1
|
Yang D, Li X, Li J, Liu Z, Li T, Liao P, Luo X, Liu Z, Ming W, Liao G. Fully Synthetic TF-Based Self-Adjuvanting Vaccine Simultaneously Triggers iNKT Cells and Mincle and Protects Mice against Tumor Development. J Med Chem 2024; 67:17640-17656. [PMID: 39302195 DOI: 10.1021/acs.jmedchem.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Thomsen-Friedenreich (TF) antigen has proven to be a promising target for developing novel therapeutic cancer vaccines. Here, a new strategy that TF antigen covalently coupled with KRN7000 and vizantin was developed. The resulting three-component vaccine KRN7000-TF-vizantin simultaneously triggers invariant natural killer T (iNKT) cells and macrophage-inducible C-type lectin (Mincle) signaling pathways, eliciting much stronger TF-specific immune responses than glycoprotein vaccine TF-KLH/alum and the corresponding two-component conjugate vaccines TF-KRN7000 and TF-vizantin. The analysis of IgG isotypes and the secretion of cytokines revealed that KRN7000-TF-vizantin induced Th1/Th2 mixed immune responses, where Th1 was dominant. In vivo experiments demonstrated that KRN7000-TF-vizantin increased the survival rate and survival time of tumor-challenged mice, and surviving mice rejected further tumor attacks without any additional treatment. This work demonstrates that covalently coupled KRN7000 and vizantin could serve as a promising TF-based vaccine carrier for antitumor immune therapy, and KRN7000-TF-vizantin features great potential to be a vaccine candidate.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/immunology
- Mice
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Natural Killer T-Cells/immunology
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Mice, Inbred C57BL
- Female
- Membrane Proteins/immunology
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Vaccine/chemistry
- Vaccines, Synthetic/immunology
- Cell Line, Tumor
Collapse
Affiliation(s)
- Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaohui Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinmei Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zichun Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Tongtong Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pan Liao
- Guangzhou Yuemei Pharmaceutical Technology Co., Ltd., Guangzhou 510535, China
| | - Xiang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenbo Ming
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
2
|
Rashidijahanabad Z, Ramadan S, O'Brien NA, Nakisa A, Lang S, Crawford H, Gildersleeve JC, Huang X. Stereoselective Synthesis of Sialyl Lewis a Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine. Angew Chem Int Ed Engl 2023; 62:e202309744. [PMID: 37781858 PMCID: PMC10842512 DOI: 10.1002/anie.202309744,] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 06/15/2024]
Abstract
Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qβ. Mouse immunization with the Qβ-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qβ-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qβ-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Chemistry Department, Faculty of Science, Benha University, 13518, Benha, Qaliobiya, Egypt
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Athar Nakisa
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Howard Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, 48202, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Rashidijahanabad Z, Ramadan S, O'Brien NA, Nakisa A, Lang S, Crawford H, Gildersleeve JC, Huang X. Stereoselective Synthesis of Sialyl Lewis a Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine. Angew Chem Int Ed Engl 2023; 62:e202309744. [PMID: 37781858 PMCID: PMC10842512 DOI: 10.1002/anie.202309744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qβ. Mouse immunization with the Qβ-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qβ-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qβ-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Chemistry Department, Faculty of Science, Benha University, 13518, Benha, Qaliobiya, Egypt
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Athar Nakisa
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Howard Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, 48202, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Freitas R, Peixoto A, Ferreira E, Miranda A, Santos LL, Ferreira JA. Immunomodulatory glycomedicine: Introducing next generation cancer glycovaccines. Biotechnol Adv 2023; 65:108144. [PMID: 37028466 DOI: 10.1016/j.biotechadv.2023.108144] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Cancer remains a leading cause of death worldwide due to the lack of safer and more effective therapies. Cancer vaccines developed from neoantigens are an emerging strategy to promote protective and therapeutic anti-cancer immune responses. Advances in glycomics and glycoproteomics have unveiled several cancer-specific glycosignatures, holding tremendous potential to foster effective cancer glycovaccines. However, the immunosuppressive nature of tumours poses a major obstacle to vaccine-based immunotherapy. Chemical modification of tumour associated glycans, conjugation with immunogenic carriers and administration in combination with potent immune adjuvants constitute emerging strategies to address this bottleneck. Moreover, novel vaccine vehicles have been optimized to enhance immune responses against otherwise poorly immunogenic cancer epitopes. Nanovehicles have shown increased affinity for antigen presenting cells (APCs) in lymph nodes and tumours, while reducing treatment toxicity. Designs exploiting glycans recognized by APCs have further enhanced the delivery of antigenic payloads, improving glycovaccine's capacity to elicit innate and acquired immune responses. These solutions show potential to reduce tumour burden, while generating immunological memory. Building on this rationale, we provide a comprehensive overview on emerging cancer glycovaccines, emphasizing the potential of nanotechnology in this context. A roadmap towards clinical implementation is also delivered foreseeing advances in glycan-based immunomodulatory cancer medicine.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal; Health School of University Fernando Pessoa, 4249-004 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal.
| |
Collapse
|
5
|
Bhoge PR, Mardhekar S, Toraskar S, Subramani B, Kikkeri R. Pairing Nanoparticles Geometry with TLR Agonists to Modulate Immune Responses for Vaccine Development. ACS APPLIED BIO MATERIALS 2022; 5:5675-5681. [PMID: 36375049 DOI: 10.1021/acsabm.2c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanotechnology-based vaccine development necessitates understanding the crucial biophysical properties of nanostructures that alter immune responses. In this study, we demonstrate the synergistic effect of gold nanoparticles (AuNPs) shapes with toll-like receptor (TLR) agonists in immune modulation activity. Our results showed that CpG- and imidazoquinoline-conjugated rod-shaped AuNPs display relatively fast uptake by bone marrow-derived macrophage cells but exhibit poor immunogenic responses compared to their spherical and star-shaped AuNP counterparts. Surprisingly, star-shaped AuNPs exhibited intense pro-inflammatory cytokine secretion. Further mechanistic studies showed that star-shaped AuNPs were abundantly localized in the late endosome and lysosomal regions, whereas rod-shaped AuNPs were majorly sequestered in the mitochondrial region. These findings reveal that the shape of the nanostructures plays a pivotal role in driving the adjuvant molecules toward their receptors and altering immune responses.
Collapse
Affiliation(s)
- Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Suraj Toraskar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
6
|
Immunization of Mice with Gold Nanoparticles Conjugated to Thermostable Cancer Antigens Prevents the Development of Xenografted Tumors. Int J Mol Sci 2022; 23:ijms232214313. [PMID: 36430792 PMCID: PMC9693572 DOI: 10.3390/ijms232214313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Gold nanoparticles as part of vaccines greatly increase antigen stability, antigen accumulation in the lymph nodes, and antigen uptake by antigen-presenting cells. The use of such particles as part of anticancer vaccines based on heat shock proteins to increase vaccine effectiveness is timely. We prepared and characterized nanoconjugates based on 15-nm gold nanoparticles and thermostable tumor antigens isolated from MH22a murine hepatoma cells. The whole-cell lysate of MH22a cells contained the main heat shock proteins. BALB/c mice were injected with the conjugates and then received transplants of MH22a cells. The highest titer was produced in mice immunized with the complex of gold nanoparticles + antigen with complete Freund's adjuvant. The immunized mice showed no signs of tumor growth for 24 days. They also showed a decreased production of the INF-γ, IL-6, and IL-1 proinflammatory cytokines compared to the mice immunized through other schemes. This study is the first to show that it is possible in principle to use gold nanoparticles in combination with thermostable tumor antigens for antitumor vaccination. Antitumor vaccines based on thermostable tumor antigens can be largely improved by including gold nanoparticles as additional adjuvants.
