1
|
Barros M, Arroyo P, Sáez JA, Gil S, Parra M, Costa SPG, Raposo MMM, Gaviña P. Push-pull fluorophores based on NHS esters of bithiophene for labelling of biomolecules containing primary amines. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241816. [PMID: 40012754 PMCID: PMC11863869 DOI: 10.1098/rsos.241816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 02/28/2025]
Abstract
Fluorescent labelling is a versatile tool to visualize biomolecules containing primary amines in their cellular environment, allowing the study of their function or interactions. Here, three organic fluorophores that can irreversibly bind to the primary amine group on the target biomolecule are reported. They consist of push-pull heterocyclic dyes based on bithiophene and incorporating a terminal N-hydroxysuccinimidyl ester as a reactive group for labelling primary amine groups from biomolecules as (poly)amines, peptides or proteins. Their potential as chemosensors for primary amines, using Nα-Boc protected amino acid l-lysine as a model, was assessed through UV-Visible, fluorescence and 1H NMR titrations.
Collapse
Affiliation(s)
- Mariana Barros
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, Universitat Politècnica de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
| | - Pau Arroyo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, Universitat Politècnica de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
- Departamento de Química Orgánica, Universitat de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
| | - Jose A. Sáez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, Universitat Politècnica de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
- Departamento de Química Orgánica, Universitat de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
| | - Salvador Gil
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, Universitat Politècnica de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
- Departamento de Química Orgánica, Universitat de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Margarita Parra
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, Universitat Politècnica de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
- Departamento de Química Orgánica, Universitat de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Susana P. G. Costa
- Center of Chemistry, University of Minho, Campus de Gualtar, Braga4710-57, Portugal
| | - M. Manuela M. Raposo
- Center of Chemistry, University of Minho, Campus de Gualtar, Braga4710-57, Portugal
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, Universitat Politècnica de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
- Departamento de Química Orgánica, Universitat de València, c/ Doctor Moliner 50, Burjassot, Valencia46100, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
2
|
Tsao KK, Imai S, Chang M, Hario S, Terai T, Campbell RE. The best of both worlds: Chemigenetic fluorescent sensors for biological imaging. Cell Chem Biol 2024; 31:1652-1664. [PMID: 39236713 PMCID: PMC11466441 DOI: 10.1016/j.chembiol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
Synthetic-based fluorescent chemosensors and protein-based fluorescent biosensors are two well-established classes of tools for visualizing and monitoring biological processes in living tissues. Chemigenetic sensors, created using a combination of both synthetic parts and protein parts, are an emerging class of tools that aims to combine the strengths, and overcome the drawbacks, of traditional chemosensors and biosensors. This review will survey the landscape of strategies used for fluorescent chemigenetic sensor design. These strategies include: attachment of synthetic elements to proteins using in vitro protein conjugation; attachment of synthetic elements to proteins using autonomous protein labeling; and translational incorporation of unnatural amino acids.
Collapse
Affiliation(s)
- Kelvin K Tsao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saaya Hario
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CERVO, Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, QC G1J 2G3, Canada.
| |
Collapse
|
3
|
Oppenheimer KG, Hager NA, McAtee CK, Filiztekin E, Shang C, Warnick JA, Bruchez MP, Brodsky JL, Prosser DC, Kwiatkowski AV, O’Donnell AF. Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae. Mol Biol Cell 2024; 35:mr5. [PMID: 38809589 PMCID: PMC11244157 DOI: 10.1091/mbc.e24-04-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.
Collapse
Affiliation(s)
| | - Natalie A. Hager
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Elif Filiztekin
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Adam V. Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
4
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
5
|
Cole MS, Hegde PV, Aldrich CC. β-Lactamase-Mediated Fragmentation: Historical Perspectives and Recent Advances in Diagnostics, Imaging, and Antibacterial Design. ACS Infect Dis 2022; 8:1992-2018. [PMID: 36048623 DOI: 10.1021/acsinfecdis.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of β-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of β-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health. Nonetheless, researchers have developed strategies that take advantage of this defense mechanism, exploiting BLase activity in the creation of probes, diagnostic tools, and even novel antibiotics selective for resistant organisms. Early discoveries in the 1960s and 1970s demonstrating that certain BLs expel a leaving group upon BLase cleavage have spawned an entire field dedicated to employing this selective release mechanism, termed BLase-mediated fragmentation. Chemical probes have been developed for imaging and studying BLase-expressing organisms in the laboratory and diagnosing BL-resistant infections in the clinic. Perhaps most promising, new antibiotics have been developed that use BLase-mediated fragmentation to selectively release cytotoxic chemical "warheads" at the site of infection, reducing off-target effects and allowing for the repurposing of putative antibiotics against resistant organisms. This Review will provide some historical background to the emergence of this field and highlight some exciting recent reports that demonstrate the promise of this unique release mechanism.
Collapse
Affiliation(s)
- Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
7
|
Mizukami S. Development of Photoresponsive Probes to Investigate Cellular Functions. YAKUGAKU ZASSHI 2022; 142:503-511. [DOI: 10.1248/yakushi.21-00203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|
8
|
Kumar P, Lavis LD. Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. Annu Rev Neurosci 2022; 45:131-150. [PMID: 35226826 DOI: 10.1146/annurev-neuro-110520-030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
9
|
Kowada T, Arai K, Yoshimura A, Matsui T, Kikuchi K, Mizukami S. Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Keisuke Arai
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Akimasa Yoshimura
- Graduate School of Engineering Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Center for Quantum Information and Quantum Biology Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| |
Collapse
|
10
|
Kowada T, Arai K, Yoshimura A, Matsui T, Kikuchi K, Mizukami S. Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew Chem Int Ed Engl 2021; 60:11378-11383. [PMID: 33644979 DOI: 10.1002/anie.202016684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Indexed: 12/21/2022]
Abstract
The photoactivatable chemically induced dimerization (photo-CID) technique for tag-fused proteins is one of the most promising methods for regulating subcellular protein translocations and protein-protein interactions. However, light-induced covalent protein dimerization in living cells has yet to be established, despite its various advantages. Herein, we developed a photoactivatable covalent protein-labeling technology by applying a caged ligand to the BL-tag system, a covalent protein labeling system that uses mutant β-lactamase. We further developed CBHD, a caged protein dimerizer, using caged BL-tag and HaloTag ligands, and achieved light-induced protein translocation from the cytoplasm to subcellular regions. In addition, this covalent photo-CID system enabled quick protein translocation to a laser-illuminated microregion. These results indicate that the covalent photo-CID system will expand the scope of CID applications in the optical manipulation of cellular functions.
