prasad PN, Schwartz SA. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 2012; 7:5301-14. [PMID: 23055735 PMCID: PMC3468275 DOI: 10.2147/ijn.s25871] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The advent of highly active antiretroviral therapy (HAART) has significantly improved the prognosis for human immunodeficiency virus (HIV)-infected patients, however the adverse side effects associated with prolonged HAART therapy use continue. Although systemic viral load can be undetectable, the virus remains sequestered in anatomically privileged sites within the body. Nanotechnology-based delivery systems are being developed to target the virus within different tissue compartments and are being evaluated for their safety and efficacy. The current review outlines the various nanomaterials that are becoming increasingly used in biomedical applications by virtue of their robustness, safety, multimodality, and multifunctionality. Nanotechnology can revolutionize the field of HIV medicine by not only improving diagnosis, but also by improving delivery of antiretrovirals to targeted regions in the body and by significantly enhancing the efficacy of the currently available antiretroviral medications.
Collapse
Affiliation(s)
- Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Buffalo Niagara Medical Campus, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Parboosing R, Maguire GEM, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses 2012; 4:488-520. [PMID: 22590683 PMCID: PMC3347320 DOI: 10.3390/v4040488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/15/2012] [Accepted: 03/27/2012] [Indexed: 01/25/2023] Open
Abstract
Suboptimal adherence, toxicity, drug resistance and viral reservoirs make the lifelong treatment of HIV infection challenging. The emerging field of nanotechnology may play an important role in addressing these challenges by creating drugs that possess pharmacological advantages arising out of unique phenomena that occur at the “nano” scale. At these dimensions, particles have physicochemical properties that are distinct from those of bulk materials or single molecules or atoms. In this review, basic concepts and terms in nanotechnology are defined, and examples are provided of how nanopharmaceuticals such as nanocrystals, nanocapsules, nanoparticles, solid lipid nanoparticles, nanocarriers, micelles, liposomes and dendrimers have been investigated as potential anti-HIV therapies. Such drugs may, for example, be used to optimize the pharmacological characteristics of known antiretrovirals, deliver anti-HIV nucleic acids into infected cells or achieve targeted delivery of antivirals to the immune system, brain or latent reservoirs. Also, nanopharmaceuticals themselves may possess anti-HIV activity. However several hurdles remain, including toxicity, unwanted biological interactions and the difficulty and cost of large-scale synthesis of nanopharmaceuticals.
Collapse
Affiliation(s)
- Raveen Parboosing
- Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
- Author to whom correspondence should be addressed; ; Tel.: +27-31-240-2816; Fax: +27-31-240-2797
| | - Glenn E. M. Maguire
- School of Chemistry, University of KwaZulu-Natal, Varsity Drive, Durban 4001, South Africa; (G.E.M. M.); (H.G.K.)
| | - Patrick Govender
- School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa; (P.G.)
| | - Hendrik G. Kruger
- School of Chemistry, University of KwaZulu-Natal, Varsity Drive, Durban 4001, South Africa; (G.E.M. M.); (H.G.K.)
| |
Collapse
|
19
|
Chiappetta DA, Hocht C, Taira C, Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials 2011; 32:2379-87. [DOI: 10.1016/j.biomaterials.2010.11.082] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/30/2010] [Indexed: 01/16/2023]
|
20
|
Kaminskas LM, Boyd BJ. Nanosized Drug Delivery Vectors and the Reticuloendothelial System. INTRACELLULAR DELIVERY 2011. [DOI: 10.1007/978-94-007-1248-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Chiappetta DA, Alvarez-Lorenzo C, Rey-Rico A, Taboada P, Concheiro A, Sosnik A. N-alkylation of poloxamines modulates micellar assembly and encapsulation and release of the antiretroviral efavirenz. Eur J Pharm Biopharm 2010; 76:24-37. [DOI: 10.1016/j.ejpb.2010.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/12/2010] [Accepted: 05/16/2010] [Indexed: 11/26/2022]
|
22
|
Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, von Andrian U, Farokhzad OC. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5:269-85. [PMID: 20148638 DOI: 10.2217/nnm.10.1] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Currently, there is no cure and no preventive vaccine for HIV/AIDS. Combination antiretroviral therapy has dramatically improved treatment, but it has to be taken for a lifetime, has major side effects and is ineffective in patients in whom the virus develops resistance. Nanotechnology is an emerging multidisciplinary field that is revolutionizing medicine in the 21st century. It has a vast potential to radically advance the treatment and prevention of HIV/AIDS. In this review, we discuss the challenges with the current treatment of the disease and shed light on the remarkable potential of nanotechnology to provide more effective treatment and prevention for HIV/AIDS by advancing antiretroviral therapy, gene therapy, immunotherapy, vaccinology and microbicides.
