1
|
Hovorková M, Červený J, Bumba L, Pelantová H, Cvačka J, Křen V, Renaudet O, Goyard D, Bojarová P. Advanced high-affinity glycoconjugate ligands of galectins. Bioorg Chem 2023; 131:106279. [PMID: 36446202 DOI: 10.1016/j.bioorg.2022.106279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/20/2022]
Abstract
Galectins are proteins of the family of human lectins. By binding terminal galactose units of cell surface glycans, they moderate biological and pathological processes such as cell signaling, cell adhesion, apoptosis, fibrosis, carcinogenesis, and metabolic disorders. The binding of monovalent glycans to galectins is usually relatively weak. Therefore, the presentation of carbohydrate ligands on multivalent scaffolds can efficiently increase and/or discriminate the affinity of the glycoconjugate to different galectins. A library of glycoclusters and glycodendrimers with various structural presentations of the common functionalized N-acetyllactosamine ligand was prepared to evaluate how the mode of presentation affects the affinity and selectivity to the two most abundant galectins, galectin-1 (Gal-1) and galectin-3 (Gal-3). In addition, the effect of a one- to two-unit carbohydrate spacer on the affinity of the glycoconjugates was determined. A new design of the biolayer interferometry (BLI) method with specific AVI-tagged constructs was used to determine the affinity to galectins, and compared with the gold-standard method of isothermal titration calorimetry (ITC). This study reveals new routes to low nanomolar glycoconjugate inhibitors of galectins of interest for biomedical research.
Collapse
Affiliation(s)
- Michaela Hovorková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843 Prague 2, Czech Republic
| | - Jakub Červený
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám, 2, CZ-166 10 Prague 6, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Olivier Renaudet
- Department of Molecular Chemistry, University Grenoble-Alpes, 621, Avenue Centrale, F-38400 Saint Martin-d'Hères, France
| | - David Goyard
- Department of Molecular Chemistry, University Grenoble-Alpes, 621, Avenue Centrale, F-38400 Saint Martin-d'Hères, France.
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic.
| |
Collapse
|
2
|
Konietzny PB, Freytag J, Feldhof MI, Müller JC, Ohl D, Stehle T, Hartmann L. Synthesis of Homo- and Heteromultivalent Fucosylated and Sialylated Oligosaccharide Conjugates via Preactivated N-Methyloxyamine Precision Macromolecules and Their Binding to Polyomavirus Capsid Proteins. Biomacromolecules 2022; 23:5273-5284. [PMID: 36398945 DOI: 10.1021/acs.biomac.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated via N-methyloxyamine groups. In this study, we introduce such N-methyloxyamine groups into a variety of multivalent scaffolds─from small to oligomeric to polymeric scaffolds─making use of solid-phase polymer synthesis to assemble monodisperse sequence-defined macromolecules. These scaffolds are then successfully functionalized with different types of human milk oligosaccharides deriving a library of homo- and heteromultivalent glycoconjugates. Glycomacromolecules presenting oligosaccharide side chains with either α2,3- or α2,6-linked terminal sialic acid are used in a binding study with two types of polyomavirus capsid proteins showing that the multivalent presentation through the N-methyloxyamine-derived scaffolds increases the number of contacts with the protein. Overall, a straightforward route to derive glycoconjugates from complex oligosaccharides with high variability yet control in the multivalent scaffold is presented, and applicability of the derived structures is demonstrated.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jasmin Freytag
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Melina I Feldhof
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Joshua C Müller
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Daniel Ohl
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
3
|
Goyard D, Ortiz AMS, Boturyn D, Renaudet O. Multivalent glycocyclopeptides: conjugation methods and biological applications. Chem Soc Rev 2022; 51:8756-8783. [PMID: 36193815 PMCID: PMC9575389 DOI: 10.1039/d2cs00640e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/21/2022]
Abstract
Click chemistry was extensively used to decorate synthetic multivalent scaffolds with glycans to mimic the cell surface glycocalyx and to develop applications in glycosciences. Conjugation methods such as oxime ligation, copper(I)-catalyzed alkyne-azide cycloaddition, thiol-ene coupling, squaramide coupling or Lansbury aspartylation proved particularly suitable to achieve this purpose. This review summarizes the synthetic strategies that can be used either in a stepwise manner or in an orthogonal one-pot approach, to conjugate multiple copies of identical or different glycans to cyclopeptide scaffolds (namely multivalent glycocyclopeptides) having different size, valency, geometry and molecular composition. The second part of this review will describe the potential of these structures to interact with various carbohydrate binding proteins or to stimulate immunity against tumor cells.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
4
|
Picault L, Laigre E, Gillon E, Tiertant C, Renaudet O, Imberty A, Goyard D, Dejeu J. Characterization of the interaction of multivalent glycosylated ligands with bacterial lectins by BioLayer interferometry. Glycobiology 2022; 32:886-896. [DOI: 10.1093/glycob/cwac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The study of multivalent carbohydrate–protein interactions remains highly complicated and sometimes rendered impossible due to aggregation problems. Bio-Layer Interferometry (BLI) is emerging as a tool to monitor such complex interactions. In this study, various glycoclusters and dendrimers were prepared and evaluated as ligands for lectins produced by pathogenic bacteria Pseudomonas aeruginosa (LecA and Lec B) and Burkholderia ambifaria (BambL). Reliable kinetic and thermodynamic parameters could be measured, and immobilization of either lectin or ligands resulted in high quality data. The methods gave results in full agreement with previous ITC experiments, and presented strong advantages since they require less quantity and purity for the biomolecules.