Collapse
Affiliation(s)
- Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Akimasa Yoshimura
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Immunology Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
11
|
Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116092] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Meyer MD, Ryck JD, Goormachtig S, Van Damme P. Keeping in Touch with Type-III Secretion System Effectors: Mass Spectrometry-Based Proteomics to Study Effector-Host Protein-Protein Interactions. Int J Mol Sci 2020; 21:E6891. [PMID: 32961832 PMCID: PMC7555288 DOI: 10.3390/ijms21186891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
Manipulation of host cellular processes by translocated bacterial effectors is key to the success of bacterial pathogens and some symbionts. Therefore, a comprehensive understanding of effectors is of critical importance to understand infection biology. It has become increasingly clear that the identification of host protein targets contributes invaluable knowledge to the characterization of effector function during pathogenesis. Recent advances in mapping protein-protein interaction networks by means of mass spectrometry-based interactomics have enabled the identification of host targets at large-scale. In this review, we highlight mass spectrometry-driven proteomics strategies and recent advances to elucidate type-III secretion system effector-host protein-protein interactions. Furthermore, we highlight approaches for defining spatial and temporal effector-host interactions, and discuss possible avenues for studying natively delivered effectors in the context of infection. Overall, the knowledge gained when unravelling effector complexation with host factors will provide novel opportunities to control infectious disease outcomes.
Collapse
Affiliation(s)
- Margaux De Meyer
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Medical Biotechnology, Technologiepark 75, 9052 Zwijnaarde, Belgium
| | - Joren De Ryck
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Sofie Goormachtig
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
| |
Collapse
|
13
|
Hoelzel CA, Zhang X. Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies. Chembiochem 2020; 21:1935-1946. [PMID: 32180315 PMCID: PMC7367766 DOI: 10.1002/cbic.202000037] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Visualizing and manipulating the behavior of proteins is crucial to understanding the physiology of the cell. Methods of biorthogonal protein labeling are important tools to attain this goal. In this review, we discuss advances in probe technology specific for self-labeling protein tags, focusing mainly on the application of HaloTag and SNAP-tag systems. We describe the latest developments in small-molecule probes that enable fluorogenic (no wash) imaging and super-resolution fluorescence microscopy. In addition, we cover several methodologies that enable the perturbation or manipulation of protein behavior and function towards the control of biological pathways. Thus, current technical advances in the HaloTag and SNAP-tag systems means that they are becoming powerful tools to enable the visualization and manipulation of biological processes, providing invaluable scientific insights that are difficult to obtain by traditional methodologies. As the multiplex of self-labeling protein tag systems continues to be developed and expanded, the utility of these protein tags will allow researchers to address previously inaccessible questions at the forefront of biology.
Collapse
Affiliation(s)
- Conner A Hoelzel
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| |
Collapse
|
14
|
Gallo E. Fluorogen-Activating Proteins: Next-Generation Fluorescence Probes for Biological Research. Bioconjug Chem 2019; 31:16-27. [DOI: 10.1021/acs.bioconjchem.9b00710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Charles Best Institute, 112 College Street, Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
15
|
Nguyen HT, Ganapati S, Watts D, Nanayakkara IA, DeShong P, White IM. New Trimodal Phenotypic Reporter of Extended-Spectrum β-Lactamase Activity. ACS Infect Dis 2019; 5:1731-1737. [PMID: 31478368 DOI: 10.1021/acsinfecdis.9b00138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacterial resistance to β-lactam antibiotics continues to grow as misadministration presents evolutionary pressure that drives bacteria to develop improved resistance enzymes. Known as extended-spectrum β-lactamases (ESBLs), these enzymes are capable of hydrolyzing advanced β-lactam antibiotics such as third-generation (and higher) cephalosporins. Phenotypic detection substrates can be used to rapidly identify a cultured patient sample prior to confirmation by more exhaustive but slower means, critically aiding in the antibiotic stewardship essential in maintaining the effectiveness of not only the cephalosporins but also indirectly the carbapenems, our last-resort β-lactams. To enhance the phenotypic detection arsenal, we have designed an ESBL detection substrate that releases a glucose molecule upon β-lactamase hydrolysis. Because many forms of detection for glucose exist, the substrate enables ESBL quantification via three modalities commonly found in the clinical laboratory: optical absorbance, for use with the most common microbiology platforms; fluorescence, for enhanced sensitivity; and electrochemistry, which offers the potential for integration into a hand-held platform similar to a personal glucometer. Moreover, we demonstrate that, as opposed to currently available phenotypic detection substrates, our new substrate is engineered to be resistant to older and narrower β-lactamases, thus enabling specific identification of newer and more dangerous ESBLs.