Collapse
|
7
|
Mondal UK, Barchi JJ. Isolipoic acid-linked gold nanoparticles bearing the thomsen friedenreich tumor-associated carbohydrate antigen: Stability and in vitro studies. Front Chem 2022; 10:1002146. [PMID: 36300019 PMCID: PMC9588967 DOI: 10.3389/fchem.2022.1002146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
We have previously prepared gold nanoparticles (AuNPs) bearing the Thomsen-Friedenreich antigen disaccharide (TFag), a pan-carcinoma, Tumor-Associated Carbohydrate Antigen (TACA), as tools for various assays and biological applications. Conjugation to AuNPs typically involves the use of thiols due to the affinity of sulfur for the gold surface of the nanoparticle. While a use of a single thiol-containing ligand bound to the gold surface is standard practice, several studies have shown that ligands bearing multiple thiols can enhance the strength of the conjugation in a nearly linear fashion. (R)-(+)-α-Lipoic acid (LA), a naturally occurring disulfide-containing organic acid that is used as a cofactor in many enzymatic reactions, has been used as a linker to conjugate various molecules to AuNPs through its branched di-thiol system to enhance nanoparticle stability. We sought to use a similar system to increase nanoparticle stability that was devoid of the chiral center in (R)-(+)-α-lipoic acid. Isolipoic acid, an isomer of LA, where the exocyclic pentanoic acid chain is shifted by one carbon on the dithiolane ring to produce an achiral acid, was thought to act similarly as LA without the risk of any contaminating (L)-(−) isomer. We synthesized AuNPs with ligands of both serine and threonine glycoamino acids bearing the TFag linked to isolipoic acid and examined their stability under various conditions. In addition, these particles were shown to bind to Galectin-3 and inhibit the interaction of Galectin-3 with a protein displaying copies of the TFag. These agents should prove useful in the design of potential antimetastatic therapeutics that would benefit from achiral linkers that are geometrically linear and achiral.
Collapse
|
8
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
9
|
Kalita M, Payne MM, Bossmann SH. Glyco-nanotechnology: A biomedical perspective. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102542. [PMID: 35189393 PMCID: PMC11164690 DOI: 10.1016/j.nano.2022.102542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Glycans govern cellular signaling through glycan-protein and glycan-glycan crosstalk. Disruption in the crosstalk initiates 'rogue' signaling and pathology. Nanomaterials supply platforms for multivalent displays of glycans, mediate 'rogue' signal correction, and provide disease treatment modalities (therapeutics). The decorated glycans also target overexpressed lectins on unhealthy cells and direct metal nanoparticles such as gold, iron oxide, and quantum dots to the site of infection. The nanoparticles inform us about the state of the disease (diagnosis) through their distinct optical, magnetic, and electronic properties. Glyco-nanoparticles can sense disease biomarkers, report changes in protein-glycan interactions, and safeguard quality control (analysis). Here we review the current state of glyco-nanotechnology focusing on diagnosis, therapeutics, and analysis of human diseases. We highlight how glyco-nanotechnology could aid in improving diagnostic methods for the detection of disease biomarkers with magnetic resonance imaging (MRI) and fluorescence imaging (FLI), enhance therapeutics such as anti-adhesive treatment of cancer and vaccines against pneumonia, and advance analysis such as the rapid detection of pharmaceutical heparin contaminant and recombinant SARS-COV-2 spike protein. We illustrate these progressions and outline future potentials of glyco-nanotechnology in advancing human health.
Collapse
Affiliation(s)
- Mausam Kalita
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Macy M. Payne
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Stefan H. Bossmann
- The University of Kansas Cancer Cente–Drug Discovery, Delivery and Experimental Therapeutics, The University of Kansas Medical Center-Cancer Biology, Kansas City, KS
| |
Collapse
|
10
|
Toraskar S, Madhukar Chaudhary P, Kikkeri R. The Shape of Nanostructures Encodes Immunomodulation of Carbohydrate Antigen and Vaccine Development. ACS Chem Biol 2022; 17:1122-1130. [PMID: 35426652 DOI: 10.1021/acschembio.1c00998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gold nanoparticles (AuNPs) have shown remarkable potential for vaccine development, but the influence of the size and shape of nanoparticles modulating the T-cell-dependent carbohydrate antigen processing and immunomodulation is poorly investigated. Here, we described how different shapes and sizes of gold nanostructures carrying adjuvant modulate carbohydrate-based antigen processing in murine dendritic cells (mDCs) and subsequent T-cell activation produce a robust antibody response. As a prototype, CpG-adjuvant-coated spherical and rod- and star-shaped AuNPs were conjugated to the tripodal Tn-glycopeptide antigen to study their DC uptake and activation of T-cells in a DCs/T-cell co-culture assay. Our results showed that the spherical and star-shaped AuNPs displayed relatively weak receptor-mediated uptake and endosomal sequestration; however, they induced a high level of T helper-1 (Th1) biasing immune responses compared with rod-shaped AuNPs. Furthermore, the in vivo administration of AuNPs showed that the small spherical and star-shaped AuNPs induced an effective anti-Tn-glycopeptide immunoglobulin (IgG) antibody response compared with rod-shaped AuNPs. These results indicated that one could obtain superior carbohydrate vaccines by varying the shape and size parameters of nanostructures.