Collapse
Affiliation(s)
- L Picault
- Université Grenoble Alpes , CNRS, DCM, UMR 5250, 570 Rue de la Chimie, 38000 Grenoble , France
| | - E Laigre
- Université Grenoble Alpes , CNRS, DCM, UMR 5250, 570 Rue de la Chimie, 38000 Grenoble , France
| | - E Gillon
- Université Grenoble Alpes , CNRS, CERMAV, UPR5301, 601 Rue de la Chimie, 38000 Grenoble , France
| | - C Tiertant
- Université Grenoble Alpes , CNRS, DCM, UMR 5250, 570 Rue de la Chimie, 38000 Grenoble , France
| | - O Renaudet
- Université Grenoble Alpes , CNRS, DCM, UMR 5250, 570 Rue de la Chimie, 38000 Grenoble , France
| | - A Imberty
- Université Grenoble Alpes , CNRS, CERMAV, UPR5301, 601 Rue de la Chimie, 38000 Grenoble , France
| | - D Goyard
- Université Grenoble Alpes , CNRS, DCM, UMR 5250, 570 Rue de la Chimie, 38000 Grenoble , France
| | - J Dejeu
- Université Grenoble Alpes , CNRS, DCM, UMR 5250, 570 Rue de la Chimie, 38000 Grenoble , France
- FEMTO-ST Institute , CNRS UMR-6174, Université de Bourgogne Franche-Comté, F-25000 Besançon , France
| |
Collapse
|
5
|
Wojtczak K, Byrne JP. Structural Considerations for Building Synthetic Glycoconjugates as Inhibitors for Pseudomonas aeruginosa Lectins. ChemMedChem 2022; 17:e202200081. [PMID: 35426976 PMCID: PMC9321714 DOI: 10.1002/cmdc.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium, responsible for a large portion of nosocomial infections globally and designated as critical priority by the World Health Organisation. Its characteristic carbohydrate-binding proteins LecA and LecB, which play a role in biofilm-formation and lung-infection, can be targeted by glycoconjugates. Here we review the wide range of inhibitors for these proteins (136 references), highlighting structural features and which impact binding affinity and/or therapeutic effects, including carbohydrate selection; linker length and rigidity; and scaffold topology, particularly for multivalent candidates. We also discuss emerging therapeutic strategies, which build on targeting of LecA and LecB, such as anti-biofilm activity, anti-adhesion and drug-delivery, with promising prospects for medicinal chemistry.
Collapse
Affiliation(s)
- Karolina Wojtczak
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| | - Joseph P. Byrne
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| |
Collapse
|
6
|
Goyard D, Roubinet B, Vena F, Landemarre L, Renaudet O. Homo- and Heterovalent Neoglycoproteins as Ligands for Bacterial Lectins. Chempluschem 2021; 87:e202100481. [PMID: 34931469 DOI: 10.1002/cplu.202100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Indexed: 11/11/2022]
Abstract
Click chemistry gives access to unlimited set of multivalent glycoconjugates to explore carbohydrate-protein interactions and discover high affinity ligands. In this study, we have created supramolecular systems based on a carrier protein that was grafted by Cu(I)-catalyzed azide-alkyne cycloaddition with tetravalent glycodendrons presenting αGal, βGal and/or αFuc. Binding studies of the homo- (4 a-c) and heterovalent (5) neoglycoproteins (neoGPs) with the LecA and LecB lectins from P. aeruginosa has first confirmed the interest of the multivalent presentation of glycodendrons by the carrier protein (IC50 up to 2.8 nM). Moreover, these studies have shown that the heterovalent display of glycans (5) allows the interaction with both lectins (IC50 of 10 nM) despite the presence of unspecific moieties, and even with similar efficiency for LecB. These results demonstrate the potential of multivalent and multispecific neoGPs as a promising strategy to fight against resistant pathogens.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| | | | | | | | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| |
Collapse
|
7
|
Todaro B, Achilli S, Liet B, Laigre E, Tiertant C, Goyard D, Berthet N, Renaudet O. Structural influence of antibody recruiting glycodendrimers (ARGs) on antitumoral cytotoxicity. Biomater Sci 2021; 9:4076-4085. [PMID: 33913968 DOI: 10.1039/d1bm00485a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recruitment of endogenous antibodies against cancer cells has become a reliable antitumoral immunotherapeutic alternative over the last decade. The covalent attachment of antibody and tumor binding modules (ABM and TBM) within a single, well-defined synthetic molecule was indeed demonstrated to promote the formation of an interacting ternary complex between both the antibodies and the targeted cell, which usually results in the simultaneous immune-mediated cellular destruction. In a preliminary study, we have described the first Antibody Recruiting Glycodendrimers (ARGs), combining cRGD as ligands for the αVβ3-expressing melanoma cell line M21 and Rha as ligand for natural IgM, and demonstrated that multivalency is an essential requirement to form this complex. In the present study, we synthesized a new series of ARGs composed of ABMs, i.e. self-condensed rhamnosylated cyclopeptide and polylysine dendrimer, which have been conjugated to the TBM with or without spacer. Flow cytometry and confocal microscopy experiments with human serum and different cell lines revealed that the ABM geometry significantly influences the ternary complex formation in M21, whereas no significant binding occurs in BT 549 having low integrin expression. In addition, we demonstrate with a cellular viability assay that ARGs induce high level of cytotoxicity against M21 which is also in close correlation with the ABM structure. In particular, we have shown that ARG combining cyclopeptide core and branches, with or without spacer, induce 40-57% of selective cytotoxicity against M21 cells in the presence of human serum as the unique source of immunity effectors. Finally, we also highlight that the spacer between ABM and TBM enables an increase of the immune-mediate cytotoxicity even with ABM of lower valency.