Collapse
Affiliation(s)
- Hieu T. Nguyen
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Shweta Ganapati
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - David Watts
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Imaly A. Nanayakkara
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Philip DeShong
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Ian M. White
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Single-molecule localization to study cytoskeletal structures, membrane complexes, and mechanosensors. Biophys Rev 2019; 11:745-756. [PMID: 31529362 DOI: 10.1007/s12551-019-00595-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
In the last decades, a promising breakthrough in fluorescence imaging was represented by the advent of super-resolution microscopy (SRM). Super-resolution techniques recently became a popular method to study sub-cellular structures, providing a successful approach to observe cytoskeletal and focal adhesion proteins. Among the SR techniques, single-molecule localization microscopy plays a significant role due to its ability to unveil structures and molecular organizations in biological systems. Furthermore, since they provide information at the molecular level, these techniques are increasingly being used to study the stoichiometry and interaction between several membrane channel proteins and their accessory subunits. The aim of this review is to describe the single-molecule localization-based techniques and their applications relevant to cytoskeletal structures and membrane complexes in order to provide as future prospective an overall picture of their correlation with the mechanosensor channel expression and activity.
Collapse
|
17
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Development of an effective protein-labeling system based on smart fluorogenic probes. J Biol Inorg Chem 2019; 24:443-455. [PMID: 31152238 DOI: 10.1007/s00775-019-01669-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022]
Abstract
Proteins are an important component of living systems and play a crucial role in various physiological functions. Fluorescence imaging of proteins is a powerful tool for monitoring protein dynamics. Fluorescent protein (FP)-based labeling methods are frequently used to monitor the movement and interaction of cellular proteins. However, alternative methods have also been developed that allow the use of synthetic fluorescent probes to target a protein of interest (POI). Synthetic fluorescent probes have various advantages over FP-based labeling methods. They are smaller in size than the fluorescent proteins, offer a wide variety of colors and have improved photochemical properties. There are various chemical recognition-based labeling techniques that can be used for labeling a POI with a synthetic probe. In this review, we focus on the development of protein-labeling systems, particularly the SNAP-tag, BL-tag, and PYP-tag systems, and understanding the fluorescence behavior of the fluorescently labeled target protein in these systems. We also discuss the smart fluorogenic probes for these protein-labeling systems and their applications. The fluorogenic protein labeling will be a useful tool to investigate complex biological phenomena in future work on cell biology.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Hori
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Sato R, Kozuka J, Ueda M, Mishima R, Kumagai Y, Yoshimura A, Minoshima M, Mizukami S, Kikuchi K. Intracellular Protein-Labeling Probes for Multicolor Single-Molecule Imaging of Immune Receptor-Adaptor Molecular Dynamics. J Am Chem Soc 2017; 139:17397-17404. [PMID: 29119782 DOI: 10.1021/jacs.7b08262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-molecule imaging (SMI) has been widely utilized to investigate biomolecular dynamics and protein-protein interactions in living cells. However, multicolor SMI of intracellular proteins is challenging because of high background signals and other limitations of current fluorescence labeling approaches. To achieve reproducible intracellular SMI, a labeling probe ensuring both efficient membrane permeability and minimal non-specific binding to cell components is essential. We developed near-infrared fluorescent probes for protein labeling that specifically bind to a mutant β-lactamase tag. By structural fine-tuning of cell permeability and minimized non-specific binding, SiRcB4 enabled multicolor SMI in combination with a HaloTag-based red-fluorescent probe. Upon addition of both chemical probes at sub-nanomolar concentrations, single-molecule imaging revealed the dynamics of TLR4 and its adaptor protein, TIRAP, which are involved in the innate immune system. Statistical analysis of the quantitative properties and time-lapse changes in dynamics revealed a protein-protein interaction in response to ligand stimulation.
Collapse
Affiliation(s)
- Ryota Sato
- Department of Material and Life Science, Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Jun Kozuka
- RIKEN Quantitative Biology , Suita, Osaka 565-0874, Japan
| | - Masahiro Ueda
- RIKEN Quantitative Biology , Suita, Osaka 565-0874, Japan
| | - Reiko Mishima
- Quantitative Immunology Research Unit, WPI-Immunology Frontier Research Center, Osaka University , Suita, Osaka 565-0871, Japan
| | - Yutaro Kumagai
- Quantitative Immunology Research Unit, WPI-Immunology Frontier Research Center, Osaka University , Suita, Osaka 565-0871, Japan
| | - Akimasa Yoshimura
- Department of Material and Life Science, Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Masafumi Minoshima
- Department of Material and Life Science, Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , Sendai, Miyagi, 980-8577, Japan
| | - Kazuya Kikuchi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan.,Chemical Imaging Techniques, WPI-Immunology Frontier Research Center, Osaka University , Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Serrat MA, Ion G. Imaging IGF-I uptake in growth plate cartilage using in vivo multiphoton microscopy. J Appl Physiol (1985) 2017; 123:1101-1109. [PMID: 28798204 DOI: 10.1152/japplphysiol.00645.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Bones elongate through endochondral ossification in cartilaginous growth plates located at ends of primary long bones. Linear growth ensues from a cascade of biochemical signals initiated by actions of systemic and local regulators on growth plate chondrocytes. Although cellular processes are well defined, there is a fundamental gap in understanding how growth regulators are physically transported from surrounding blood vessels into and through dense, avascular cartilage matrix. Intravital imaging using in vivo multiphoton microscopy is one promising strategy to overcome this barrier by quantitatively tracking molecular delivery to cartilage from the vasculature in real time. We previously used in vivo multiphoton imaging to show that hindlimb heating increases vascular access of large molecules to growth plates using 10-, 40-, and 70-kDa dextran tracers. To comparatively evaluate transport of similarly sized physiological regulators, we developed and validated methods for measuring uptake of biologically active IGF-I into proximal tibial growth plates of live 5-wk-old mice. We demonstrate that fluorescently labeled IGF-I (8.2 kDa) is readily taken up in the growth plate and localizes to chondrocytes. Bioactivity tests performed on cultured metatarsal bones confirmed that the labeled protein is functional, assessed by phosphorylation of its signaling kinase, Akt. This methodology, which can be broadly applied to many different proteins and tissues, is relevant for understanding factors that affect delivery of biologically relevant molecules to the skeleton in real time. Results may lead to the development of drug-targeting strategies to treat a wide range of bone and cartilage pathologies.NEW & NOTEWORTHY This paper describes and validates a novel method for imaging transport of biologically active, fluorescently labeled IGF-I into skeletal growth plates of live mice using multiphoton microscopy. Cellular patterns of fluorescence in the growth plate were completely distinct from our prior publications using biologically inert probes, demonstrating for the first time in vivo localization of IGF-I in chondrocytes and perichondrium. These results form important groundwork for future studies aimed at targeting therapeutics into growth plates.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Gabriela Ion