Collapse
Affiliation(s)
- Suraj Toraskar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Preeti Madhukar Chaudhary
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
11
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
12
|
Subhan MA, Muzibur Rahman M. Recent Development in Metallic Nanoparticles for Breast Cancer Therapy and Diagnosis. CHEM REC 2022; 22:e202100331. [PMID: 35146897 DOI: 10.1002/tcr.202100331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Indexed: 12/25/2022]
Abstract
Metal-based nanoparticles are very promising for their applications in cancer diagnosis, drug delivery and therapy. Breast cancer is the major reason of death in woman especially in developed countries including EU and USA. Due to the heterogeneity of cancer cells, nanoparticles are effective as therapeutics and diagnostics. Anti-cancer therapy of breast tumors is challenging because of highly metastatic progression of the disease to brain, bone, lung, and liver. Magnetic nanoparticles are crucial for metastatic breast cancer detection and protection. This review comprehensively discusses the application of nanomaterials as breast cancer therapy, therapeutics, and diagnostics.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, School of Physical Sciences, Shah Jalal University of Science and Technology, 3114, Sylhet, Bangladesh
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Trabbic K, Kleski KA, Barchi JJ. A Stable Gold Nanoparticle-Based Vaccine for the Targeted Delivery of Tumor-Associated Glycopeptide Antigens. ACS BIO & MED CHEM AU 2021; 1:31-43. [PMID: 34927166 PMCID: PMC8675876 DOI: 10.1021/acsbiomedchemau.1c00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a novel antigen delivery system based on polysaccharide-coated gold nanoparticles (AuNPs) targeted to antigen presenting cells (APCs) expressing Dectin-1. AuNPs were synthesized de-novo using yeast-derived β-1,3-glucans (B13G) as the reductant and passivating agent in a microwave-catalyzed procedure yielding highly uniform and serum-stable particles. These were further functionalized with both a peptide and a specific glycosylated form from the tandem repeat sequence of mucin 4 (MUC4), a glycoprotein overexpressed in pancreatic tumors. The glycosylated sequence contained the Thomsen-Friedenreich disaccharide, a pan-carcinoma, Tumor-Associated Carbohydrate Antigen (TACA), which has been a traditional target for antitumor vaccine design. These motifs were prepared with a cathepsin B protease cleavage site (Gly-Phe-Leu-Gly), loaded on the B13G-coated particles and these constructs were examined for Dectin-1 binding, APC processing and presentation in a model in vitro system and for immune responses in mice. We showed that these particles elicit strong in vivo immune responses through the production of both high-titer antibodies and priming of antigen-recognizing T-cells. Further examination showed that a favorable antitumor balance of expressed cytokines was generated, with limited expression of immunosuppressive Il-10. This system is modular in that any range of antigens can be conjugated to our particles and efficiently delivered to APCs expressing Dectin-1.
Collapse
Affiliation(s)
- Kevin
R. Trabbic
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| | - Kristopher A. Kleski
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| | - Joseph J. Barchi
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
14
|
Mateu Ferrando R, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:57-67. [PMID: 34895641 DOI: 10.1016/j.ddtec.2021.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
Since their discovery, therapeutic or prophylactic vaccines represent a promising option to prevent or cure infections and other pathologies, such as cancer or autoimmune disorders. More recently, among a number of nanomaterials, gold nanoparticles (AuNPs) have emerged as novel tools for vaccine developments, thanks to their inherent ability to tune and upregulate immune response. Moreover, owing to their features, AuNPs can exert optimal actions both as delivery systems and as adjuvants. Notwithstanding the potential huge impact in vaccinology, some challenges remain before AuNPs in vaccine formulations can be translated into the clinic. The current review provides an updated overview of the most recent and effective application of gold nanoparticles as efficient means to develop a new generation of vaccine.
Collapse
Affiliation(s)
- Ruth Mateu Ferrando
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy; CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|
15
|
Stergiou N, Urschbach M, Gabba A, Schmitt E, Kunz H, Besenius P. The Development of Vaccines from Synthetic Tumor-Associated Mucin Glycopeptides and their Glycosylation-Dependent Immune Response. CHEM REC 2021; 21:3313-3331. [PMID: 34812564 DOI: 10.1002/tcr.202100182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Tumor-associated carbohydrate antigens are overexpressed as altered-self in most common epithelial cancers. Their glycosylation patterns differ from those of healthy cells, functioning as an ID for cancer cells. Scientists have been developing anti-cancer vaccines based on mucin glycopeptides, yet the interplay of delivery system, adjuvant and tumor associated MUC epitopes in the induced immune response is not well understood. The current state of the art suggests that the identity, abundancy and location of the glycans on the MUC backbone are all key parameters in the cellular and humoral response. This review shares lessons learned by us in over two decades of research in glycopeptide vaccines. By bridging synthetic chemistry and immunology, we discuss efforts in designing synthetic MUC1/4/16 vaccines and focus on the role of glycosylation patterns. We provide a brief introduction into the mechanisms of the immune system and aim to promote the development of cancer subunit vaccines.
Collapse
Affiliation(s)
- Natascha Stergiou
- Radionuclide Center, Radiology and Nuclear medicine Amsterdam UMC, VU University, De Boelelaan 1085c, 1081 HV, Amsterdam, the Netherlands
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Adele Gabba
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- Institute of Immunology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Horst Kunz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
16
|
Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021; 507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Carbohydrate-protein and carbohydrate-carbohydrate interactions are very important for various biological processes. Although the magnitude of these interactions is low compared to that of protein-protein interaction, the magnitude can be boosted by multivalent approach known as glycocluster effect. Nanoparticle platform is one of the best ways to present diverse glycoforms in multivalent manner and thus, the field of glyconanotechnology has emerged as an important field of research considering their potential applications in diagnostics and therapeutics. Considerable advances in the field have been achieved through development of novel techniques, use of diverse metallic and non-metallic cores for better efficacy and application of ever-increasing number of carbohydrate ligands for site-specific interaction. The present review encompasses the recent developments in the area of glyconanotechnology and their future promise as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
17
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Cai F, Li S, Huang H, Iqbal J, Wang C, Jiang X. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J Biomed Mater Res A 2021; 110:424-442. [PMID: 34331516 DOI: 10.1002/jbm.a.37281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Immune responses are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. These responses are attributed to immune cells that produce cytokines, mediate cytotoxicity, and synthesize antibodies. Gold nanoparticles (GNPs) are novel agents that intervene with immune responses because of their unique physical-chemical properties. In particular, GNPs enhance anti-tumour activity during immunotherapy and eliminate excessive inflammation in autoimmune diseases. However, GNPs synthesized by conventional methods are toxic to living organisms. Green biosynthesis provides a safe and eco-friendly method to obtain GNPs from microbes or plant extracts. In this review, we describe several patterns for green GNP biosynthesis. The applications of GNPs to target immune cells and modulate the immune response are summarized. In particular, we elaborate on how GNPs regulate innate immunity and adaptive immunity, including inflammatory signaling and immune cell differentiation. Finally, perspectives and challenges in utilizing green biosynthesized GNPs for novel therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Feiyang Cai
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Huang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Canran Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021; 9:669969. [PMID: 34046397 PMCID: PMC8144316 DOI: 10.3389/fchem.2021.669969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.
