1
|
Palmer CR, Pastora LE, Kimmel BR, Pagendarm HM, Kwiatkowski AJ, Stone PT, Arora K, Francini N, Fedorova O, Pyle AM, Wilson JT. Covalent Polymer-RNA Conjugates for Potent Activation of the RIG-I Pathway. Adv Healthc Mater 2024:e2303815. [PMID: 38648653 PMCID: PMC11493851 DOI: 10.1002/adhm.202303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/13/2024] [Indexed: 04/25/2024]
Abstract
RNA ligands of retinoic acid-inducible gene I (RIG-I) are a promising class of oligonucleotide therapeutics with broad potential as antiviral agents, vaccine adjuvants, and cancer immunotherapies. However, their translation has been limited by major drug delivery barriers, including poor cellular uptake, nuclease degradation, and an inability to access the cytosol where RIG-I is localized. Here this challenge is addressed by engineering nanoparticles that harness covalent conjugation of 5'-triphospate RNA (3pRNA) to endosome-destabilizing polymers. Compared to 3pRNA loaded into analogous nanoparticles via electrostatic interactions, it is found that covalent conjugation of 3pRNA improves loading efficiency, enhances immunostimulatory activity, protects against nuclease degradation, and improves serum stability. Additionally, it is found that 3pRNA could be conjugated via either a disulfide or thioether linkage, but that the latter is only permissible if conjugated distal to the 5'-triphosphate group. Finally, administration of 3pRNA-polymer conjugates to mice significantly increases type-I interferon levels relative to analogous carriers that use electrostatic 3pRNA loading. Collectively, these studies have yielded a next-generation polymeric carrier for in vivo delivery of 3pRNA, while also elucidating new chemical design principles for covalent conjugation of 3pRNA with potential to inform the further development of therapeutics and delivery technologies for pharmacological activation of RIG-I.
Collapse
Affiliation(s)
- Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lucinda E. Pastora
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Blaise R. Kimmel
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Hayden M. Pagendarm
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J. Kwiatkowski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Payton T. Stone
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Karan Arora
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Olga Fedorova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Anna M. Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Department of Chemistry, Yale University, New Haven, CT
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
3
|
Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge-Conversion Strategies for Nucleic Acid Delivery. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2011103. [PMID: 35832306 PMCID: PMC9275120 DOI: 10.1002/adfm.202011103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 05/05/2023]
Abstract
Nucleic acids are now considered as one of the most potent therapeutic modalities, as their roles go beyond storing genetic information and chemical energy or as signal transducer. Attenuation or expression of desired genes through nucleic acids have profound implications in gene therapy, gene editing and even in vaccine development for immunomodulation. Although nucleic acid therapeutics bring in overwhelming possibilities towards the development of molecular medicines, there are significant loopholes in designing and effective translation of these drugs into the clinic. One of the major pitfalls lies in the traditional design concepts for nucleic acid drug carriers, viz. cationic charge induced cytotoxicity in delivery pathway. Targeting this bottleneck, several pioneering research efforts have been devoted to design innovative carriers through charge-conversion approaches, whereby built-in functionalities convert from cationic to neutral or anionic, or even from anionic to cationic enabling the carrier to overcome several critical barriers for therapeutics delivery, such as serum deactivation, instability in circulation, low transfection and poor endosomal escape. This review will critically analyze various molecular designs of charge-converting nanocarriers in a classified approach for the successful delivery of nucleic acids. Accompanied by the narrative on recent clinical nucleic acid candidates, the review concludes with a discussion on the pitfalls and scope of these interesting approaches.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis 46268, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pintu Kanjilal
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Wang S. pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Front Chem 2021; 9:645297. [PMID: 33834015 PMCID: PMC8021698 DOI: 10.3389/fchem.2021.645297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The intracellular delivery of emerging biomacromolecular therapeutics, such as genes, peptides, and proteins, remains a great challenge. Unlike small hydrophobic drugs, these biotherapeutics are impermeable to the cell membrane, thus relying on the endocytic pathways for cell entry. After endocytosis, they are entrapped in the endosomes and finally degraded in lysosomes. To overcome these barriers, many carriers have been developed to facilitate the endosomal escape of these biomacromolecules. This mini-review focuses on the development of anionic pH-responsive amphiphilic carboxylate polymers for endosomal escape applications, including the design and synthesis of these polymers, the mechanistic insights of their endosomal escape capability, the challenges in the field, and future opportunities.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Jacobson ME, Becker KW, Palmer CR, Pastora LE, Fletcher RB, Collins KA, Fedorova O, Duvall CL, Pyle AM, Wilson JT. Structural Optimization of Polymeric Carriers to Enhance the Immunostimulatory Activity of Molecularly Defined RIG-I Agonists. ACS CENTRAL SCIENCE 2020; 6:2008-2022. [PMID: 33274278 PMCID: PMC7706089 DOI: 10.1021/acscentsci.0c00568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 05/03/2023]
Abstract