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
20
|
Mizukami S, Kikuchi K. [Visualization and Functional Regulation of Live Cell Proteins Based on Labeling Probe Design]. YAKUGAKU ZASSHI 2016; 136:21-7. [PMID: 26725663 DOI: 10.1248/yakushi.15-00225-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are several approaches to understanding the physiological roles of biomolecules: (1) by observing the localization or activities of biomolecules (based on microscopic imaging experiments with fluorescent proteins or fluorescent probes) and (2) by investigating the cellular response via activation or suppression of functions of the target molecule (by using inhibitors, antagonists, siRNAs, etc.). In this context, protein-labeling technology serves as a powerful tool that can be used in various experiments, such as for fluorescence imaging of target proteins. Recently, we developed a protein-labeling technology that uses a mutant β-lactamase (a bacterial hydrolase) as the tag protein. In this protein-labeling technology, also referred to as the BL-tag technology, various β-lactam compounds were used as specific ligands that were covalently labeled to the tag. One major advantage of this labeling technology is that various functions can be carried out by suitably designing both the functional moieties such as the fluorophore and the β-lactam ligand structure. In this review, we briefly introduce the BL-tag technology and describe our future outlook for this technology, such as in fluorescence imaging of biomolecules and functional regulation of cellular proteins in living cells.
Collapse
Affiliation(s)
- Shin Mizukami
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University
| | | |
Collapse
|
21
|
Clark SA, Singh V, Vega Mendoza D, Margolin W, Kool ET. Light-Up "Channel Dyes" for Haloalkane-Based Protein Labeling in Vitro and in Bacterial Cells. Bioconjug Chem 2016; 27:2839-2843. [PMID: 27998074 DOI: 10.1021/acs.bioconjchem.6b00613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a novel molecular strategy for engendering a strong light-up signal in fluorescence tagging of the genetically encoded HaloTag protein domain. We designed a set of haloalkane-derivatized dyes having twisted internal charge transfer (TICT) structures potentially narrow enough to partially fit into the enzyme's haloalkane-binding channel. Testing a range of short chain lengths revealed a number of active dyes, with seven carbons yielding optimum light-up signal. The dimethylaminostilbazolium chloroheptyl dye (1d) yields a 27-fold fluorescence emission enhancement (λex = 535 nm; Em(max) = 616 nm) upon reaction with the protein. The control compound with standard 12-atom linkage shows less efficient signaling, consistent with our channel-binding hypothesis. For emission further to the red, we also prepared a chloroheptyl naphthalene-based dye; compound 2 emits at 653 nm with strong fluorescence enhancement upon reaction with the HaloTag domain. The two dyes (1d, 2) were successfully tested in wash-free imaging of protein localization in bacteria, using a HaloTag fusion of the filamenting temperature-sensitive mutant Z (FtsZ) protein in Escherichia coli (E. coli). The new dye conjugates are inexpensive and easily synthesized enzyme substrates with low background and large Stokes shifts, offering substantial benefits over known fluorescent substrates for the HaloTag enzyme.
Collapse
Affiliation(s)
- Spencer A Clark
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Vijay Singh
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Daniel Vega Mendoza
- Department of Microbiology and Molecular Genetics, McGovern Medical School , Houston, Texas 77030, United States
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School , Houston, Texas 77030, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
22
|
Baranczak A, Connelly S, Liu Y, Choi S, Grimster NP, Powers ET, Wilson IA, Kelly JW. Fluorogenic small molecules requiring reaction with a specific protein to create a fluorescent conjugate for biological imaging--what we know and what we need to learn. Biopolymers 2016; 101:484-95. [PMID: 24105107 DOI: 10.1002/bip.22407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/03/2013] [Indexed: 01/03/2023]
Abstract
We seek fluorogenic small molecules that generate a fluorescent conjugate signal if and only if they react with a given protein-of-interest (i.e., small molecules for which noncovalent binding to the protein-of-interest is insufficient to generate fluorescence). Consequently, it is the new chemical entity afforded by the generally irreversible reaction between the small molecule and the protein-of-interest that enables the energy of an electron occupying the lowest unoccupied molecular orbital (LUMO) of the chromophore to be given off as a photon instead of being dissipated by nonradiative mechanisms in complex biological environments. This category of fluorogenic small molecules is created by starting with environmentally sensitive fluorophores that are modified by an essential functional group that efficiently quenches the fluorescence until a chemoselective reaction between that functional group and the protein-of-interest occurs, yielding the fluorescent conjugate. Fluorogenic small molecules are envisioned to be useful for a wide variety of applications, including live cell imaging without the requirement for washing steps and pulse-chase kinetic analyses of protein synthesis, trafficking, degradation, etc.
Collapse
Affiliation(s)
- Aleksandra Baranczak
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, 92037
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes. NANOMATERIALS 2016; 6:nano6040056. [PMID: 28335184 PMCID: PMC5302567 DOI: 10.3390/nano6040056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 11/23/2022]
Abstract
The impeccable photostability of fluorescent nanodiamonds (FNDs) is an ideal property for use in fluorescence imaging of proteins in living cells. However, such an application requires highly specific labeling of the target proteins with FNDs. Furthermore, the surface of unmodified FNDs tends to adsorb biomolecules nonspecifically, which hinders the reliable targeting of proteins with FNDs. Here, we combined hyperbranched polyglycerol modification of FNDs with the β-lactamase-tag system to develop a strategy for selective imaging of the protein of interest in cells. The combination of these techniques enabled site-specific labeling of Interleukin-18 receptor alpha chain, a membrane receptor, with FNDs, which eventually enabled tracking of the diffusion trajectory of FND-labeled proteins on the membrane surface.