Collapse
Affiliation(s)
- Dongyoon Kim
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nowras Rahhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
20
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
21
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
22
|
Liu Y, Wang Z, Yu F, Li M, Zhu H, Wang K, Meng M, Zhao W. The Adjuvant of α-Galactosylceramide Presented by Gold Nanoparticles Enhances Antitumor Immune Responses of MUC1 Antigen-Based Tumor Vaccines. Int J Nanomedicine 2021; 16:403-420. [PMID: 33469292 PMCID: PMC7813472 DOI: 10.2147/ijn.s273883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Therapeutic tumor vaccines are one of the most promising strategies and have attracted great attention in cancer treatment. However, most of them have shown unsatisfactory immunogenicity, there are still few available vaccines for clinical use. Therefore, there is an urgent demand to develop novel strategies to improve the immune efficacy of antitumor vaccines. PURPOSE This study aimed to develop novel adjuvants and carriers to enhance the immune effect of MUC1 glycopeptide antigen-based antitumor vaccines. METHODS An antitumor vaccine was developed, in which MUC1 glycopeptide was used as tumor-associated antigen, α-GalCer served as an immune adjuvant and AuNPs was a multivalent carrier. RESULTS Immunological evaluation results indicated that the constructed vaccines enabled a significant antibody response. FACS analysis and immunofluorescence assay showed that the induced antisera exhibited a specific binding with MUC1 positive MCF-7 cells. Moreover, the induced antibody can mediate CDC to kill MCF-7 cells. Besides stimulating B cells to produce MUC1-specific antibodies, the prepared vaccines also induced MUC1-specific CTLs in vitro. Furthermore, the vaccines significantly delayed tumor development in tumor-bearing mice model. CONCLUSION These results showed that the construction of vaccines by presenting α-GalCer adjuvant and an antigen on gold nanoparticles offers a potential strategy to improve the antitumor response in cancer immunotherapy.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Neoplasm/immunology
- Antigens, Neoplasm/immunology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Female
- Galactosylceramides/chemical synthesis
- Galactosylceramides/chemistry
- Galactosylceramides/pharmacology
- Gold/pharmacology
- Humans
- Immune Sera/metabolism
- Melanoma/immunology
- Melanoma/pathology
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/ultrastructure
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mucin-1/immunology
- Spleen/pathology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Mice
Collapse
Affiliation(s)
- Yonghui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Zhaoyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin300071, People’s Republic of China
| | - Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Haomiao Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Kun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| |
Collapse
|
23
|
Galectin-1 promotes vasculogenic mimicry in gastric adenocarcinoma via the Hedgehog/GLI signaling pathway. Aging (Albany NY) 2020; 12:21837-21853. [PMID: 33170154 PMCID: PMC7695400 DOI: 10.18632/aging.104000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Background: Galectin-1 (GAL-1), which is encoded by LGALS1, promotes vasculogenic mimicry (VM) in gastric cancer (GC) tissue. However, the underlying mechanism remains unclear. Methods: Immunohistochemical (IHC) and CD34-periodic acid-Schiff (PAS) double staining were used to investigate Glioma-associated oncogene-1(GLI1) expression and VM in paraffin-embedded sections from 127 patients with GC of all tumor stages. LGALS1 or GLI1 were stably transduced into MGC-803 cells and AGS cells, and western blotting, IHC, CD34-PAS double staining and three-dimensional culture in vitro, and tumorigenicity in vivo were used to explore the mechanisms of GAL-1/ GLI1 promotion of VM formation in GC tissues. Results: A significant association between GAL-1 and GLI1 expression was identified by IHC staining, as well as a significant association between GLI1 expression and VM formation. Furthermore, overexpression of LGALS1 enhanced expression of GLI1 in MGC-803 and AGS cells. GLI1 promoted VM formation both in vitro and in vivo. The effects of GLI1 on VM formation were independent of LGALS1. Importantly, the expression of VM-related molecules, such as MMP2, MMP14 and laminin5γ2, was also affected upon GLI1 overexpression or silencing in GC cell lines. Conclusion: GAL-1 promotes VM in GC through the Hh/GLI pathway, which has potential as a novel therapeutic target for treatment of VM in GC.
Collapse
|
24
|
Inflammasome-Mediated Immunogenicity of Clinical and Experimental Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8030554. [PMID: 32971761 PMCID: PMC7565252 DOI: 10.3390/vaccines8030554] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
In modern vaccines, adjuvants can be sophisticated immunological tools to promote robust and long-lasting protection against prevalent diseases. However, there is an urgent need to improve immunogenicity of vaccines in order to protect mankind from life-threatening diseases such as AIDS, malaria or, most recently, COVID-19. Therefore, it is important to understand the cellular and molecular mechanisms of action of vaccine adjuvants, which generally trigger the innate immune system to enhance signal transition to adaptive immunity, resulting in pathogen-specific protection. Thus, improved understanding of vaccine adjuvant mechanisms may aid in the design of “intelligent” vaccines to provide robust protection from pathogens. Various commonly used clinical adjuvants, such as aluminium salts, saponins or emulsions, have been identified as activators of inflammasomes - multiprotein signalling platforms that drive activation of inflammatory caspases, resulting in secretion of pro-inflammatory cytokines of the IL-1 family. Importantly, these cytokines affect the cellular and humoral arms of adaptive immunity, which indicates that inflammasomes represent a valuable target of vaccine adjuvants. In this review, we highlight the impact of different inflammasomes on vaccine adjuvant-induced immune responses regarding their mechanisms and immunogenicity. In this context, we focus on clinically relevant adjuvants that have been shown to activate the NLRP3 inflammasome and also present various experimental adjuvants that activate the NLRP3-, NLRC4-, AIM2-, pyrin-, or non-canonical inflammasomes and could have the potential to improve future vaccines. Together, we provide a comprehensive overview on vaccine adjuvants that are known, or suggested, to promote immunogenicity through inflammasome-mediated signalling.
Collapse
|
25
|
Shang T, Yu X, Han S, Yang B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater Sci 2020; 8:5241-5259. [PMID: 32996922 DOI: 10.1039/d0bm01158d] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging anti-tumor immunotherapy has made significant progress in clinical application. However, single immunotherapy is not effective for all anti-tumor treatments, owing to the low objective response rate and the risk of immune-related side effects. Meanwhile, photothermal therapy (PTT) has attracted significant attention because of its non-invasiveness, spatiotemporal controllability and small side effects. Combining PTT with immunotherapy overcomes the issue that single photothermal therapy cannot eradicate tumors with metastasis and recurrence. However, it improves the therapeutic effect of immunotherapy, as the photothermal therapy usually promotes release of tumor-related antigens, triggers immune response by the immunogenic cell death (ICD), thereby, endowing unique synergistic mechanisms for cancer therapy. This review summarizes recent research advances in utilizing nanomedicines for PTT in combination with immunotherapy to improve the outcome of cancer treatment. The strategies include immunogenic cell death, immune agonists and cancer vaccines, immune checkpoint blockades and tumor specific monoclonal antibodies, and small-molecule immune inhibitors. The combination of synergized PTT-immunotherapy with other therapeutic strategies is also discussed.