RNA ligands of retinoic acid-inducible gene I (RIG-I) hold significant promise as antiviral agents, vaccine adjuvants, and cancer immunotherapeutics, but their efficacy is hindered by inefficient intracellular delivery to the cytosol where RIG-I is localized. Here, we address this challenge through the synthesis and evaluation of a library of polymeric carriers rationally designed to promote the endosomal escape of 5'-triphosphate RNA (3pRNA) RIG-I agonists. We synthesized a series of PEG-block-(DMAEMA-co-A n MA) polymers, where A n MA is an alkyl methacrylate monomer ranging from n = 2-12 carbons, of variable composition, and examined effects of polymer structure on the intracellular delivery of 3pRNA. Through in vitro screening of 30 polymers, we identified four lead carriers (4-50, 6-40, 8-40, and 10-40, where the first number refers to the alkyl chain length and the second number refers to the percentage of hydrophobic monomer) that packaged 3pRNA into ∼100-nm-diameter particles and significantly enhanced its immunostimulatory activity in multiple cell types. In doing so, these studies also revealed an interplay between alkyl chain length and monomer composition in balancing RNA loading, pH-responsive properties, and endosomal escape, studies that establish new structure-activity relationships for polymeric delivery of 3pRNA and other nucleic acid therapeutics. Importantly, lead carriers enabled intravenous administration of 3pRNA in mice, resulting in increased RIG-I activation as measured by increased levels of IFN-α in serum and elevated expression of Ifnb1 and Cxcl10 in major clearance organs, effects that were dependent on polymer composition. Collectively, these studies have yielded novel polymeric carriers designed and optimized specifically to enhance the delivery and activity of 3pRNA with potential to advance the clinical development of RIG-I agonists.
Collapse
Affiliation(s)
- Max E. Jacobson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kyle W. Becker
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christian R. Palmer
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lucinda E. Pastora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - R. Brock Fletcher
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kathryn A. Collins
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Olga Fedorova
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig L. Duvall
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anna M. Pyle
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, United States
| | - John. T. Wilson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram
Cancer Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Liang Y, Sun Y, Fu X, Lin Y, Meng Z, Meng Y, Niu J, Lai Y, Sun Y. The effect of π-Conjugation on the self-assembly of micelles and controlled cargo release. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:525-532. [PMID: 32037890 DOI: 10.1080/21691401.2020.1725028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Here we presented a novel micelle self-assembled from amphiphiles with π-conjugated moieties (OEG-DPH). The π-conjugated structural integrity of the micelles enabled stable encapsulation of Nile Red (NR, model drug). The self-assembly behaviour of the amphiphiles and the release profile of NR loaded micelles were investigated. Spherical core-shell structured NR loaded micelles with low CMC of 57 μg/mL and the efficient intracellular delivery process was monitored. This research provided a way to fabricate stable polymeric micelles and develop a practical nanocarrier for therapeutics delivery.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yalin Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xiaoheng Fu
- Department of Clinical laboratory, No.971 Hospital of the People's Liberation Army Navy, Qingdao, China
| | - Yang Lin
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhu Meng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yanan Meng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Jiping Niu
- Department of Nursing, Henan Vocational College of Nursing, Anyang, China
| | - Yusi Lai
- Department of Marketing, Sichuan Kelun Pharmaceutical Co, Ltd, Chengdu, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Geven M, Luo H, Koo D, Panambur G, Donno R, Gennari A, Marotta R, Grimaldi B, Tirelli N. Disulfide-Mediated Bioconjugation: Disulfide Formation and Restructuring on the Surface of Nanomanufactured (Microfluidics) Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26607-26618. [PMID: 31282644 DOI: 10.1021/acsami.9b07972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study is about (1) nanomanufacturing (focusing on microfluidic-assisted nanoprecipitation), (2) advanced colloid characterization (focusing on field flow fractionation), and (3) the possible restructuring of surface disulfides. Disulfides are dynamic and exchangeable groups, and here we specifically focus, first, on their use to introduce biofunctional groups and, second, on their re-organization, which may lead to variable surface chemistries and uncontrolled cell interactions. The particles were obtained via microfluidic-assisted (flow-focused) nanoprecipitation of poly(ethylene glycol)-b-poly(ε-caprolactone) bearing or not a 2-pyridyl disulfide (PDS) terminal group, which quantitatively exchanges with thiols in solution. In this study, we have paid specific attention to size characterization, thereby also demonstrating the limitations of dynamic light scattering (DLS) as a stand-alone technique. By using asymmetric flow field flow fractionation coupled with DLS, static light scattering (SLS), and refractive index detectors, we show that relatively small amounts of >100 nm aggregates (cryogenic transmission electron microscopy and SLS/DLS comparison suggesting them to be wormlike micelles) dominated the stand-alone DLS results, whereas the "real" size distributions picked <50 nm. Our key result is that the kinetics of the conjugation based on PDS-thiol exchange was controlled by the thiol pKa, and this also determined the rate of the exchange between the resulting disulfides and glutathione (GSH). In particular, more acidic thiols (e.g., peptides, where a cysteine is flanked by cationic residues) react faster with PDS, but their disulfides hardly exchange with GSH; the reverse applies to thiols with a higher pKa. Disulfides that resist against restructuring via thiol-disulfide exchange allow for a stable bioconjugation, although they may be bad news for payload release under reducing conditions. However, experiments of both thiol release and nanoparticles uptake in cells (HCT116) show that also the disulfides formed from less-acidic and, therefore, less-reactive, and more exchangeable thiols were stable for at least a few hours even in a GSH-rich (10 mM) environment; this suggests a sufficiently long stability of surface groups to achieve, for example, a cell-targeting effect.