Collapse
|
24
|
|
25
|
Telmer CA, Verma R, Teng H, Andreko S, Law L, Bruchez MP. Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by targeted fluorogen activating proteins. ACS Chem Biol 2015; 10:1239-46. [PMID: 25650487 PMCID: PMC4867890 DOI: 10.1021/cb500957k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Live cell imaging
requires bright photostable dyes that can target
intracellular organelles and proteins with high specificity in a no-wash
protocol. Organic dyes possess the desired photochemical properties
and can be covalently linked to various protein tags. The currently
available fluorogenic dyes are in the green/yellow range where there
is high cellular autofluorescence and the near-infrared (NIR) dyes
need to be washed out. Protein-mediated activation of far-red fluorogenic
dyes has the potential to address these challenges because the cell-permeant
dye is small and nonfluorescent until bound to its activating protein,
and this binding is rapid. In this study, three single chain variable
fragment (scFv)-derived fluorogen activating proteins (FAPs), which
activate far-red emitting fluorogens, were evaluated for targeting,
brightness, and photostability in the cytosol, nucleus, mitochondria,
peroxisomes, and endoplasmic reticulum with a cell-permeant malachite
green analog in cultured mammalian cells. Efficient labeling was achieved
within 20–30 min for each protein upon the addition of nM concentrations
of dye, producing a signal that colocalized significantly with a linked
mCerulean3 (mCer3) fluorescent protein and organelle specific dyes
but showed divergent photostability and brightness properties dependent
on the FAP. These FAPs and the ester of malachite green dye (MGe)
can be used as specific, rapid, and wash-free labels for intracellular
sites in live cells with far-red excitation and emission properties,
useful in a variety of multicolor experiments.
Collapse
Affiliation(s)
- Cheryl A. Telmer
- Molecular Biosensor and Imaging
Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Richa Verma
- Molecular Biosensor and Imaging
Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Haibing Teng
- Molecular Biosensor and Imaging
Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Susan Andreko
- Molecular Biosensor and Imaging
Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Leann Law
- Molecular Biosensor and Imaging
Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P. Bruchez
- Molecular Biosensor and Imaging
Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
26
|
Portal CF, Seifert JM, Buehler C, Meisner-Kober NC, Auer M. Novel 1:1 Labeling and Purification Process for C-Terminal Thioester and Single Cysteine Recombinant Proteins Using Generic Peptidic Toolbox Reagents. Bioconjug Chem 2014; 25:1213-22. [DOI: 10.1021/bc5000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Christophe F. Portal
- School
of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, The King’s Buildings, CH Waddington Building
3.07, Mayfield Road, Edinburgh EH9 3JD, United Kingdom
| | - Jan-Marcus Seifert
- Innovative
Screening Technologies Unit, Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
- Marinomed Biotechnologie GmbH, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Christof Buehler
- Innovative
Screening Technologies Unit, Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
- Supercomputing Systems AG, Technoparkstrasse
1, 8005 Zürich, Switzerland
| | - Nicole-Claudia Meisner-Kober
- Innovative
Screening Technologies Unit, Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
- Novartis Institutes for BioMedical Research, Novartis Campus Forum 1, 4056 Basel, Switzerland
| | - Manfred Auer
- School
of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, The King’s Buildings, CH Waddington Building
3.07, Mayfield Road, Edinburgh EH9 3JD, United Kingdom
- Innovative
Screening Technologies Unit, Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
| |
Collapse
|
27
|
Feng S, Laketa V, Stein F, Rutkowska A, MacNamara A, Depner S, Klingmüller U, Saez-Rodriguez J, Schultz C. A rapidly reversible chemical dimerizer system to study lipid signaling in living cells. Angew Chem Int Ed Engl 2014; 53:6720-3. [PMID: 24841150 DOI: 10.1002/anie.201402294] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Indexed: 01/11/2023]
Abstract
Chemical dimerizers are powerful tools for non-invasive manipulation of enzyme activities in intact cells. Here we introduce the first rapidly reversible small-molecule-based dimerization system and demonstrate a sufficiently fast switch-off to determine kinetics of lipid metabolizing enzymes in living cells. We applied this new method to induce and stop phosphatidylinositol 3-kinase (PI3K) activity, allowing us to quantitatively measure the turnover of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and its downstream effectors by confocal fluorescence microscopy as well as standard biochemical methods.