Collapse
Affiliation(s)
- Biagio Todaro
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Silvia Achilli
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Benjamin Liet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Eugénie Laigre
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Claire Tiertant
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Nathalie Berthet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
8
|
Martin H, Goyard D, Margalit A, Doherty K, Renaudet O, Kavanagh K, Velasco-Torrijos T. Multivalent Presentations of Glycomimetic Inhibitor of the Adhesion of Fungal Pathogen Candida albicans to Human Buccal Epithelial Cells. Bioconjug Chem 2021; 32:971-982. [PMID: 33887134 PMCID: PMC8154258 DOI: 10.1021/acs.bioconjchem.1c00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Candida albicans causes some of the most prevalent hospital-acquired fungal infections, particularly threatening for immunocompromised patients. C. albicans strongly adheres to the surface of epithelial cells so that subsequent colonization and biofilm formation can take place. Divalent galactoside glycomimetic 1 was found to be a potent inhibitor of the adhesion of C. albicans to buccal epithelial cells. In this work, we explore the effect of multivalent presentations of glycomimetic 1 on its ability to inhibit yeast adhesion and biofilm formation. Tetra-, hexa-, and hexadecavalent displays of compound 1 were built on RAFT cyclopeptide- and polylysine-based scaffolds with a highly efficient and modular synthesis. Biological evaluation revealed that the scaffold choice significantly influences the activity of the lower valency conjugates, with compound 16, constructed on a tetravalent polylysine scaffold, found to inhibit the adhesion of C. albicans to human buccal epithelial cells more effectively than the glycomimetic 1; however, the latter performed better in the biofilm reduction assays. Interestingly, the higher valency glycoconjugates did not outperform the anti-adhesion activity of the original compound 1, and no significant effect of the core scaffold could be appreciated. SEM images of C. albicans cells treated with compounds 1, 14, and 16 revealed significant differences in the aggregation patterns of the yeast cells.
Collapse
Affiliation(s)
- Harlei Martin
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - David Goyard
- DCM,
UMR 5250, Université Grenoble Alpes,
CNRS, 38000 Grenoble, France
| | - Anatte Margalit
- Department
of Biology, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - Kyle Doherty
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
| | - Olivier Renaudet
- DCM,
UMR 5250, Université Grenoble Alpes,
CNRS, 38000 Grenoble, France
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
- The
Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23VP22, Co.
Kildare, Ireland
| | - Trinidad Velasco-Torrijos
- Department
of Chemistry, Maynooth University, Maynooth, W23VP22, Co. Kildare, Ireland
- The
Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23VP22, Co.
Kildare, Ireland
| |
Collapse
|
9
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
10
|
Liet B, Laigre E, Goyard D, Todaro B, Tiertant C, Boturyn D, Berthet N, Renaudet O. Multifunctional Glycoconjugates for Recruiting Natural Antibodies against Cancer Cells. Chemistry 2019; 25:15508-15515. [PMID: 31613028 PMCID: PMC6916168 DOI: 10.1002/chem.201903327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/05/2019] [Indexed: 01/04/2023]
Abstract
We have developed a fully synthetic and multifunctional antibody-recruiting molecule (ARM) to guide natural antibodies already present in the blood stream against cancer cells without pre-immunization. Our ARM is composed of antibody and tumor binding modules (i.e., ABM and TBM) displaying clustered rhamnose and cyclo-RGD, respectively. By using a stepwise approach, we have first demonstrated the importance of multivalency for efficient recognition with naturel IgM and αv β3 integrin expressing M21 tumor cell line. Once covalently conjugated by click chemistry, we confirmed by flow cytometry and confocal microscopy that the recognition properties of both the ABM and TBM are conserved, and more importantly, that the resulting ARM promotes the formation of a ternary complex between natural IgM and cancer cells, which is required for the stimulation of the cytotoxic immune response in vivo. Due to the efficiency of the synthetic process, a larger diversity of heterovalent ligands could be easily explored by using the same multivalent approach and could open new perspectives in this field.