Collapse
Affiliation(s)
| | - Hanying Luo
- MilliporeSigma Materials Science , 6000 N Teutonia Avenue , Milwaukee , Wisconsin 53209 , United States
| | - Donghun Koo
- MilliporeSigma Materials Science , 6000 N Teutonia Avenue , Milwaukee , Wisconsin 53209 , United States
| | - Gangadhar Panambur
- MilliporeSigma Materials Science , 6000 N Teutonia Avenue , Milwaukee , Wisconsin 53209 , United States
| | | | | | | | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , The University of Manchester , M13 9PT Manchester , U.K
| |
Collapse
|
8
|
Shin JH, Shin DH, Kim JS. Let-7 miRNA and CDK4 siRNA co-encapsulated in Herceptin-conjugated liposome for breast cancer stem cells. Asian J Pharm Sci 2019; 15:472-481. [PMID: 32952670 PMCID: PMC7486552 DOI: 10.1016/j.ajps.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, breast cancer stem cells (BCSCs) have rapidly emerged as a novel target for the therapy of breast cancer as they play critical roles in tumor growth, maintenance, metastasis, and recurrence. Let-7 miRNA is known to be downregulated in a variety of cancers, especially BCSCs, whereas CDK4 being overexpressed in human epidermal growth factor receptor 2 (HER-2) overexpressing tumor cells. In this study, let-7 miRNA and CDK4-specific siRNA were chosen as therapeutic agents and co-encapsulated in Herceptin-conjugated cationic liposomes for breast cancer therapy. Particle size, zeta potential, and encapsulation efficacy of mi/siRNA-loaded PEGylated liposome conjugated with Herceptin (Her-PEG-Lipo-mi/siRNA) were 176 nm, 28.1 mV, and 99.7% ± 0.1%, respectively. Enhanced cellular uptake (86%) was observed by fluorescence microscopy when SK-BR-3 cells were treated with Her-PEG-Lipo-mi/siRNA. Also, the increased amount of let-7a mRNA and decreased amount of cellular CDK4 mRNA were observed by qRT-PCR when SK-BR-3 cells were treated with Her-PEG-Lipo-mi/siRNA, which was even more so when SK-BR-3 stem cells were used (197 vs 768 times increase for let-7a, 62% vs 68% decrease for CDK4). Growth inhibition (65%) and migration arrest (0.5%) of the cells were achieved by the treatment of the cells with Her-PEG-Lipo-mi/siRNA, but not with mi/siRNA complex or other formulations. In conclusion, an efficient liposomal delivery system for the combination of miRNA and siRNA to target the BCSCs was developed and could be used as an efficacious therapeutic modality for breast cancer.
Collapse
Affiliation(s)
- Jeong Hyun Shin
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin Seok Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
9
|
Lu HH, Huang CH, Shiue TY, Wang FS, Chang KK, Chen Y, Peng CH. Highly efficient gene release in spatiotemporal precision approached by light and pH dual responsive copolymers. Chem Sci 2019; 10:284-292. [PMID: 30713638 PMCID: PMC6333234 DOI: 10.1039/c8sc01494a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Triblock copolymer of poly(ethylene glycol)-b-poly(2-dimethylaminoethyl methacrylate)-b-poly(pyrenylmethyl methacrylate) (PEG-b-PDMAEMA-b-PPy) has been developed for use as an ideal gene delivery system, which showed both high stability under physiological conditions and efficient gene release in a mimetic cancer environment. The siRNA release from this system without external stimulation was 16% in 1 h and then remained steady. However, the photo-triggered siRNA release was 78% within 1 h and was higher than 91% after 24 h. The remarkable contrast between the stability and release efficiency of these siRNA-condensed micelleplexes before and after photo-irradiation has been rationalized by the light- and pH-induced structural transitions of the triblock copolymer micelles. The negligible cytotoxicity, high cellular uptake efficiency, and remarkable knockdown efficiency shown in in vitro tests further revealed the promising potential of these triblock copolymer micelleplexes for use in stimuli-responsive gene therapy.