Collapse
Affiliation(s)
- Suihan Feng
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Feng S, Laketa V, Stein F, Rutkowska A, MacNamara A, Depner S, Klingmüller U, Saez-Rodriguez J, Schultz C. A Rapidly Reversible Chemical Dimerizer System to Study Lipid Signaling in Living Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Shi H, Cheng Y, Lee KH, Luo RF, Banaei N, Rao J. Engineering the Stereochemistry of Cephalosporin for Specific Detection of Pathogenic Carbapenemase-Expressing Bacteria. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Shi H, Cheng Y, Lee KH, Luo RF, Banaei N, Rao J. Engineering the Stereochemistry of Cephalosporin for Specific Detection of Pathogenic Carbapenemase-Expressing Bacteria. Angew Chem Int Ed Engl 2014; 53:8113-6. [DOI: 10.1002/anie.201402012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/25/2014] [Indexed: 01/19/2023]
|
31
|
Yoshimura A, Mizukami S, Mori Y, Yoshioka Y, Kikuchi K. 1H MRI Detection of Gene Expression in Living Cells by Using Protein Tag and Biotinylation Probe. CHEM LETT 2014. [DOI: 10.1246/cl.130942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Shin Mizukami
- Graduate School of Engineering, Osaka University
- Immunology Frontier Research Center (IFReC), Osaka University
| | - Yuki Mori
- Immunology Frontier Research Center (IFReC), Osaka University
- High Performance Bioimaging Research Facility, Graduate School of Frontier Biosciences, Osaka University
| | - Yoshichika Yoshioka
- Immunology Frontier Research Center (IFReC), Osaka University
- High Performance Bioimaging Research Facility, Graduate School of Frontier Biosciences, Osaka University
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University
- Immunology Frontier Research Center (IFReC), Osaka University
| |
Collapse
|
32
|
Mizukami S, Hori Y, Kikuchi K. Small-molecule-based protein-labeling technology in live cell studies: probe-design concepts and applications. Acc Chem Res 2014; 47:247-56. [PMID: 23927788 DOI: 10.1021/ar400135f] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of genetic engineering techniques allows researchers to combine functional proteins with fluorescent proteins (FPs) to produce fusion proteins that can be visualized in living cells, tissues, and animals. However, several limitations of FPs, such as slow maturation kinetics or issues with photostability under laser illumination, have led researchers to examine new technologies beyond FP-based imaging. Recently, new protein-labeling technologies using protein/peptide tags and tag-specific probes have attracted increasing attention. Although several protein-labeling systems are com mercially available, researchers continue to work on addressing some of the limitations of this technology. To reduce the level of background fluorescence from unlabeled probes, researchers have pursued fluorogenic labeling, in which the labeling probes do not fluoresce until the target proteins are labeled. In this Account, we review two different fluorogenic protein-labeling systems that we have recently developed. First we give a brief history of protein labeling technologies and describe the challenges involved in protein labeling. In the second section, we discuss a fluorogenic labeling system based on a noncatalytic mutant of β-lactamase, which forms specific covalent bonds with β-lactam antibiotics such as ampicillin or cephalosporin. Based on fluorescence (or Förster) resonance energy transfer and other physicochemical principles, we have developed several types of fluorogenic labeling probes. To extend the utility of this labeling system, we took advantage of a hydrophobic β-lactam prodrug structure to achieve intracellular protein labeling. We also describe a small protein tag, photoactive yellow protein (PYP)-tag, and its probes. By utilizing a quenching mechanism based on close intramolecular contact, we incorporated a turn-on switch into the probes for fluorogenic protein labeling. One of these probes allowed us to rapidly image a protein while avoiding washout. In the future, we expect that protein-labeling systems with finely designed probes will lead to novel methodologies that allow researchers to image biomolecules and to perturb protein functions.
Collapse
Affiliation(s)
- Shin Mizukami
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Hori
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, JST, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Wang Z, Ding X, Li S, Shi J, Li Y. Engineered fluorescence tags for in vivo protein labelling. RSC Adv 2014. [DOI: 10.1039/c3ra46991c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivoprotein labelling with a peptide tag–fluorescent probe system is an important chemical biology strategy for studying protein distribution, interaction and function.
Collapse
Affiliation(s)
- Zhipeng Wang
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
- Department of Chemistry
- School of Life Sciences
| | - Xiaozhe Ding
- Department of Chemistry
- School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Sijian Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
| | - Jing Shi
- Department of Chemistry
- University of Science and Technology of China
- Hefei, China
| | - Yiming Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
- Department of Chemistry
- School of Life Sciences
| |
Collapse
|
34
|
Zhang C, Spokoyny AM, Zou Y, Simon MD, Pentelute BL. Enzymatic "click" ligation: selective cysteine modification in polypeptides enabled by promiscuous glutathione S-transferase. Angew Chem Int Ed Engl 2013; 52:14001-5. [PMID: 24222025 DOI: 10.1002/anie.201306430] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/28/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Chi Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA 02139 (USA)
| | | | | | | | | |
Collapse
|
35
|
Zhang C, Spokoyny AM, Zou Y, Simon MD, Pentelute BL. Enzymatic “Click” Ligation: Selective Cysteine Modification in Polypeptides Enabled by Promiscuous Glutathione S-Transferase. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
van Berkel SS, Brem J, Rydzik AM, Salimraj R, Cain R, Verma A, Owens RJ, Fishwick CWG, Spencer J, Schofield CJ. Assay platform for clinically relevant metallo-β-lactamases. J Med Chem 2013; 56:6945-53. [PMID: 23898798 PMCID: PMC3910272 DOI: 10.1021/jm400769b] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Metallo-β-lactamases
(MBLs) are a growing threat to the use
of almost all clinically used β-lactam antibiotics. The identification
of broad-spectrum MBL inhibitors is hampered by the lack of a suitable
screening platform, consisting of appropriate substrates and a set
of clinically relevant MBLs. We report procedures for the preparation
of a set of clinically relevant metallo-β-lactamases (i.e.,
NDM-1 (New Delhi MBL), IMP-1 (Imipenemase), SPM-1 (São Paulo
MBL), and VIM-2 (Verona integron-encoded MBL)) and the identification
of suitable fluorogenic substrates (umbelliferone-derived cephalosporins).
The fluorogenic substrates were compared to chromogenic substrates
(CENTA, nitrocefin, and imipenem), showing improved sensitivity and
kinetic parameters. The efficiency of the fluorogenic substrates was
exemplified by inhibitor screening, identifying 4-chloroisoquinolinols
as potential pan MBL inhibitors.