Collapse
Affiliation(s)
- Tongyi Shang
- The Sixth Affiliated Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | | | | | | |
Collapse
|
26
|
Moffett S, Shiao TC, Mousavifar L, Mignani S, Roy R. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1659. [PMID: 32776710 DOI: 10.1002/wnan.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
Abstract
Despite exciting discoveries and progresses in drug design against cancer, its cure is still rather elusive and remains one of the humanities major challenges in health care. The safety profiles of common small molecule anti-cancer therapeutics are less than at acceptable levels and limiting deleterious side-effects have to be urgently addressed. This is mainly caused by their incapacity to differentiate healthy cells from cancer cells; hence, the use of high dosage becomes necessary. One possible solution to improve the therapeutic windows of anti-cancer agents undoubtedly resides in modern nanotechnology. This review presents a discussion concerning multivalent carbohydrate-protein interactions as this topic pertains to the fundamental aspects that lead glycoscientists to tackle glyconanoparticles. The second section describes the detailed properties of cancer cells and how their aberrant glycan surfaces differ from those of healthy cells. The third section briefly describes the immune systems, both innate and adaptative, because the numerous displays of cell surface protein receptors necessitate to be addressed from the multivalent angles, a strength full characteristic of nanoparticles. The next chapter presents recent advances in glyconanotechnologies, including glycodendrimers in particular, as they apply to glycobiology and carbohydrate-based cancer vaccines. This was followed by an overview of metallodendrimers and how this rapidly evolving field may contribute to our arsenal of therapeutic tools to fight cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Glycovax Pharma Inc, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front Chem 2020; 8:376. [PMID: 32582621 PMCID: PMC7283583 DOI: 10.3389/fchem.2020.00376] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Herein, the role of metal-based nanoparticles (NPs) in biomedical analysis and the treatment of critical deceases been highlighted. In the world of nanotechnology, noble elements such as the gold/silver/palladium (Au/Ag/Pd) NPs are the most promising emerging trend to design bioengineering materials that could to be employed as modern diagnostic tools and devices to combat serious diseases. NPs are considered a powerful and advanced chemical tool to diagnose and to cure critical ailments such as HIV, cancer, and other types of infectious illnesses. The treatment of cancer is the most significant application of nanotechnology which is based on premature tumor detection and analysis of cancer cells through Nano-devices. The fascinating characteristic properties of NPs-such as high surface area, high surface Plasmon resonance, multi-functionalization, highly stable nature, and easy processing-make them more prolific for nanotechnology. In this review article, the multifunctional roles of Au/Ag/Pd NPs in the field of medical science, the physicochemical toxicity dependent properties, and the interaction mechanism is highlighted. Due to the cytotoxicity of Ag/Au/Pd NPs, the conclusion and future remarks emphasize the need for further research to minimize the toxicity of NPs in the bio-medicinal field.
Collapse
Affiliation(s)
- Sundas Bahar Yaqoob
- Department of Zoology, Mirpur University of Science and Technology Mirpur, Mirpur, Pakistan
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Mohammad Rashid
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
28
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
29
|
Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci 2020; 11:923-936. [PMID: 34084347 PMCID: PMC8145530 DOI: 10.1039/c9sc06497d] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Functionalization of gold nanoparticles is crucial for the effective utilization of these materials in health-related applications. Health-related applications of gold nanoparticles rely on the physical and chemical reactions between molecules and gold nanoparticles. Surface chemistry can precisely control and tailor the surface properties of gold nanoparticles to meet the needs of applications. Gold nanoparticles have unique physical and chemical properties, and have been used in a broad range of applications from prophylaxis to diagnosis and treatment. The surface chemistry of gold nanoparticles plays a crucial role in all of these applications. This minireview summarizes these applications from the perspective of surface chemistry and explores how surface chemistry improves and imparts new properties to gold nanoparticles for these applications.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Lei Mou
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
30
|
Burygin GL, Abronina PI, Podvalnyy NM, Staroverov SA, Kononov LO, Dykman LA. Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:480-493. [PMID: 32274287 PMCID: PMC7113550 DOI: 10.3762/bjnano.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
A number of bacterial glycans are specific markers for the detection and the serological identification of microorganisms and are also widely used as antigenic components of vaccines. The use of gold nanoparticles as carriers for glyco-epitopes is becoming an important alternative to the traditional conjugation with proteins and synthetic polymers. In this study, we aimed to prepare and evaluate in vivo glyco-gold nanoparticles (glyco-GNPs) bearing the terminal-branched hexaarabinofuranoside fragment (Ara6) of arabinan domains of lipoarabinomannan and arabinogalactan, which are principal polysaccharides of the cell wall of Mycobacterium tuberculosis, the causative agent of tuberculosis. In particular, we were interested whether the antibodies generated against Ara6-GNPs would recognize the natural saccharides on the cell surface of different mycobacterial strains. Two synthetic Ara6 glycosides with amino-functionalized spacer aglycons differing in length and hydrophilicity were directly conjugated with spherical gold nanoparticles (d = 15 nm) to give two sets of glyco-GNPs, which were used for the immunization of rabbits. Dot assays revealed cross-reactions between the two obtained antisera with the hexaarabinofuranoside and the 2-aminoethyl aglycon used for the preparation of glyco-GNPs. Both antisera contained high titers of antibodies specific for Mycobacteria as shown by enzyme-linked immunosorbent assay using M. bovis and M. smegmatis cells as antigens while there was only a weak response to M. phlei cells and no interaction with E. coli cells. The results obtained suggest that glyco-GNPs are promising agents for the generation of anti-mycobacterial antibodies.
Collapse
Affiliation(s)
- Gennady L Burygin
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Department of Horticulture, Breeding, and Genetics, Vavilov Saratov State Agrarian University, Teatralnaya Ploshchad 1, Saratov, 410012, Russia
| | - Polina I Abronina
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Nikita M Podvalnyy
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Sergey A Staroverov
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| | - Leonid O Kononov
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudnyi, Moscow Region, 141701, Russia
| | - Lev A Dykman
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| |
Collapse
|
31
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
32
|
Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. NANO TODAY 2019; 27:73-98. [PMID: 32292488 PMCID: PMC7156029 DOI: 10.1016/j.nantod.2019.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vaccines and immunotherapies have changed the face of health care. Biomaterials offer the ability to improve upon these medical technologies through increased control of the types and concentrations of immune signals delivered. Further, these carriers enable targeting, stability, and delivery of poorly soluble cargos. Inorganic nanomaterials possess unique optical, electric, and magnetic properties, as well as defined chemistry, high surface-to-volume- ratio, and high avidity display that make this class of materials particularly advantageous for vaccine design, cancer immunotherapy, and autoimmune treatments. In this review we focus on this understudied area by highlighting recent work with inorganic materials - including gold nanoparticles, carbon nanotubes, and quantum dots. We discuss the intrinsic features of these materials that impact the interactions with immune cells and tissue, as well as recent reports using inorganic materials across a range of emerging immunological applications.