Collapse
Affiliation(s)
- Hung-Hsun Lu
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| | - Cheng-Hung Huang
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| | - Ting-Yun Shiue
- Institute of Biomedical Engineering , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan
| | - Fu-Sheng Wang
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| | - Ko-Kai Chang
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| | - Yunching Chen
- Institute of Biomedical Engineering , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan
| | - Chi-How Peng
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| |
Collapse
|
10
|
Sharma S, Mazumdar S, Italiya KS, Date T, Mahato RI, Mittal A, Chitkara D. Cholesterol and Morpholine Grafted Cationic Amphiphilic Copolymers for miRNA-34a Delivery. Mol Pharm 2018; 15:2391-2402. [PMID: 29747513 DOI: 10.1021/acs.molpharmaceut.8b00228] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
miR-34a is a master tumor suppressor playing a key role in the several signaling mechanisms involved in cancer. However, its delivery to the cancer cells is the bottleneck in its clinical translation. Herein we report cationic amphiphilic copolymers grafted with cholesterol (chol), N, N-dimethyldipropylenetriamine (cation chain) and 4-(2-aminoethyl)morpholine (morph) for miR-34a delivery. The copolymer interacts with miR-34a at low N/P ratios (∼2/1) to form nanoplexes of size ∼108 nm and a zeta potential ∼ +39 mV. In vitro studies in 4T1 and MCF-7 cells indicated efficient transfection efficiency. The intracellular colocalization suggested that the copolymer effectively transported the FAM labeled siRNA into the cytoplasm within 2 h and escaped from the endo-/lysosomal environment. The developed miR-34a nanoplexes inhibited the breast cancer cell growth as confirmed by MTT assay wherein 28% and 34% cancer cell viability was observed in 4T1 and MCF-7 cells, respectively. Further, miR-34a nanoplexes possess immense potential to induce apoptosis in both cell lines.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Samrat Mazumdar
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Kishan S Italiya
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Tushar Date
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences , College of Pharmacy, University of Nebraska Medical Center , 986125 Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| | - Anupama Mittal
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Deepak Chitkara
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| |
Collapse
|
11
|
Prieve MG, Harvie P, Monahan SD, Roy D, Li AG, Blevins TL, Paschal AE, Waldheim M, Bell EC, Galperin A, Ella-Menye JR, Houston ME. Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Mol Ther 2018; 26:801-813. [PMID: 29433939 PMCID: PMC5910669 DOI: 10.1016/j.ymthe.2017.12.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
We describe a novel, two-nanoparticle mRNA delivery system and show that it is highly effective as a means of intracellular enzyme replacement therapy (i-ERT) using a murine model of ornithine transcarbamylase deficiency (OTCD). Our Hybrid mRNA Technology delivery system (HMT) comprises an inert lipid nanoparticle that protects the mRNA from nucleases in the blood as it distributes to the liver and a polymer micelle that targets hepatocytes and triggers endosomal release of mRNA. This results in high-level synthesis of the desired protein specifically in the liver. HMT delivery of human OTC mRNA normalizes plasma ammonia and urinary orotic acid levels, and leads to a prolonged survival benefit in the murine OTCD model. HMT represents a unique, non-viral mRNA delivery method that allows multi-dose, systemic administration for treatment of single-gene inherited metabolic diseases.
Collapse
Affiliation(s)
- Mary G Prieve
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA.
| | - Pierrot Harvie
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Sean D Monahan
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Debashish Roy
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Allen G Li
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Teri L Blevins
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Amber E Paschal
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Matt Waldheim
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Eric C Bell
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Anna Galperin
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | | | - Michael E Houston
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| |
Collapse
|
12
|
Ahmed S, Miyawaki O, Matsumura K. Enhanced Adsorption of a Protein-Nanocarrier Complex onto Cell Membranes through a High Freeze Concentration by a Polyampholyte Cryoprotectant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2352-2362. [PMID: 29361227 DOI: 10.1021/acs.langmuir.7b03622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The transportation of biomolecules into cells is of great importance in tissue engineering and as stimulation for antitumor immune cells. Previous freezing strategies at ultracold temperatures (-80 °C) used for intracellular transportation exhibit certain limitations such as extended time requirements and harsh delivery system conditions. Thus, the need remains to develop simplified methods for safe nanomaterial delivery. Here, we demonstrated a unique strategy based on the ice-crystallization-induced freeze concentration for protein intracellular delivery in combination with a polyampholyte cryoprotectant. We found that upon sustained lowering of the temperature from -6 to -20 °C over a short duration, the adsorption of proteins onto the peripheral cell membrane was markedly increased through the facile ice-crystallization-induced freeze concentration. Furthermore, we proposed a freeze concentration factor (α) that depends on the freezing-point depression and is estimated from an analysis of the fraction of frozen water. Notably, the α values of the polyampholyte cryoprotectant were 8-fold higher than those of the currently used cryoprotectant dimethyl sulfoxide (DMSO) at particular temperatures of interest. Our results illustrate that the presence of a polyampholyte cryoprotectant significantly enhanced the adsorption of the protein/nanocarrier complex onto membranes compared to that obtained with DMSO because of the high freeze concentration. The present study demonstrated the direct relationship between freezing and the penetration of proteins across the periphery of the cell membrane by means of increased concentration during freezing. These results may be useful in providing a guideline for the intracellular delivery of biomacromolecules using ice-crystallization-induced continuous freezing combined with polyampholyte cryoprotectants.