Collapse
Affiliation(s)
- Sander S van Berkel
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hori Y, Norinobu T, Sato M, Arita K, Shirakawa M, Kikuchi K. Development of Fluorogenic Probes for Quick No-Wash Live-Cell Imaging of Intracellular Proteins. J Am Chem Soc 2013; 135:12360-5. [DOI: 10.1021/ja405745v] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Kyohei Arita
- Graduate School of Medical Life
Science, Yokohama City University, Yokohama,
Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
38
|
Singh V, Wang S, Chan KM, Clark SA, Kool ET. Genetically encoded multispectral labeling of proteins with polyfluorophores on a DNA backbone. J Am Chem Soc 2013; 135:6184-91. [PMID: 23590213 DOI: 10.1021/ja4004393] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically encoded methods for protein conjugation are of high importance as biological tools. Here we describe the development of a new class of dyes for genetically encoded tagging that add new capabilities for protein reporting and detection via HaloTag methodology. Oligodeoxyfluorosides (ODFs) are short DNA-like oligomers in which the natural nucleic acid bases are replaced by interacting fluorescent chromophores, yielding a broad range of emission colors using a single excitation wavelength. We describe the development of an alkyl halide dehalogenase-compatible chloroalkane linker phosphoramidite derivative that enables the rapid automated synthesis of many possible dyes for protein conjugation. Experiments to test the enzymatic self-conjugation of nine different DNA-like dyes to proteins with HaloTag domains in vitro were performed, and the data confirmed the rapid and efficient covalent labeling of the proteins. Notably, a number of the ODF dyes were found to increase in brightness or change color upon protein conjugation. Tests in mammalian cellular settings revealed that the dyes are functional in multiple cellular contexts, both on the cell surface and within the cytoplasm, allowing protein localization to be imaged in live cells by epifluorescence and laser confocal microscopy.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | | | |
Collapse
|
39
|
Zambaldo C, Sadhu KK, Karthikeyan G, Barluenga S, Daguer JP, Winssinger N. Selective affinity-based probe for oncogenic kinases suitable for live cell imaging. Chem Sci 2013. [DOI: 10.1039/c3sc21856b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
40
|
Hötzer B, Medintz IL, Hildebrandt N. Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2297-326. [PMID: 22678833 DOI: 10.1002/smll.201200109] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/22/2012] [Indexed: 05/26/2023]
Abstract
Nanobiotechnology is one of the fastest growing and broadest-ranged interdisciplinary subfields of the nanosciences. Countless hybrid bio-inorganic composites are currently being pursued for various uses, including sensors for medical and diagnostic applications, light- and energy-harvesting devices, along with multifunctional architectures for electronics and advanced drug-delivery. Although many disparate biological and nanoscale materials will ultimately be utilized as the functional building blocks to create these devices, a common element found among a large proportion is that they exert or interact with light. Clearly continuing development will rely heavily on incorporating many different types of fluorophores into these composite materials. This review covers the growing utility of different classes of fluorophores in nanobiotechnology, from both a photophysical and a chemical perspective. For each major structural or functional class of fluorescent probe, several representative applications are provided, and the necessary technological background for acquiring the desired nano-bioanalytical information are presented.
Collapse
Affiliation(s)
- Benjamin Hötzer
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
41
|
Mizukami S. Development of molecular imaging tools to investigate protein functions by chemical probe design. Chem Pharm Bull (Tokyo) 2012; 59:1435-46. [PMID: 22130363 DOI: 10.1248/cpb.59.1435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular imaging technologies, which enable the visualization of the behaviors or functions of biomolecules in living systems, have received considerable attention from life scientists. Novel imaging technologies that overcome the limitations of current imaging techniques are desired. In this review, two independent technologies that were recently developed by the authors are described. The first technology is for smart (19)F magnetic resonance imaging (MRI) probes that were developed for in vivo applications. These probes were developed by exploiting paramagnetic relaxation enhancement in order to detect hydrolase activity. With respect to cellular applications, gene expression in cells was visualized using one of the (19)F MRI probes. It was confirmed that this probe design principle is effective for various hydrolases, and broad applications are expected. The second technology is for practical protein labeling. This labeling method is based on a mutant β-lactamase and its specific labeling probes. Since the probe is fluorescence resonance energy transfer (FRET)-based, this labeling method achieves both specific and fluorogenic labeling of target proteins. In addition, derivatization of the probe enabled the labeling of intracellular proteins and the modification of various functional molecules.
Collapse
Affiliation(s)
- Shin Mizukami
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
42
|
Zhang J, Shen Y, May SL, Nelson DC, Li S. Ratiometric Fluorescence Detection of Pathogenic Bacteria Resistant to Broad-Spectrum β-Lactam Antibiotics. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Zhang J, Shen Y, May SL, Nelson DC, Li S. Ratiometric Fluorescence Detection of Pathogenic Bacteria Resistant to Broad-Spectrum β-Lactam Antibiotics. Angew Chem Int Ed Engl 2012; 51:1865-8. [DOI: 10.1002/anie.201107810] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Indexed: 11/07/2022]
|
44
|
Mizukami S, Watanabe S, Akimoto Y, Kikuchi K. No-Wash Protein Labeling with Designed Fluorogenic Probes and Application to Real-Time Pulse-Chase Analysis. J Am Chem Soc 2012; 134:1623-9. [DOI: 10.1021/ja208290f] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shin Mizukami
- Division of Advanced Science
and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research
Center (IFReC), Osaka University, 3-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Shuji Watanabe
- Division of Advanced Science
and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuri Akimoto
- Division of Advanced Science
and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Division of Advanced Science
and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research