Collapse
Affiliation(s)
- Benjamin Liet
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Eugénie Laigre
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - David Goyard
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Biagio Todaro
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Claire Tiertant
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Didier Boturyn
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | | | | |
Collapse
|
11
|
Goyard D, Thomas B, Gillon E, Imberty A, Renaudet O. Heteroglycoclusters With Dual Nanomolar Affinities for the Lectins LecA and LecB From Pseudomonas aeruginosa. Front Chem 2019; 7:666. [PMID: 31632954 PMCID: PMC6783499 DOI: 10.3389/fchem.2019.00666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Multivalent structures displaying different instead of similar sugar units, namely heteroglycoclusters (hGCs), are stimulating the efforts of glycochemists for developing compounds with new biological properties. Here we report a four-step strategy to synthesize hexadecavalent hGCs displaying eight copies of αFuc and βGal. These compounds were tested for the binding to lectins LecA and LecB from Pseudomonas aeruginosa. While parent fucosylated (19) and galactosylated (20) homoclusters present nanomolar affinity with LecB and LecA, respectively, we observed that hGCs combining these sugars (11 and 13) maintain their binding potency with both lectins despite the presence of an unspecific sugar. The added multivalency is therefore not a barrier for efficient recognition by bacterial receptors and it opens the route for adding different sugars that can be selected for their immunomodulatory properties.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, Grenoble, France
| | | | - Emilie Gillon
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
12
|
Taouai M, Chakroun K, Sommer R, Michaud G, Giacalone D, Ben Maaouia MA, Vallin-Butruille A, Mathiron D, Abidi R, Darbre T, Cragg PJ, Mullié C, Reymond JL, O'Toole GA, Benazza M. Glycocluster Tetrahydroxamic Acids Exhibiting Unprecedented Inhibition of Pseudomonas aeruginosa Biofilms. J Med Chem 2019; 62:7722-7738. [PMID: 31449405 DOI: 10.1021/acs.jmedchem.9b00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Opportunistic Gram-negative Pseudomonas aeruginosa uses adhesins (e.g., LecA and LecB lectins, type VI pili and flagella) and iron to invade host cells with the formation of a biofilm, a thick barrier that protects bacteria from drugs and host immune system. Hindering iron uptake and disrupting adhesins' function could be a relevant antipseudomonal strategy. To test this hypothesis, we designed an iron-chelating glycocluster incorporating a tetrahydroxamic acid and α-l-fucose bearing linker to interfere with both iron uptake and the glycan recognition process involving the LecB lectin. Iron depletion led to increased production of the siderophore pyoverdine by P. aeruginosa to counteract the loss of iron uptake, and strong biofilm inhibition was observed not only with the α-l-fucocluster (72%), but also with its α-d-manno (84%), and α-d-gluco (92%) counterparts used as negative controls. This unprecedented finding suggests that both LecB and biofilm inhibition are closely related to the presence of hydroxamic acid groups.
Collapse
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland , 66123 Saarbrücken , Germany
| | - Gaelle Michaud
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - David Giacalone
- Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Mohamed Amine Ben Maaouia
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Aurélie Vallin-Butruille
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - David Mathiron
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - Rym Abidi
- Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Tamis Darbre
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Science University of Brighton , Brighton BN2 4GJ , U.K
| | - Catherine Mullié
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - Jean-Louis Reymond
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - George A O'Toole
- Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| |
Collapse
|
13
|
Functional Glyco-Nanogels for Multivalent Interaction with Lectins. Molecules 2019; 24:molecules24101865. [PMID: 31096570 PMCID: PMC6572176 DOI: 10.3390/molecules24101865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Interactions between glycans and proteins have tremendous impact in biomolecular interactions. They are important for cell–cell interactions, proliferation and much more. Here, we emphasize the glycan-mediated interactions between pathogens and host cells. Pseudomonas aeruginosa, responsible for a huge number of nosocomial infections, is especially the focus when it comes to glycan-derivatives as pathoblockers. We present a microwave assisted protecting group free synthesis of glycomonomers based on lactose, melibiose and fucose. The monomers were polymerized in a precipitation polymerization in the presence of NiPAm to form crosslinked glyco-nanogels. The influence of reaction parameters like crosslinker type or stabilizer amount was investigated. The gels were characterized in lectin binding studies using model lectins and showed size and composition-dependent inhibition of lectin binding. Due to multivalent presentation of glycans in the gel, the inhibition was clearly stronger than with unmodified saccharides, which was compared after determination of the glycan loading. First studies with Pseudomonas aeruginosa revealed a surprising influence on the secretion of virulence factors. Functional glycogels may be in the future potent alternatives or adjuvants for antibiotic treatment of infections based on glycan interactions between host and pathogen.