Collapse
Affiliation(s)
- Tewodros Mamo
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gunaseelan S, Gunaseelan K, Deshmukh M, Zhang X, Sinko PJ. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 2010; 62:518-31. [PMID: 19941919 PMCID: PMC2841563 DOI: 10.1016/j.addr.2009.11.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/14/2009] [Indexed: 02/06/2023]
Abstract
A variety of nanocarriers such as bioconjugates, dendrimers, liposomes, and nanoparticles have been widely evaluated as potential targeted drug delivery systems. Passive targeting of nanoscale carriers is based on a size-flow-filtration phenomenon that is usually limited to tumors, the reticular endothelial system, and possibly lymph nodes (LNs). In fact, targeting the delivery of drugs to pivotal physiological sites such as the lymph nodes has emerged as a promising strategy in treating HIV disease. Ligands for specific cell surface receptors can be displayed on nanocarriers in order to achieve active targeting. The approach has been extensively used preclinically in cancer where certain receptors are over-expressed at various stages of the disease. Unfortunately, markers of HIV infection are lacking and latently infected cells do not show any signs of infection on their surface. However, the disease naturally targets only a few cell types. The HIV receptor CD4, coreceptors (CCR5 and CXCR4), and some receptors relatively specific for macrophages provide potentially valuable surface targets for drug delivery to all susceptible cells in patients infected by HIV. This review focuses on nanoscale targeting with an emphasis on surface modifications of drug delivery nanocarriers for active targeting. A number of related issues, including HIV biology, targets, pharmacokinetics, and intracellular fate as well as literature-cited examples of emerging surface-modified targeted carrier systems are discussed.
Collapse
Affiliation(s)
- Simi Gunaseelan
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
24
|
Chiappetta DA, Hocht C, Taira C, Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomedicine (Lond) 2010; 5:11-23. [DOI: 10.2217/nnm.09.90] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Children constitute the most challenging population in anti-HIV/AIDS pharmacotherapy. Efavirenz (EFV; aqueous solubility 4 µg/ml, bioavailability 40–45%) is a first-line agent in the pediatric therapeutic cocktail. The liquid formulation of EFV is not available worldwide, preventing appropriate dose adjustment and more convenient administration. The bioavailability of liquid EFV is lower than that of the solid formulation. Improving the bioavailability of the drug would reduce the cost of treatment and enable less affluent patients to access this drug. Aim: To encapsulate EFV in polymeric micelles to improve the aqueous solubility and the the oral bioavailability of the drug. Methods: EFV was incorporated into the core of linear and branched poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles. The size and size distribution of the drug-loaded aggregates were characterized by dynamic light scattering and the morphology by transmission electron microscopy. The bioavailability of the EFV-loaded micellar system (20 mg/ml) was assessed in male Wistar rats (40 mg/kg) and compared to that of a suspension prepared with the content of EFV capsules in 1.5% carboxymethylcellulose PBS solution (pH 5.0), and an EFV solution in a medium-chain triglyceride (Miglyol® 812). Results: This work demonstrates that the encapsulation of EFV, which is poorly water soluble, into polymeric micelles of different poly(ethylene oxide)–poly(propylene oxide) block copolymers significantly improves the oral bioavailability of the drug, and reduces the interindividual variability. Conclusion: This strategy appears a very promising one towards the development of a liquid aqueous EFV formulation for the improved pediatric HIV pharmacotherapy.