Center (IFReC), Osaka University, 3-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Kudo K, Momotake A, Tanaka JK, Miwa Y, Arai T. Environmental polarity estimation in living cells by use of quinoxaline-based full-colored solvatochromic fluorophore PQX and its derivatives. Photochem Photobiol Sci 2012; 11:674-8. [DOI: 10.1039/c2pp05337c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Sadhu KK, Mizukami S, Lanam CR, Kikuchi K. Fluorogenic Protein Labeling through Photoinduced Electron Transfer-Based BL-Tag Technology. Chem Asian J 2011; 7:272-6. [DOI: 10.1002/asia.201100647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Indexed: 11/09/2022]
|
47
|
Abstract
To build on the last century's tremendous strides in understanding the workings of individual proteins in the test tube, we now face the challenge of understanding how macromolecular machines, signaling pathways, and other biological networks operate in the complex environment of the living cell. The fluorescent proteins (FPs) revolutionized our ability to study protein function directly in the cell by enabling individual proteins to be selectively labeled through genetic encoding of a fluorescent tag. Although FPs continue to be invaluable tools for cell biology, they show limitations in the face of the increasingly sophisticated dynamic measurements of protein interactions now called for to unravel cellular mechanisms. Therefore, just as chemical methods for selectively labeling proteins in the test tube significantly impacted in vitro biophysics in the last century, chemical tagging technologies are now poised to provide a breakthrough to meet this century's challenge of understanding protein function in the living cell. With chemical tags, the protein of interest is attached to a polypeptide rather than an FP. The polypeptide is subsequently modified with an organic fluorophore or another probe. The FlAsH peptide tag was first reported in 1998. Since then, more refined protein tags, exemplified by the TMP- and SNAP-tag, have improved selectivity and enabled imaging of intracellular proteins with high signal-to-noise ratios. Further improvement is still required to achieve direct incorporation of powerful fluorophores, but enzyme-mediated chemical tags show promise for overcoming the difficulty of selectively labeling a short peptide tag. In this Account, we focus on the development and application of chemical tags for studying protein function within living cells. Thus, in our overview of different chemical tagging strategies and technologies, we emphasize the challenge of rendering the labeling reaction sufficiently selective and the fluorophore probe sufficiently well behaved to image intracellular proteins with high signal-to-noise ratios. We highlight recent applications in which the chemical tags have enabled sophisticated biophysical measurements that would be difficult or even impossible with FPs. Finally, we conclude by looking forward to (i) the development of high-photon-output chemical tags compatible with living cells to enable high-resolution imaging, (ii) the realization of the potential of the chemical tags to significantly reduce tag size, and (iii) the exploitation of the modular chemical tag label to go beyond fluorescent imaging.
Collapse
Affiliation(s)
- Chaoran Jing
- Department of Chemistry, Columbia University, 550 West 120th Street, MC 4854, NWC Building, New York, New York 10027, United States
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University, 550 West 120th Street, MC 4854, NWC Building, New York, New York 10027, United States
| |
Collapse
|
48
|
Sun X, Zhang A, Baker B, Sun L, Howard A, Buswell J, Maurel D, Masharina A, Johnsson K, Noren CJ, Xu MQ, Corrêa IR. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. Chembiochem 2011; 12:2217-26. [PMID: 21793150 PMCID: PMC3213346 DOI: 10.1002/cbic.201100173] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Indexed: 12/22/2022]
Abstract
The ability to specifically attach chemical probes to individual proteins represents a powerful approach to the study and manipulation of protein function in living cells. It provides a simple, robust and versatile approach to the imaging of fusion proteins in a wide range of experimental settings. However, a potential drawback of detection using chemical probes is the fluorescence background from unreacted or nonspecifically bound probes. In this report we present the design and application of novel fluorogenic probes for labeling SNAP-tag fusion proteins in living cells. SNAP-tag is an engineered variant of the human repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) that covalently reacts with benzylguanine derivatives. Reporter groups attached to the benzyl moiety become covalently attached to the SNAP tag while the guanine acts as a leaving group. Incorporation of a quencher on the guanine group ensures that the benzylguanine probe becomes highly fluorescent only upon labeling of the SNAP-tag protein. We describe the use of intramolecularly quenched probes for wash-free labeling of cell surface-localized epidermal growth factor receptor (EGFR) fused to SNAP-tag and for direct quantification of SNAP-tagged β-tubulin in cell lysates. In addition, we have characterized a fast-labeling variant of SNAP-tag, termed SNAP(f), which displays up to a tenfold increase in its reactivity towards benzylguanine substrates. The presented data demonstrate that the combination of SNAP(f) and the fluorogenic substrates greatly reduces the background fluorescence for labeling and imaging applications. This approach enables highly sensitive spatiotemporal investigation of protein dynamics in living cells.
Collapse
Affiliation(s)
- Xiaoli Sun
- New England Biolabs, Inc240 County Road, Ipswich, MA 01938 (USA)
| | - Aihua Zhang
- New England Biolabs, Inc240 County Road, Ipswich, MA 01938 (USA)
| | - Brenda Baker
- New England Biolabs, Inc240 County Road, Ipswich, MA 01938 (USA)
| | - Luo Sun
- New England Biolabs, Inc240 County Road, Ipswich, MA 01938 (USA)
| | - Angela Howard
- New England Biolabs, Inc240 County Road, Ipswich, MA 01938 (USA)
| | - John Buswell
- New England Biolabs, Inc240 County Road, Ipswich, MA 01938 (USA)
| | - Damien Maurel
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federal de Lausanne (EPFL)1015 Lausanne (Switzerland)
| | - Anastasiya Masharina
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federal de Lausanne (EPFL)1015 Lausanne (Switzerland)
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federal de Lausanne (EPFL)1015 Lausanne (Switzerland)
| | | | - Ming-Qun Xu
- New England Biolabs, Inc240 County Road, Ipswich, MA 01938 (USA)
| | - Ivan R Corrêa
- New England Biolabs, Inc240 County Road, Ipswich, MA 01938 (USA)
| |
Collapse
|
49
|
Mizukami S, Yamamoto T, Yoshimura A, Watanabe S, Kikuchi K. Covalent protein labeling with a lanthanide complex and its application to photoluminescence lifetime-based multicolor bioimaging. Angew Chem Int Ed Engl 2011; 50:8750-2. [PMID: 21793145 DOI: 10.1002/anie.201103775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Shin Mizukami
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
50
|
Mizukami S, Yamamoto T, Yoshimura A, Watanabe S, Kikuchi K. Covalent Protein Labeling with a Lanthanide Complex and Its Application to Photoluminescence Lifetime-Based Multicolor Bioimaging. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|