Collapse
Affiliation(s)
- Sana Ahmed
- School of Materials Science, Japan Advanced Institute of Science and Technology , Nomi, Ishikawa 923-1292, Japan
| | - Osato Miyawaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology , 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology , Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
13
|
Dore MD, Fakhoury JJ, Lacroix A, Sleiman HF. Templated synthesis of spherical RNA nanoparticles with gene silencing activity. Chem Commun (Camb) 2018; 54:11296-11299. [DOI: 10.1039/c8cc06994h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioactive RNA nanoparticles with gene silencing activity have been synthesized in high yield using a complementary spherical DNA nanoparticle.
Collapse
|
14
|
Destarac M. Industrial development of reversible-deactivation radical polymerization: is the induction period over? Polym Chem 2018. [DOI: 10.1039/c8py00970h] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The commercial applications of polymers produced by reversible-deactivation radical polymerization are reviewed here.
Collapse
Affiliation(s)
- Mathias Destarac
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| |
Collapse
|
15
|
McClellan AK, Hao T, Brooks TA, Smith AE. RAFT Polymerization for the Synthesis of Tertiary Amine-Based Diblock Copolymer Nucleic Acid Delivery Vehicles. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/20/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Annie K. McClellan
- Department of Chemical Engineering; University of Mississippi; Mississippi; MS 38677 USA
| | - Taisen Hao
- Department of BioMolecular Sciences; University of Mississippi; Mississippi; MS 38677 USA
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences; Binghamton University; Binghamton NY 13902 USA
| | - Adam E. Smith
- Department of Chemical Engineering; University of Mississippi; Mississippi; MS 38677 USA
| |
Collapse
|
16
|
Kern HB, Srinivasan S, Convertine AJ, Hockenbery D, Press OW, Stayton PS. Enzyme-Cleavable Polymeric Micelles for the Intracellular Delivery of Proapoptotic Peptides. Mol Pharm 2017; 14:1450-1459. [PMID: 28277671 PMCID: PMC5823688 DOI: 10.1021/acs.molpharmaceut.6b01178] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peptides derived from the third Bcl-2 homology domain (BH3) renormalize apoptotic signaling by antagonizing prosurvival Bcl-2 family members. These potential peptide drugs exhibit therapeutic activities but are limited by barriers including short circulation half-lives and poor penetration into cells. A diblock polymeric micelle carrier for the BIM BH3 peptide was recently described that demonstrated antitumor activity in a B-cell lymphoma xenograft model [Berguig et al., Mol. Ther. 2015, 23, 907-917]. However, the disulfide linkage used to conjugate the BIM peptide was shown to have nonoptimal blood stability. Here we describe a peptide macromonomer composed of BIM capped with a four amino acid cathepsin B substrate (FKFL) that possesses high blood stability and is cleaved to release the drug inside of target cells. Employing RAFT polymerization, the peptide macromonomer was directly integrated into a multifunctional diblock copolymer tailored for peptide delivery. The first polymer block was made as a macro-chain transfer agent (CTA) and composed of a pH-responsive endosomolytic formulation of N,N-diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA). The second polymer block was a copolymer of the peptide and polyethylene glycol methacrylate (PEGMA). PEGMA monomers of two sizes were investigated (300 Da and 950 Da). Protein gel analysis, high performance liquid chromatography, and coupled mass spectrometry (MS) showed that incubation with cathepsin B specifically cleaved the FKFL linker and released active BIM peptide with PEGMA300 but not with PEGMA950. MALDI-TOF MS showed that incubation of the peptide monomers alone in human serum resulted in partial cleavage at the FKFL linker after 12 h. However, formulation of the peptides into polymers protected against serum-mediated peptide degradation. Dynamic light scattering (DLS) demonstrated pH-dependent micelle disassembly (25 nm polymer micelles at pH 7.4 versus 6 nm unimers at pH 6.6), and a red blood cell lysis assay showed a corresponding increase in membrane destabilizing activity (<1% lysis at pH 7.4 versus 95% lysis at pH 6.6). The full carrier-drug system successfully induced apoptosis in SKOV3 ovarian cancer cells in a dose-dependent manner, in comparison to a control polymer containing a scrambled BIM peptide sequence. Mechanistic analysis verified target-dependent activation of caspase 3/7 activity (8.1-fold increase), and positive annexin V staining (72% increase). The increased blood stability of this enzyme-cleavable peptide polymer design, together with the direct polymerization approach that eliminated postsynthetic conjugation steps, suggests that this new carrier design could provide important benefits for intracellular peptide drug delivery.