Collapse
Affiliation(s)
- Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene St, Baltimore, MD, 21201 USA
- U.S. Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
33
|
Dykman LA, Khlebtsov NG. Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:3152-3182. [PMID: 31467774 PMCID: PMC6706047 DOI: 10.1364/boe.10.003152] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 05/19/2023]
Abstract
Functionalized gold nanoparticles (GNPs) with controlled geometrical and optical properties have been the subject of intense research and biomedical applications. This review summarizes recent data and topical problems in nanomedicine that are related to the use of variously sized, shaped, and structured GNPs. We focus on three topical fields in current nanomedicine: (1) use of GNP-based nanoplatforms for the targeted delivery of anticancer and antimicrobial drugs and of genes; (2) GNP-based cancer immunotherapy; and (3) combined chemo-, immuno-, and phototherapy. We present a summary of the available literature data and a short discussion of future work.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
34
|
Trabbic KR, Whalen K, Abarca-Heideman K, Xia L, Temme JS, Edmondson EF, Gildersleeve JC, Barchi JJ. A Tumor-Selective Monoclonal Antibody from Immunization with a Tumor-Associated Mucin Glycopeptide. Sci Rep 2019; 9:5662. [PMID: 30952968 PMCID: PMC6450958 DOI: 10.1038/s41598-019-42076-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
We have previously studied the generation of immune responses after vaccination with tumor-associated carbohydrate antigen (TACA)-containing glycopeptides from the tandem repeat (TR) sequence of MUC4, an aberrantly expressed mucin in pancreatic adenocarcinomas. A specific lead antigen from that study containing the Thomsen-Friedenreich TACA disaccharide facilitated the pursuit of a monoclonal antibody to this synthetic hapten. Initial evaluation of polyclonal antiserum resulting from immunization with a KLH conjugate of this glycopeptide into rabbits showed high titer antibodies by ELISA assays, and selective immunoreactivity with MUC4+ cells by western blot and flow cytometry techniques. Glycan microarray analysis showed an intriguing binding pattern where the antiserum showed near complete specificity for MUC4 TR glycopeptides and peptides, relative to all components on the array. Tissue staining also showed distinct tumor specificity to pancreatic tumor tissue in relation to normal pancreatic tissue, with a preference for more aggressive tumor foci. Based on this data, we produced a monoclonal antibody whose binding and reactivity profile was similar to that of the polyclonal serum, with the added benefit of being more specific for the N-terminal glycosylated peptide domain. This epitope represents a novel immunogen to potentially develop diagnostic antibodies or immunotherapies against various MUC4-positive cancers.
Collapse
Affiliation(s)
- Kevin R Trabbic
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | | | - Li Xia
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Elijah F Edmondson
- Pathology and Histotechnology Lab, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joseph J Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
35
|
Uray K, Pimm MV, Hudecz F. The effect of the branched chain polypeptide carrier on biodistribution of covalently attached B-cell epitope peptide (APDTRPAPG) derived from mucin 1 glycoprotein. Arch Biochem Biophys 2019; 664:127-133. [DOI: 10.1016/j.abb.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
|
36
|
Abstract
Glycans have been selected by nature for both structural and 'recognition' purposes. Taking inspiration from nature, nanomedicine exploits glycans not only as structural constituents of nanoparticles and nanostructured biomaterials but also as selective interactors of such glyco-nanotools. Surface glycosylation of nanoparticles finds application in targeting specific cells, whereas recent findings give evidence that the glycan content of cell microenvironment is able to induce the cell fate. This review will highlight the role of glycans in nanomedicine, schematizing the different uses and roles in drug-delivery systems and in biomaterials for regenerative medicine.
Collapse
|
37
|
Terán-Navarro H, Calderon-Gonzalez R, Salcines-Cuevas D, García I, Marradi M, Freire J, Salmon E, Portillo-Gonzalez M, Frande-Cabanes E, García-Castaño A, Martinez-Callejo V, Gomez-Roman J, Tobes R, Rivera F, Yañez-Diaz S, Álvarez-Domínguez C. Pre-clinical development of Listeria-based nanovaccines as immunotherapies for solid tumours: insights from melanoma. Oncoimmunology 2018; 8:e1541534. [PMID: 30713801 PMCID: PMC6343812 DOI: 10.1080/2162402x.2018.1541534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
Gold glyconanoparticles loaded with the listeriolysin O peptide 91-99 (GNP-LLO91-99), a bacterial peptide with anti-metastatic properties, are vaccine delivery platforms facilitating immune cell targeting and increasing antigen loading. Here, we present proof of concept analyses for the consideration of GNP-LLO91-99 nanovaccines as a novel immunotherapy for cutaneous melanoma. Studies using mouse models of subcutaneous melanoma indicated that GNP-LLO91-99 nanovaccines recruite and modulate dendritic cell (DC) function within the tumour, alter tumour immunotolerance inducing melanoma-specific cytotoxic T cells, cause complete remission and improve survival. GNP-LLO91-99 nanovaccines showed superior tumour regression and survival benefits, when combined with anti-PD-1 or anti-CTLA-4 checkpoint inhibitors, resulting in an improvement in the efficacy of these immunotherapies. Studies on monocyte-derived DCs from patients with stage IA, IB or IIIB melanoma confirmed the ability of GNP-LLO91-99 nanovaccines to complement the action of checkpoint inhibitors, by not only reducing the expression of cell-death markers on DCs, but also potentiating DC antigen-presentation. We propose that GNP-LLO91-99 nanovaccines function as immune stimulators and immune effectors and serve as safe cancer therapies, alone or in combination with other immunotherapies.
Collapse
Affiliation(s)
- Hector Terán-Navarro
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Ricardo Calderon-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - David Salcines-Cuevas
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Isabel García
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Marco Marradi
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Erwan Salmon
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Mar Portillo-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Elisabet Frande-Cabanes
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Almudena García-Castaño
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Virginia Martinez-Callejo
- Servicio de Farmacia Hospitalaria, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Javier Gomez-Roman
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Raquel Tobes
- Oh no Sequences! Research Group, Era7 Bioinformatics, Granada, Andalucia, Spain
| | - Fernando Rivera
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Sonsoles Yañez-Diaz
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Carmen Álvarez-Domínguez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| |
Collapse
|
38
|
Evans ER, Bugga P, Asthana V, Drezek R. Metallic Nanoparticles for Cancer Immunotherapy. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:673-685. [PMID: 30197553 PMCID: PMC6124314 DOI: 10.1016/j.mattod.2017.11.022] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy, or the utilization of the body's immune system to attack tumor cells, has gained prominence over the past few decades as a viable cancer treatment strategy. Recently approved immunotherapeutics have conferred remission upon patients with previously bleak outcomes and have expanded the number of tools available to treat cancer. Nanoparticles -including polymeric, liposomal, and metallic formulations - naturally traffic to the spleen and lymph organs and the relevant immune cells therein, making them good candidates for delivery of immunotherapeutic agents. Metallic nanoparticle formulations in particular are advantageous because of their potential for dense surface functionalization and their capability for optical or heat based therapeutic methods. Many research groups have investigated the potential of nanoparticle-mediated delivery platforms to improve the efficacy of immunotherapies. Despite the significant preclinical successes demonstrated by many of these platforms over the last twenty years, few metallic nanoparticles have successfully entered clinical trials with none achieving FDA approval for cancer therapy. In this review, we will discuss preclinical research and clinical trials involving metallic nanoparticles (MNPs) for cancer immunotherapy applications and discuss the potential for clinical translation of MNPs.