Collapse
|
14
|
Development of a Microwave-assisted Chemoselective Synthesis of Oxime-linked Sugar Linkers and Trivalent Glycoclusters. Pharmaceuticals (Basel) 2019; 12:ph12010039. [PMID: 30875805 PMCID: PMC6469176 DOI: 10.3390/ph12010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/29/2023] Open
Abstract
A rapid, high-yielding microwave-mediated synthetic procedure was developed and optimized using a model system of monovalent sugar linkers, with the ultimate goal of using this method for the synthesis of multivalent glycoclusters. The reaction occurs between the aldehyde/ketone on the sugars and an aminooxy moiety on the linker/trivalent core molecules used in this study, yielding acid-stable oxime linkages in the products and was carried out using equimolar quantities of reactants under mild aqueous conditions. Because the reaction is chemoselective, sugars can be incorporated without the use of protecting groups and the reactions can be completed in as little as 30 min in the microwave. As an added advantage, in the synthesis of the trivalent glycoclusters, the fully substituted trivalent molecules were the major products produced in excellent yields. These results illustrate the potential of this rapid oxime-forming microwave-mediated reaction in the synthesis of larger, more complex glycoconjugates and glycoclusters for use in a wide variety of biomedical applications.
Collapse
|
15
|
Behren S, Westerlind U. Glycopeptides and -Mimetics to Detect, Monitor and Inhibit Bacterial and Viral Infections: Recent Advances and Perspectives. Molecules 2019; 24:E1004. [PMID: 30871155 PMCID: PMC6471658 DOI: 10.3390/molecules24061004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
The initial contact of pathogens with host cells is usually mediated by their adhesion to glycan structures present on the cell surface in order to enable infection. Furthermore, glycans play important roles in the modulation of the host immune responses to infection. Understanding the carbohydrate-pathogen interactions are of importance for the development of novel and efficient strategies to either prevent, or interfere with pathogenic infection. Synthetic glycopeptides and mimetics thereof are capable of imitating the multivalent display of carbohydrates at the cell surface, which have become an important objective of research over the last decade. Glycopeptide based constructs may function as vaccines or anti-adhesive agents that interfere with the ability of pathogens to adhere to the host cell glycans and thus possess the potential to improve or replace treatments that suffer from resistance. Additionally, synthetic glycopeptides are used as tools for epitope mapping of antibodies directed against structures present on various pathogens and have become important to improve serodiagnostic methods and to develop novel epitope-based vaccines. This review will provide an overview of the most recent advances in the synthesis and application of glycopeptides and glycopeptide mimetics exhibiting a peptide-like backbone in glycobiology.
Collapse
Affiliation(s)
- Sandra Behren
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | | |
Collapse
|
16
|
|
17
|
Laigre E, Goyard D, Tiertant C, Dejeu J, Renaudet O. The study of multivalent carbohydrate-protein interactions by bio-layer interferometry. Org Biomol Chem 2018; 16:8899-8903. [PMID: 30264842 PMCID: PMC6289105 DOI: 10.1039/c8ob01664j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
Abstract
The study of complex multivalent carbohydrate-protein interactions remains highly complicated and sometimes rendered impossible due to aggregation problems. In this study, we demonstrate that bio-layer interferometry is an excellent complementary method to standard techniques such as SPR and ITC. Using tetra- and hexadecavalent GalNAc glycoconjugates and Helix pomatia agglutinin (HPA) as a model lectin, we were able to measure reliable kinetic and thermodynamic parameters of multivalent interactions going from the micro to the nanomolar range.
Collapse
Affiliation(s)
- Eugénie Laigre
- Univ. Grenoble Alpes
, CNRS
, DCM UMR 5250
,
F-38000 Grenoble
, France
.
;
| | - David Goyard
- Univ. Grenoble Alpes
, CNRS
, DCM UMR 5250
,
F-38000 Grenoble
, France
.
;
| | - Claire Tiertant
- Univ. Grenoble Alpes
, CNRS
, DCM UMR 5250
,
F-38000 Grenoble
, France
.
;
| | - Jérôme Dejeu
- Univ. Grenoble Alpes
, CNRS
, DCM UMR 5250
,
F-38000 Grenoble
, France
.
;
| | - Olivier Renaudet
- Univ. Grenoble Alpes
, CNRS
, DCM UMR 5250
,
F-38000 Grenoble
, France
.
;
| |
Collapse
|
18
|
Screening of a Library of Oligosaccharides Targeting Lectin LecB of Pseudomonas Aeruginosa and Synthesis of High Affinity Oligoglycoclusters. Molecules 2018; 23:molecules23123073. [PMID: 30477231 PMCID: PMC6321166 DOI: 10.3390/molecules23123073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/04/2022] Open
Abstract
The Gram negative bacterium Pseudomonas aeruginosa (PA) is an opportunistic bacterium that causes severe and chronic infection of immune-depressed patients. It has the ability to form a biofilm that gives a selective advantage to the bacteria with respect to antibiotherapy and host defenses. Herein, we have focused on the tetrameric soluble lectin which is involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. It binds to l-fucose, d-mannose and glycan exposing terminal fucose or mannose. Using a competitive assay on microarray, 156 oligosaccharides and polysaccharides issued from fermentation or from the biomass were screened toward their affinity to LecB. Next, the five best ligands (Lewisa, Lewisb, Lewisx, siayl-Lewisx and 3-fucosyllactose) were derivatized with a propargyl aglycon allowing the synthesis of 25 trivalent, 25 tetravalent and 5 monovalent constructions thanks to copper catalyzed azide alkyne cycloaddition. The 55 clusters were immobilized by DNA Directed immobilization leading to the fabrication of a glycocluster microarray. Their binding to LecB was studied. Multivalency improved the binding to LecB. The binding structure relationship of the clusters is mainly influenced by the carbohydrate residues. Molecular simulations indicated that the simultaneous contact of both binding sites of monomer A and D seems to be energetically possible.