Collapse
Affiliation(s)
- Hanna B. Kern
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Selvi Srinivasan
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Anthony J. Convertine
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - David Hockenbery
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98108, United States
| | - Oliver W. Press
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98108, United States
| | - Patrick S. Stayton
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017; 113:177-200. [PMID: 28606739 PMCID: PMC5578712 DOI: 10.1016/j.addr.2017.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Leila Mashouf
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Alexander V Ljubimov
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery and Brain Repair, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistics and Bioinformatics, Clinical Research Training Program (CRTP), 2424 Erwin Road, Suite 1102, Hock Plaza Box 2721, Durham, NC 27710, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA; Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
18
|
Yousefpour Marzbali M, Yari Khosroushahi A. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol 2017; 79:637-649. [DOI: 10.1007/s00280-017-3273-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/02/2017] [Indexed: 12/11/2022]
|
19
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
20
|
Palanca-Wessels MC, Booth GC, Convertine AJ, Lundy BB, Berguig GY, Press MF, Stayton PS, Press OW. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget 2017; 7:9561-75. [PMID: 26840082 PMCID: PMC4891060 DOI: 10.18632/oncotarget.7076] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
The therapeutic potential of RNA interference (RNAi) has been limited by inefficient delivery of short interfering RNA (siRNA). Tumor-specific recognition can be effectively achieved by antibodies directed against highly expressed cancer cell surface receptors. We investigated the utility of linking an internalizing streptavidin-conjugated HER2 antibody to an endosome-disruptive biotinylated polymeric nanocarrier to improve the functional cytoplasmic delivery of siRNA in breast and ovarian cancer cells in vitro and in an intraperitoneal ovarian cancer xenograft model in vivo, yielding an 80% reduction of target mRNA and protein levels with sustained repression for at least 96 hours. RNAi-mediated site specific cleavage of target mRNA was demonstrated using the 5′ RLM-RACE (RNA ligase mediated-rapid amplification of cDNA ends) assay. Mice bearing intraperitoneal human ovarian tumor xenografts demonstrated increased tumor accumulation of Cy5.5 fluorescently labeled siRNA and 70% target gene suppression after treatment with HER2 antibody-directed siRNA nanocarriers. Detection of the expected mRNA cleavage product by 5′ RLM-RACE assay confirmed that suppression occurs via the expected RNAi pathway. Delivery of siRNA via antibody-directed endosomolytic nanoparticles may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Maria C Palanca-Wessels
- Clinical Research Division and Center for Intracellular Delivery of Biologics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Hematology Division, University of Washington, Seattle, WA, USA
| | - Garrett C Booth
- Clinical Research Division and Center for Intracellular Delivery of Biologics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anthony J Convertine
- Department of Bioengineering and Center for Intracellular Delivery of Biologics, University of Washington, Seattle, WA, USA
| | - Brittany B Lundy
- Department of Bioengineering and Center for Intracellular Delivery of Biologics, University of Washington, Seattle, WA, USA
| | - Geoffrey Y Berguig
- Department of Bioengineering and Center for Intracellular Delivery of Biologics, University of Washington, Seattle, WA, USA
| | - Michael F Press
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Patrick S Stayton
- Department of Bioengineering and Center for Intracellular Delivery of Biologics, University of Washington, Seattle, WA, USA
| | - Oliver W Press
- Clinical Research Division and Center for Intracellular Delivery of Biologics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Bioengineering and Center for Intracellular Delivery of Biologics, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Yang J, Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J Control Release 2016; 240:9-23. [DOI: 10.1016/j.jconrel.2015.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/13/2023]
|
23
|
Cohen N, Binyamin L, Levi-Kalisman Y, Berguig GY, Convertine A, Stayton P, Yerushalmi Rozen R. pH and Salt Effects on Surface Activity and Self-Assembly of Copolymers Containing a Weak Polybase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9286-9292. [PMID: 27556595 DOI: 10.1021/acs.langmuir.6b02452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Copolymers with well-defined architectures, controlled molecular weights, and narrow molar mass dispersities (Đ) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The resultant polymers contain different combinations of the pH-responsive monomer 2-(diethylaminoethyl) methacrylate (DEAEMA), the hydrophobic comonomer butyl methacrylate (BMA), and a neutral hydrophilic stabilizing monomer polyethylene glycol monomethyl ether methacrylate (designated O950). Surface tension and cryo-TEM measurements of native and heavy-atom stained samples were used to characterize the pH and salt responsiveness of the different polymers as a function of their composition. These studies indicate that while the polymers predominately self-assemble to form spherical micelles, a narrow size distribution is observed in aqueous solutions of poly(O950)-b-(BMA) and poly(O950)-b-(DEAEMA-co-BMA), whereas a broad size distribution characterizes the assemblies of poly(O950)-b-(DEAEMA) and poly(DEAEMA-co-BMA). In the latter case, micelles having diameters around 15-25 nm are found along with smaller aggregates (about 10 nm) mostly arranged in elongated necklace-like structures. The pH and salt-responsiveness of the DEAEMA residue, as indicated by the surface activity of the copolymers, was found to depend on the nature of the additional components: covalently linked hydrophobic groups (BMA) moderated the pH response of the copolymer as compared to nonionic and hydrophilic groups as in poly(O950)-b-(DEAEMA). These results suggest that mutual interactions among the building blocks of self-assembling copolymers should be taken into account when designing responsive copolymers.