Collapse
Affiliation(s)
- Emily Reiser Evans
- Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Pallavi Bugga
- Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Vishwaratn Asthana
- Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Rebekah Drezek
- Department of Bioengineering, Rice University, Houston, TX 77005, United States. Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States
| |
Collapse
|
39
|
Climent N, García I, Marradi M, Chiodo F, Miralles L, Maleno MJ, Gatell JM, García F, Penadés S, Plana M. Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:339-351. [PMID: 29157976 DOI: 10.1016/j.nano.2017.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023]
Abstract
Gold nanoparticles (GNPs) decorated with glycans ameliorate dendritic cells (DC) uptake, antigen-presentation and T-cells cross-talk, which are important aspects in vaccine design. GNPs allow for high antigen loading, DC targeting, lack of toxicity and are straightforward prepared and easy to handle. The present study aimed to assess the capacity of DC to process and present HIV-1-peptides loaded onto GNPs bearing high-mannoside-type oligosaccharides (P1@HM) to autologous T-cells from HIV-1 patients. The results showed that P1@HM increased HIV-specific CD4+ and CD8+ T-cell proliferation and induced highly functional cytokine secretion compared with HIV-peptides alone. P1@HM elicits a highly efficient secretion of pro-TH1 cytokines and chemokines, a moderate production of pro-TH2 and significant higher secretion of pro-inflammatory cytokines such as TNF-α and IL-1β. Thus, co-delivery of HIV-1 antigens and HM by GNPs is an excellent vaccine delivery system inducing HIV-specific cellular immune responses in HIV+ patients, being a promising approach to improve anti-HIV-1 vaccines.
Collapse
Affiliation(s)
- Núria Climent
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Isabel García
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Marco Marradi
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Fabrizio Chiodo
- CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain; Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherland
| | - Laia Miralles
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - María José Maleno
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - José María Gatell
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Service of Infectious Diseases & AIDS Unit, Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Felipe García
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Service of Infectious Diseases & AIDS Unit, Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Soledad Penadés
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
40
|
Alvarez-Dominguez C, Calderón-Gonzalez R, Terán-Navarro H, Salcines-Cuevas D, Garcia-Castaño A, Freire J, Gomez-Roman J, Rivera F. Dendritic cell therapy in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:386. [PMID: 29114544 DOI: 10.21037/atm.2017.06.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) vaccines are cancer vaccines used currently as melanoma therapies. They act as adjuvants initiating the immune responses, but not only as they can also have effector activities redirecting cytotoxic CD8+ T cells against melanoma. Ex vivo preparation of monocyte derived DCs has been implemented to produce large numbers of DCs for clinical therapy, highlighting the necessity of activate DC s to produce Th1 cytokines, especially TNF-a and IL-12 with potent anti-tumour actions. Several clinical trials both in the European Union and USA are open currently using DC vaccines, alone or in combination with other immunotherapies. The type of antigen is also an active area of investigation involving tumour antigens and bacterial epitopes, both providing good responses. Bacterial epitopes presented the advantage versus tumour antigens that they can prepare the vaccination site as they induce innate and specific immune responses as they are potent recall antigens that expand cytotoxic responses.
Collapse
Affiliation(s)
| | | | - Hector Terán-Navarro
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Cantabria, Spain
| | - David Salcines-Cuevas
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Cantabria, Spain
| | - Almudena Garcia-Castaño
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Javier Gomez-Roman
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Fernando Rivera
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| |
Collapse
|
41
|
Calderon-Gonzalez R, Terán-Navarro H, García I, Marradi M, Salcines-Cuevas D, Yañez-Diaz S, Solis-Angulo A, Frande-Cabanes E, Fariñas MC, Garcia-Castaño A, Gomez-Roman J, Penades S, Rivera F, Freire J, Álvarez-Domínguez C. Gold glyconanoparticles coupled to listeriolysin O 91-99 peptide serve as adjuvant therapy against melanoma. NANOSCALE 2017; 9:10721-10732. [PMID: 28714508 DOI: 10.1039/c7nr02494k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dendritic cell-based (DC-based) vaccines are promising immunotherapies for cancer. However, several factors, such as the lack of efficient targeted delivery and the sources and types of DCs, have limited the efficacy of DCs and their clinical potential. We propose an alternative nanotechnology-based vaccine platform with antibacterial prophylactic abilities that uses gold glyconanoparticles coupled to listeriolysin O 91-99 peptide (GNP-LLO91-99), which acts as a novel adjuvant for cancer therapy. GNP-LLO91-99, when used to vaccinate mice, exhibited dual antitumour activities, namely, the inhibition of tumour migration and growth and adjuvant activity for recruiting and activating DCs, including those from melanoma patients. GNP-LLO91-99 nanoparticles caused tumour apoptosis and induced antigen- and melanoma-specific cytotoxic Th1 responses (P ≤ 0.5). We propose this adjuvant nanotherapy for preventing the progression of the first stages of melanoma.
Collapse
Affiliation(s)
- R Calderon-Gonzalez
- Grupo de Nanovacunas y vacunas celulares basadas en Listeria y sus aplicaciones en biomedicina, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Avda. Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Release 2017; 256:56-67. [DOI: 10.1016/j.jconrel.2017.04.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/19/2017] [Accepted: 04/17/2017] [Indexed: 01/05/2023]
|
43
|
Gautam SK, Kumar S, Cannon A, Hall B, Bhatia R, Nasser MW, Mahapatra S, Batra SK, Jain M. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opin Ther Targets 2017; 21:657-669. [PMID: 28460571 DOI: 10.1080/14728222.2017.1323880] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) is characterized by mucin overexpression. MUC4 is the most differentially overexpressed membrane-bound mucin that plays a functional role in disease progression and therapy resistance. Area covered: We describe the clinicopathological significance of MUC4, summarize mechanisms contributing to its deregulated expression, review preclinical studies aimed at inhibiting MUC4, and discuss how MUC4 overexpression provides opportunities for developing targeted therapies. Finally, we discuss the challenges for developing MUC4-based therapeutics, and identify areas where efforts should be directed to effectively exploit MUC4 as a therapeutic target for PC. Expert opinion: Studies demonstrating that abrogation of MUC4 expression reduces proliferation and metastasis of PC cells and enhances sensitivity to therapeutic agents affirm its utility as a therapeutic target. Emerging evidence also supports the suitability of MUC4 as a potential immunotherapy target. However, these studies have been limited to in vitro, ex vivo or in vivo approaches using xenograft tumors in immunodeficient murine models. For translational relevance, MUC4-targeted therapies should be evaluated in murine models with intact immune system and accurate tumor microenvironment. Additionally, future studies evaluating MUC4 as a target for immunotherapy must entail characterization of immune response in PC patients and investigate its association with immunosuppression and survival.
Collapse
Affiliation(s)
- Shailendra K Gautam
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Sushil Kumar
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Andrew Cannon
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Bradley Hall
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,b Department of Surgery , University of Nebraska Medical Center , Omaha , NE , USA
| | - Rakesh Bhatia
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Mohd Wasim Nasser
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Sidharth Mahapatra
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,d Department of Pediatrics , University of Nebraska Medical Center , Omaha , NE , USA.,e Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Surinder K Batra
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,c Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA.,e Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Maneesh Jain
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,e Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
44
|
Carabineiro SAC. Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines. Molecules 2017; 22:E857. [PMID: 28531163 PMCID: PMC6154615 DOI: 10.3390/molecules22050857] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/20/2022] Open
Abstract
Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.