Collapse
|
19
|
Bücher KS, Babic N, Freichel T, Kovacic F, Hartmann L. Monodisperse Sequence‐Controlled α‐l‐Fucosylated Glycooligomers and Their Multivalent Inhibitory Effects on LecB. Macromol Biosci 2018; 18:e1800337. [DOI: 10.1002/mabi.201800337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/04/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Katharina Susanne Bücher
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Nikolina Babic
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University Duesseldorf and Forschungszentrum Jülich GmbH Wilhelm Johnen Straße 52428 Jülich Germany
| | - Tanja Freichel
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University Duesseldorf and Forschungszentrum Jülich GmbH Wilhelm Johnen Straße 52428 Jülich Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| |
Collapse
|
20
|
Laigre E, Tiertant C, Goyard D, Renaudet O. Identification of Nanomolar Lectin Ligands by a Glycodendrimer Microarray. ACS OMEGA 2018; 3:14013-14020. [PMID: 30411056 PMCID: PMC6210076 DOI: 10.1021/acsomega.8b01526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/07/2018] [Indexed: 05/20/2023]
Abstract
Carbohydrate-protein interactions play key roles in a wide variety of biological processes. These interactions are usually weak, with dissociation constants in the low millimolar to high micromolar range. Nature uses multivalency to reach high avidities via the glycoside cluster effect. Capitalizing on this effect, numerous synthetic multivalent glycoconjugates have been described and used as ligands for carbohydrate-binding proteins. However, valency is only one of the several parameters governing the binding mechanisms that are different for every biological receptor, making it almost impossible to predict. In this context, ligand optimization requires the screening of a large number of structures with different valencies, rigidities/flexibilities, and architectures. In this article, we describe a screening platform based on a glycodendrimer array and its use to determine the key parameters for high-affinity ligands of lectin. Several glycoclusters and glycodendrimers displaying varying numbers of α-N-acetylgalactosamine residues were covalently attached on glass slides, and their bindings were studied with the fluorophore-functionalized Helix pomatia agglutinin (HPA) used as a lectin model. This technique requires minimal quantities of glycoconjugate compared to those for other techniques and affords useful information on the binding strength. Building of the glycodendrimer array and quantification of the interactions with HPA are described.
Collapse
Affiliation(s)
- Eugénie Laigre
- Univ. Grenoble Alpes, CNRS,
DCM UMR 5250, F-38000 Grenoble, France
| | - Claire Tiertant
- Univ. Grenoble Alpes, CNRS,
DCM UMR 5250, F-38000 Grenoble, France
| | - David Goyard
- Univ. Grenoble Alpes, CNRS,
DCM UMR 5250, F-38000 Grenoble, France
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS,
DCM UMR 5250, F-38000 Grenoble, France
| |
Collapse
|
21
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
22
|
Gorzkiewicz M, Sztandera K, Jatczak-Pawlik I, Zinke R, Appelhans D, Klajnert-Maculewicz B, Pulaski Ł. Terminal Sugar Moiety Determines Immunomodulatory Properties of Poly(propyleneimine) Glycodendrimers. Biomacromolecules 2018; 19:1562-1572. [DOI: 10.1021/acs.biomac.8b00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Izabela Jatczak-Pawlik
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Robin Zinke
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Łukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa Street, 93-232 Lodz, Poland
| |
Collapse
|
23
|
Pifferi C, Berthet N, Renaudet O. Cyclopeptide scaffolds in carbohydrate-based synthetic vaccines. Biomater Sci 2018; 5:953-965. [PMID: 28275765 DOI: 10.1039/c7bm00072c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclopeptides have been recently used successfully as carriers for the multivalent presentation of carbohydrate and peptide antigens in immunotherapy. Beside their synthetic versatility, these scaffolds are indeed interesting due to their stability against enzyme degradation and low immunogenicity. This mini-review highlights the recent advances in the utilization of cyclopeptides to prepare fully synthetic vaccines prototypes against cancers and pathogens.