Collapse
Affiliation(s)
- Neta Cohen
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| | - Lana Binyamin
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| | - Yael Levi-Kalisman
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
- The Institute for Life Sciences, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Geoffrey Y Berguig
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Anthony Convertine
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Patrick Stayton
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Rachel Yerushalmi Rozen
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| |
Collapse
|
24
|
Yang J, Zhang R, Christopher Radford D, Kopeček J. Design and synthesis of FRET-trackable HPMA-based biodegradable conjugates for drug/gene delivery. J Control Release 2015; 213:e58. [DOI: 10.1016/j.jconrel.2015.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Fairbanks BD, Gunatillake PA, Meagher L. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT). Adv Drug Deliv Rev 2015; 91:141-52. [PMID: 26050529 DOI: 10.1016/j.addr.2015.05.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022]
Abstract
RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- CSIRO Manufacturing Flagship, Ian Wark Laboratories, Clayton, VIC 3168, Australia; Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA 80309-0596.
| | | | - Laurence Meagher
- CSIRO Manufacturing Flagship, Ian Wark Laboratories, Clayton, VIC 3168, Australia; Monash Institute for Medical Engineering and Department of Materials Science and Engineering, Monash University, PO Box 69M, VIC, 3800, Australia.
| |
Collapse
|
26
|
Design of hemocompatible poly(DMAEMA-co-PEGMA) hydrogels for controlled release of insulin. J Appl Polym Sci 2015. [DOI: 10.1002/app.42365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Scomparin A, Polyak D, Krivitsky A, Satchi-Fainaro R. Achieving successful delivery of oligonucleotides--From physico-chemical characterization to in vivo evaluation. Biotechnol Adv 2015; 33:1294-309. [PMID: 25916823 DOI: 10.1016/j.biotechadv.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
RNA interference is one of the most promising fields in modern medicine to treat several diseases, ranging from cancer to cardiac diseases, passing through viral infections and metabolic pathologies. Since the discovery of the potential therapeutic properties of non-self oligonucleotides, it was clear that it is important to develop delivery systems that are able to increase plasma stability and bestow membrane-crossing abilities to the oligonucleotides in order to reach their cytoplasmic targets. Polymer therapeutics, among other systems, are widely investigated as delivery systems for therapeutic agents, such as oligonucleotides. Physico-chemical characterization of the supramolecular polyplexes obtained upon charge interaction or covalent conjugation between the polymeric carrier and the oligonucleotides is critical. Appropriate characterization is fundamental in order to predict and understand the in vivo silencing efficacy and to avoid undesired side effects and toxicity profile. Shedding light on the physico-chemical and in vitro requirements of a polyplex leads to an efficient in vivo delivery system for RNAi therapeutics. In this review, we will present the most common techniques for characterization of obtained polymer/oligonucleotide polyplexes and an up-to-date state of the art in vivo preclinical and clinical studies. This is the first review to deal with the difficulties in appropriate characterization of small interfering RNA (siRNA) or microRNA (miRNA) polyplexes and conjugates which limit the clinical translation of this promising technology.
Collapse
Affiliation(s)
- Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dina Polyak
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
28
|
Lane D, Su F, Chiu D, Srinivasan S, Wilson J, Ratner D, Stayton P, Convertine A. Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes. Polym Chem 2015; 6:1255-1266. [PMID: 26097513 PMCID: PMC4470576 DOI: 10.1039/c4py01249f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a series of copolymers consisting of 2-hdroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methyl ether methacrylate (FWavg ~ 950 Da) (O950) with variable comonomer compositions and molecular weights for use as polymeric scaffolds. Reactivity ratios for the monomer pair were determined to be 1.37 and 0.290 respectively. To these scaffolds trithiocarbonate-based RAFT chain transfer agents (CTAs) were grafted using carbodiimide chemistry. The resultant graft chain transfer agents (gCTA) were subsequently employed to polymerize dimethylaminoethyl methacrylate (DMAEMA) and (HPMA) between degrees of polymerization (DP) of 25 and 200. Kinetic analysis for the polymerization of DMAEMA targeting a DP of 100 from a 34 arm graft gCTA show linear Mn conversion and pseudo first order rate plots with narrow molecular weight distributions that move toward lower elution volumes with monomer conversion. Đ values for these polymerizations remain low at around 1.20 at monomer conversions as high as 70 %. pH-responsive endosomalytic brushes capable of spontaneously self-assembling into polymersomes were synthesized and a combination of dynamic light scattering (DLS), cryoTEM, and red blood cell hemolysis were employed to evaluate the aqueous solution properties of the polymeric brush as a function of pH. Successful encapsulation of ceftazidime and pH-dependent drug release properties were confirmed by HPLC. Intracellular antibiotic activity of the drug-loaded polymersomes was confirmed in a macrophage coculture model of infection with B. thailandensis and RAW 264.7 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A.J. Convertine
- Molecular Engineering and Sciences Institute, Department of Bioengineering, Box 355061, Seattle, WA, 98195, USA. ; Fax: +1 (206) 685 8526; Tel: +1 (206) 221 5113
| |
Collapse
|
29
|
Qian J, Berkland C. pH-sensitive triblock copolymers for efficient siRNA encapsulation and delivery. Polym Chem 2015. [DOI: 10.1039/c5py00219b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A pH-sensitive triblock copolymer was synthesized for efficient siRNA encapsulation by double emulsion and the formed nanocapsules showed successful delivery of siRNA in vitro.