Collapse
Affiliation(s)
- Sónia Alexandra Correia Carabineiro
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
45
|
Dykman LA, Khlebtsov NG. Biomedical Applications of Multifunctional Gold-Based Nanocomposites. BIOCHEMISTRY (MOSCOW) 2017; 81:1771-1789. [PMID: 28260496 DOI: 10.1134/s0006297916130125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Active application of gold nanoparticles for various diagnostic and therapeutic purposes started in recent decades due to the emergence of new data on their unique optical and physicochemical properties. In addition to colloidal gold conjugates, growth in the number of publications devoted to the synthesis and application of multifunctional nanocomposites has occurred in recent years. This review considers the application in biomedicine of multifunctional nanoparticles that can be produced in three different ways. The first method involves design of composite nanostructures with various components intended for either diagnostic or therapeutic functions. The second approach uses new bioconjugation techniques that allow functionalization of gold nanoparticles with various molecules, thus combining diagnostic and therapeutic functions in one medical procedure. Finally, the third method for production of multifunctional nanoparticles combines the first two approaches, in which a composite nanoparticle is additionally functionalized by molecules having different properties.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia
| | | |
Collapse
|
46
|
Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci 2017; 8:1719-1735. [PMID: 28451297 PMCID: PMC5396510 DOI: 10.1039/c6sc03631g] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo. For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
- Saratov National Research State University , 83 Ulitsa Astrakhanskaya , Saratov 410012 , Russia
| |
Collapse
|
47
|
Vetro M, Safari D, Fallarini S, Salsabila K, Lahmann M, Penadés S, Lay L, Marradi M, Compostella F. Preparation and immunogenicity of gold glyco-nanoparticles as antipneumococcal vaccine model. Nanomedicine (Lond) 2016; 12:13-23. [PMID: 27879152 DOI: 10.2217/nnm-2016-0306] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIM Nanotechnology-based fully synthetic carbohydrate vaccines are promising alternatives to classic polysaccharide/protein conjugate vaccines. We have prepared gold glyco-nanoparticles (GNP) bearing two synthetic carbohydrate antigens related to serotypes 19F and 14 of Streptococcus pneumoniae and evaluated their immunogenicity in vivo. RESULTS A tetrasaccharide fragment of serotype 14 (Tetra-14), a trisaccharide fragment of serotype 19F (Tri-19F), a T-helper peptide and d -glucose were loaded onto GNP in different ratios. Mice immunization showed that the concomitant presence of Tri-19F and Tetra-14 on the same nanoparticle critically enhanced the titers of specific IgG antibodies toward type 14 polysaccharide compared with GNP exclusively displaying Tetra-14, while no IgG antibodies against type 19F polysaccharide were elicited. CONCLUSION This work is a step forward toward synthetic nanosystems combining carbohydrate antigens and immunogenic peptides as potential carbohydrate-based vaccines.
Collapse
Affiliation(s)
- Maria Vetro
- Present address: Center for Synthesis & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Silvia Fallarini
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Korrie Salsabila
- Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia
| | | | - Soledad Penadés
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE & CIBER-BBN, Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Luigi Lay
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Marradi
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE & CIBER-BBN, Paseo Miramón 182, 20009, San Sebastián, Spain.,Present address: IK4-CIDETEC, Paseo Miramón 196, 20009, San Sebastián, Spain
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| |
Collapse
|
48
|
Cousin JM, Cloninger MJ. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int J Mol Sci 2016; 17:ijms17091566. [PMID: 27649167 PMCID: PMC5037834 DOI: 10.3390/ijms17091566] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/24/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.
Collapse
Affiliation(s)
- Jonathan M Cousin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
49
|
Dykman LA, Khlebtsov NG. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016; 108:13-34. [PMID: 27614818 DOI: 10.1016/j.biomaterials.2016.08.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 01/21/2023]
Abstract
Although Au-particle potential in nanobiotechnology has been recognized for the last 15 years, new insights into the unique properties of multifunctional nanostructures have just recently started to emerge. Multifunctional gold-based nanocomposites combine multiple modalities to improve the efficacy of the therapeutic and diagnostic treatment of cancer and other socially significant diseases. This review is focused on multifunctional gold-based theranostic nanocomposites, which can be fabricated by three main routes. The first route is to create composite (or hybrid) nanoparticles, whose components enable diagnostic and therapeutic functions. The second route is based on smart bioconjugation techniques to functionalize gold nanoparticles with a set of different molecules, enabling them to perform targeting, diagnostic, and therapeutic functions in a single treatment procedure. Finally, the third route for multifunctionalized composite nanoparticles is a combination of the first two and involves additional functionalization of hybrid nanoparticles with several molecules possessing different theranostic modalities. This last class of multifunctionalized composites also includes fluorescent atomic clusters with multiple functionalities.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
50
|
Calderón-Gonzalez R, Terán-Navarro H, Frande-Cabanes E, Ferrández-Fernández E, Freire J, Penadés S, Marradi M, García I, Gomez-Román J, Yañez-Díaz S, Álvarez-Domínguez C. Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities. NANOMATERIALS 2016; 6:nano6080151. [PMID: 28335280 PMCID: PMC5224619 DOI: 10.3390/nano6080151] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 07/26/2016] [Accepted: 08/12/2016] [Indexed: 01/12/2023]
Abstract
Listeriosis is a fatal infection for fetuses and newborns with two clinical main morbidities in the neonatal period, meningitis and diffused cutaneous lesions. In this study, we vaccinated pregnant females with two gold glyconanoparticles (GNP) loaded with two peptides, listeriolysin peptide 91-99 (LLO91-99) or glyceraldehyde-3-phosphate dehydrogenase 1-22 peptide (GAPDH1-22). Neonates born to vaccinated mothers were free of bacteria and healthy, while non-vaccinated mice presented clear brain affections and cutaneous diminishment of melanocytes. Therefore, these nanoparticle vaccines are effective measures to offer pregnant mothers at high risk of listeriosis interesting therapies that cross the placenta.
Collapse
Affiliation(s)
- Ricardo Calderón-Gonzalez
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| | - Héctor Terán-Navarro
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| | - Elisabet Frande-Cabanes
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| | - Eva Ferrández-Fernández
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Cantabria, Spain.
| | - Soledad Penadés
- CIC-biomaGUNE. P de Miramon, 20009 San Sebastian, Gipuzcoa, Spain.
- Biomedical Research Networking Center in Bioingeneering, Nanomaterials and Nanomedine (CIBER-BBN), P de Miramon 182, 20009 San Sebastian, Gipuzkoa, Spain.
| | - Marco Marradi
- CIC-biomaGUNE. P de Miramon, 20009 San Sebastian, Gipuzcoa, Spain.
- Biomedical Research Networking Center in Bioingeneering, Nanomaterials and Nanomedine (CIBER-BBN), P de Miramon 182, 20009 San Sebastian, Gipuzkoa, Spain.
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Cantabria, Spain.
| | - Isabel García
- CIC-biomaGUNE. P de Miramon, 20009 San Sebastian, Gipuzcoa, Spain.
- Biomedical Research Networking Center in Bioingeneering, Nanomaterials and Nanomedine (CIBER-BBN), P de Miramon 182, 20009 San Sebastian, Gipuzkoa, Spain.
| | - Javier Gomez-Román
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Cantabria, Spain.
| | - Sonsoles Yañez-Díaz
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Cantabria, Spain.
| | - Carmen Álvarez-Domínguez
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| |
Collapse
|