Collapse
Affiliation(s)
- Diego A Chiappetta
- The Group of Biomaterials & Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, 956 Junín St., 6th Floor, Buenos Aires CP1113, Argentina
- National Science Research Council (CONICET), Buenos Aires, Argentina
| | - Christian Hocht
- Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, 956 Junín St., Buenos Aires CP1113, Argentina
| | - Carlos Taira
- Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, 956 Junín St., Buenos Aires CP1113, Argentina
- National Science Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandro Sosnik
- The Group of Biomaterials & Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, 956 Junín St., 6th Floor, Buenos Aires CP1113, Argentina
- National Science Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Stimuli-responsive star poly(ethylene glycol) drug conjugates for improved intracellular delivery of the drug in neuroinflammation. J Control Release 2009; 142:447-56. [PMID: 19896998 DOI: 10.1016/j.jconrel.2009.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 10/31/2009] [Indexed: 11/20/2022]
Abstract
N-Acetyl cysteine (NAC) is a vital drug currently under clinical trials for the treatment of neuroinflammation in maternal-fetal applications. The free sulfhydryl groups in NAC lead to high plasma protein binding, resulting in low bioavailability. Preparation and activity of conjugates of NAC with thiol terminated multi-arm (6 and 8) poly(ethylene-glycol) (PEG) with disulfide linkages involving sulfhydryls of NAC are reported. Multiple copies (5 and 7) of NAC were conjugated on 6 and 8-arm-PEG respectively. Both the conjugates released 74% of NAC within 2h by thiol exchange reactions in the redox environment provided by glutathione (GSH) intracellularly (2-10mM). At physiological extracellular glutathione concentration (2 microM) both the conjugates were stable and did not release NAC. MTT assay showed comparable cell viability for unmodified PEGs and both the PEG-S-S-NAC conjugates. The conjugates were readily endocytosed by cells, as confirmed by flow cytometry and confocal microscopy. Efficacy of 6 and 8-arm-PEG-S-S-NAC conjugates was evaluated on activated microglial cells (the target cells, in vivo) by monitoring cytokine release in lipopolysaccharide (LPS) induced inflammatory response in microglial cells using the reactive oxygen species (ROS), free radical nitrile (NO), anti-inflammatory activity and GSH depletion. The conjugates showed significant increase in antioxidant activity (more than a factor of 2) compared to free drug as seen from the inhibition of LPS induced ROS, NO, GSH and tumor necrosis factor-alpha (TNF-alpha) release in microglial cells.
Collapse
|
26
|
Sosnik A, Chiappetta DA, Carcaboso ÁM. Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead. J Control Release 2009; 138:2-15. [DOI: 10.1016/j.jconrel.2009.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/04/2009] [Indexed: 01/04/2023]
|
27
|
Gunaseelan S, Pooyan S, Chen P, Samizadeh M, Palombo MS, Stein S, Zhang X, Sinko PJ. Multimeric peptide-based PEG nanocarriers with programmable elimination properties. Biomaterials 2009; 30:5649-59. [PMID: 19647312 DOI: 10.1016/j.biomaterials.2009.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 05/21/2009] [Indexed: 11/16/2022]
Abstract
In the current study, the design, synthetic feasibility and biochemical characterization of biodegradable peptidic PEG-based nanocarriers are described. The components were selected to influence the body elimination pathway upon nanocarrier biodegradation. Two prototypical nanocarriers were prepared using non-PEGylated and PEGylated peptidic cores [CH(3)CO-(Lys-betaAla-betaAla)(X)-Cys-CONH(2) (X=2, 4)]. A homodimeric nanocarrier with 4 copies of fluorescein-PEG5kDa was synthesized by linking two PEGylated peptidic cores (X=2) using a disulfide bond. A dual labeled heterodimeric nanocarrier with 2 copies of fluorescein-PEG5kDa and 4 copies of Texas Red was also synthesized. Optimum conditions for linking imaging agents, PEG, or a peptidic core to a peptidic core were determined. Significantly higher yields (69% versus 30%) of the PEGylated peptidic core were obtained by using 2 copies of beta-alanine as a spacer along with increasing DMSO concentrations, which resulted in reduced steric hindrance. Stoichiometric addition of the components was also demonstrated and found to be important for reducing polydispersity. Nanocarrier biodegradation was evaluated in simulated intracellular and extracellular/blood environments using 3 mm and 10 microm glutathione in buffer, respectively. The nanocarrier was 9-fold more stable in the extracellular environment. The results suggest selective intracellular degradation of the nanocarrier into components with known body elimination pathways.
Collapse
Affiliation(s)
- Simi Gunaseelan
- Department of Pharmaceutics, Rutgers University, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Palombo M, Singh Y, Sinko P. Prodrug and conjugate drug delivery strategies for improving HIV/AIDS therapy. J Drug Deliv Sci Technol 2009; 19:3-14. [DOI: 10.1016/s1773-2247(09)50001-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|