Collapse
Affiliation(s)
- Carlo Pifferi
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Nathalie Berthet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France. and Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
24
|
Goyard D, Baldoneschi V, Varrot A, Fiore M, Imberty A, Richichi B, Renaudet O, Nativi C. Multivalent Glycomimetics with Affinity and Selectivity toward Fucose-Binding Receptors from Emerging Pathogens. Bioconjug Chem 2017; 29:83-88. [DOI: 10.1021/acs.bioconjchem.7b00616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Veronica Baldoneschi
- Department
of Chemistry Ugo Schiff, University of Florence, via della Lastruccia, 13−50019 Sesto F.no (FI) Italy
| | | | - Michele Fiore
- ICBMS, University of Lyon, 43 Blvd. du 11 novembre 1918, 69622, Villeubanne Cedex, France
| | | | - Barbara Richichi
- Department
of Chemistry Ugo Schiff, University of Florence, via della Lastruccia, 13−50019 Sesto F.no (FI) Italy
| | | | - Cristina Nativi
- Department
of Chemistry Ugo Schiff, University of Florence, via della Lastruccia, 13−50019 Sesto F.no (FI) Italy
| |
Collapse
|
25
|
Pifferi C, Thomas B, Goyard D, Berthet N, Renaudet O. Heterovalent Glycodendrimers as Epitope Carriers for Antitumor Synthetic Vaccines. Chemistry 2017; 23:16283-16296. [PMID: 28845889 PMCID: PMC6175327 DOI: 10.1002/chem.201702708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 01/01/2023]
Abstract
The large majority of TACA-based (TACA=Tumor-Associated Carbohydrate Antigens) antitumor vaccines target only one carbohydrate antigen, thereby often resulting in the incomplete destruction of cancer cells. However, the morphological heterogeneity of the tumor glycocalix, which is in constant evolution during malignant transformation, is a crucial point to consider in the design of vaccine candidates. In this paper, an efficient synthetic strategy based on orthogonal chemoselective ligations to prepare fully synthetic glycosylated cyclopeptide scaffolds grafted with both Tn and TF antigen analogues is reported. To evaluate their ability to be recognized as tumor antigens, direct interaction ELISA assays have been performed with the anti-Tn monoclonal antibody 9A7. Although both heterovalent structures showed binding capacities with 9A7, the presence of the second TF epitope did not interfere with the recognition of Tn except in one epitope arrangement. This heterovalent glycosylated structure thus represents an attractive epitope carrier to be further functionalized with T-cell peptide epitopes.
Collapse
Affiliation(s)
- Carlo Pifferi
- Univ. Grenoble AlpesCNRSDCM UMR 525038000GrenobleFrance
| | | | - David Goyard
- Univ. Grenoble AlpesCNRSDCM UMR 525038000GrenobleFrance
| | | | - Olivier Renaudet
- Univ. Grenoble AlpesCNRSDCM UMR 525038000GrenobleFrance
- Institut Universitaire de France103 boulevard Saint-Michel75005ParisFrance
| |
Collapse
|
26
|
Hu Y, Beshr G, Garvey CJ, Tabor RF, Titz A, Wilkinson BL. Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2017; 159:605-612. [PMID: 28858663 DOI: 10.1016/j.colsurfb.2017.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The first example of the self-assembly and lectin binding properties of photoswitchable glycodendrimer micelles is reported. Light-addressable micelles were assembled from a library of 12 amphiphilic Janus glycodendrimers composed of variable carbohydrate head groups and hydrophobic tail groups linked to an azobenzene core. Spontaneous association in water gave cylindrical micelles with uniform size distribution as determined by dynamic light scattering (DLS) and small angle neutron scattering (SANS). Trans-cis photoisomerization of the azobenzene dendrimer core was used to probe the self-assembly behaviour and lectin binding properties of cylindrical micelles, revealing moderate-to-potent inhibition of lectins LecA and LecB from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Yingxue Hu
- School of Chemistry, Monash University, Victoria 3800, Australia
| | - Ghamdan Beshr
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung, Standort Hannover, Braunschweig, Germany
| | - Christopher J Garvey
- Australian Centre for Neutron scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Victoria 3800, Australia
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung, Standort Hannover, Braunschweig, Germany
| | - Brendan L Wilkinson
- School of Science and Technology, the University of New England, New South Wales 2351, Australia.
| |
Collapse
|
27
|
Pifferi C, Daskhan GC, Fiore M, Shiao TC, Roy R, Renaudet O. Aminooxylated Carbohydrates: Synthesis and Applications. Chem Rev 2017; 117:9839-9873. [PMID: 28682060 DOI: 10.1021/acs.chemrev.6b00733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.
Collapse
Affiliation(s)
- Carlo Pifferi
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Gour Chand Daskhan
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Michele Fiore
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Tze Chieh Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France.,Institut Universitaire de France , 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
28
|
Fallarini S, Brittoli A, Fiore M, Lombardi G, Renaudet O, Richichi B, Nativi C. Immunological characterization of a rigid α-Tn mimetic on murine iNKT and human NK cells. Glycoconj J 2017; 34:553-562. [DOI: 10.1007/s10719-017-9775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
|
29
|
Hoang A, Laigre E, Goyard D, Defrancq E, Vinet F, Dumy P, Renaudet O. An oxime-based glycocluster microarray. Org Biomol Chem 2017; 15:5135-5139. [DOI: 10.1039/c7ob00889a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate microarrays represent powerful tools to study and detect carbohydrate-binding proteins, pathogens or cells.