Collapse
Affiliation(s)
- Jian Qian
- Department of Pharmaceutical Chemistry
- The University of Kansas
- Lawrence
- USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry
- The University of Kansas
- Lawrence
- USA
- Department of Chemical and Petroleum Engineering
| |
Collapse
|
30
|
Gunkel-Grabole G, Sigg S, Lomora M, Lörcher S, Palivan CG, Meier WP. Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomater Sci 2015. [DOI: 10.1039/c4bm00230j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Lowe S, O'Brien-Simpson NM, Connal LA. Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polym Chem 2015. [DOI: 10.1039/c4py01356e] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights antibiofouling polymer interfaces with emphasis on the latest developments using poly(ethylene glycol) and the design new polymeric structures.
Collapse
Affiliation(s)
- Sean Lowe
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Victoria
- Australia 3010
| | | | - Luke A. Connal
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Victoria
- Australia 3010
| |
Collapse
|
32
|
Yang J, Kopeček J. Macromolecular therapeutics. J Control Release 2014; 190:288-303. [PMID: 24747162 PMCID: PMC4142088 DOI: 10.1016/j.jconrel.2014.04.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines - (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City 84112, USA.
| |
Collapse
|
33
|
Ahmed S, Hayashi F, Nagashima T, Matsumura K. Protein cytoplasmic delivery using polyampholyte nanoparticles and freeze concentration. Biomaterials 2014; 35:6508-18. [DOI: 10.1016/j.biomaterials.2014.04.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/10/2014] [Indexed: 12/18/2022]
|
34
|
Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J Control Release 2014; 191:24-33. [PMID: 24698946 DOI: 10.1016/j.jconrel.2014.03.041] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/16/2014] [Accepted: 03/23/2014] [Indexed: 12/27/2022]
Abstract
Synthetic subunit vaccines need to induce CD8(+) cytotoxic T cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8(+) cytotoxic T cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8(+) T cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendent pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25-30nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non-pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC 2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8(+) T cell responses (0.4% IFN-γ(+) of CD8(+)) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the draining lymph nodes. As early as 90min post injection, ova-micelle conjugates were associated with 28% and 55% of dendritic cells and macrophages, respectively. After 24h, conjugates preferentially associated with dendritic cells, affording 30-, 3-, and 3-fold enhancements in uptake relative to free protein, physical mixture, and the non-pH-responsive conjugate controls, respectively. These results demonstrate the potential of pH-responsive polymeric micelles for use in vaccine applications that rely on CD8(+) T cell activation.
Collapse
Affiliation(s)
- Salka Keller
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-1721, USA.
| | - John T Wilson
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-1721, USA.
| | - Gabriela I Patilea
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-1721, USA.
| | - Hanna B Kern
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-1721, USA.
| | - Anthony J Convertine
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-1721, USA.
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-1721, USA.
| |
Collapse
|
35
|
Kurtulus I, Yilmaz G, Ucuncu M, Emrullahoglu M, Becer CR, Bulmus V. A new proton sponge polymer synthesized by RAFT polymerization for intracellular delivery of biotherapeutics. Polym Chem 2014. [DOI: 10.1039/c3py01244a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Tucker BS, Sumerlin BS. Poly(N-(2-hydroxypropyl) methacrylamide)-based nanotherapeutics. Polym Chem 2014. [DOI: 10.1039/c3py01279d] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Hubbell JA, Langer R. Translating materials design to the clinic. NATURE MATERIALS 2013; 12:963-6. [PMID: 24150414 DOI: 10.1038/nmat3788] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Jeffrey A Hubbell
- Institute for Bioengineering, School of Life Sciences and School of Engineering, and Institute for Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
38
|
Burke PA, Pun SH, Reineke TM. Advancing polymeric delivery systems amidst a nucleic acid therapy renaissance. ACS Macro Lett 2013; 2:928-934. [PMID: 24683504 PMCID: PMC3967836 DOI: 10.1021/mz400418j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleic acid therapeutics are attracting renewed interest due to recent clinical advances and product approvals. Most leading programs use chemical conjugates, or viral vectors in the case of gene therapy, while several use no delivery system at all. Polymer systems, which have been at the periphery of this renaissance, often involve greater molecular complexity than competing approaches, which must be justified by their advantages. Advanced analytical methods, along with biological tools for characterizing biotransformation and intracellular trafficking, are increasingly being applied to nucleic acid delivery systems including those based on polymers. These frontiers of investigation create the opportunity for an era where highly defined polymer compositions are optimized based on mechanistic insights in a way that has not been previously possible, offering the prospect of greater differentiation from alternatives. This will require integrated collaboration between polymer scientists and those from other disciplines.
Collapse
Affiliation(s)
- Paul A. Burke
- Burke Bioventures LLC, PO Box 15703, Boston, MA 02215
- Department of Bioengineering, University of Washington, 3720 15 Ave NE, Box 355061, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, 3720 15 Ave NE, Box 355061, Seattle, Washington 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, 3720 15 Ave NE, Box 355061, Seattle, Washington 98195, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455
| |
Collapse
|