Collapse
Affiliation(s)
| | - Eugénie Laigre
- Univ. Grenoble Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | - David Goyard
- Univ. Grenoble Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | - Eric Defrancq
- Univ. Grenoble Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | | | - Pascal Dumy
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34000 Montpellier
- France
| | | |
Collapse
|
30
|
Pifferi C, Goyard D, Gillon E, Imberty A, Renaudet O. Synthesis of Mannosylated Glycodendrimers and Evaluation against BC2L-A Lectin from Burkholderia Cenocepacia. Chempluschem 2016; 82:390-398. [PMID: 31962032 DOI: 10.1002/cplu.201600569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 01/29/2023]
Abstract
Chronic colonization of lungs by opportunist bacteria is the major cause of mortality for cystic fibrosis patients. Among these pathogens, Burkholderia cenocepacia is responsible for cepacia syndrome, a deadly exacerbation of infection that is the main cause of poor outcomes of lung transplantation. This bacterium contains three soluble carbohydrate-binding proteins, including the B. cenocepacia lectin A (BC2L-A), which is proposed to bind to oligomannose-type N-glycan structures to adhere to host tissues. In this work, several mannosylated glycoclusters and glycodendrimers with valencies ranging from four to 24 were prepared and their interactions with BC2L-A were thermodynamically characterized by isothermal titration calorimetry. The results show that a 24-valent structure binds to BC2L-A at nanomolar concentration, which makes this compound the highest affinity monodisperse ligand for this lectin.
Collapse
Affiliation(s)
- Carlo Pifferi
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| | - David Goyard
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| | - Emilie Gillon
- CERMAV, UPR5301, CNRS, and Université Grenoble Alpes, 601 rue de la Chimie, BP 53, 38041, Grenoble, France
| | - Anne Imberty
- CERMAV, UPR5301, CNRS, and Université Grenoble Alpes, 601 rue de la Chimie, BP 53, 38041, Grenoble, France
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France.,Institut Universitaire de France, 103 boulevard Saint-Michel, 75005, Paris, France
| |
Collapse
|
31
|
Grant OC, Tessier MB, Meche L, Mahal LK, Foley BL, Woods RJ. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity. Glycobiology 2016; 26:772-783. [PMID: 26911287 PMCID: PMC4976521 DOI: 10.1093/glycob/cww020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022] Open
Abstract
Defining how a glycan-binding protein (GBP) specifically selects its cognate glycan from among the ensemble of glycans within the cellular glycome is an area of intense study. Powerful insight into recognition mechanisms can be gained from 3D structures of GBPs complexed to glycans; however, such structures remain difficult to obtain experimentally. Here an automated 3D structure generation technique, called computational carbohydrate grafting, is combined with the wealth of specificity information available from glycan array screening. Integration of the array data with modeling and crystallography allows generation of putative co-complex structures that can be objectively assessed and iteratively altered until a high level of agreement with experiment is achieved. Given an accurate model of the co-complexes, grafting is also able to discern which binding determinants are active when multiple potential determinants are present within a glycan. In some cases, induced fit in the protein or glycan was necessary to explain the observed specificity, while in other examples a revised definition of the minimal binding determinants was required. When applied to a collection of 10 GBP-glycan complexes, for which crystallographic and array data have been reported, grafting provided a structural rationalization for the binding specificity of >90% of 1223 arrayed glycans. A webtool that enables researchers to perform computational carbohydrate grafting is available at www.glycam.org/gr (accessed 03 March 2016).
Collapse
Affiliation(s)
- Oliver C Grant
- Complex Carbohydrate Research Center and Department of Biochemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Matthew B Tessier
- Complex Carbohydrate Research Center and Department of Biochemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Lawrence Meche
- New York University Department of Chemistry, Biomedical Chemistry Institute, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Lara K Mahal
- New York University Department of Chemistry, Biomedical Chemistry Institute, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Bethany L Foley
- New York University Department of Chemistry, Biomedical Chemistry Institute, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
32
|
Monestier M, Charbonnier P, Gateau C, Cuillel M, Robert F, Lebrun C, Mintz E, Renaudet O, Delangle P. ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes. Chembiochem 2016; 17:590-4. [DOI: 10.1002/cbic.201600023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Marie Monestier
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
- Université Grenoble Alpes; DCM; CNRS; DCM; 570 rue de la chimie 38041 Grenoble cedex 09 France
| | - Peggy Charbonnier
- Université Grenoble Alpes; iRTSV-LCBM; CEA; iRTSV-LCBM; CNRS; iRTSV-LCBM; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Christelle Gateau
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Martine Cuillel
- Université Grenoble Alpes; iRTSV-LCBM; CEA; iRTSV-LCBM; CNRS; iRTSV-LCBM; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Faustine Robert
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Colette Lebrun
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Elisabeth Mintz
- Université Grenoble Alpes; iRTSV-LCBM; CEA; iRTSV-LCBM; CNRS; iRTSV-LCBM; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Olivier Renaudet
- Université Grenoble Alpes; DCM; CNRS; DCM; 570 rue de la chimie 38041 Grenoble cedex 09 France
- Institut Universitaire de France; 103 boulevard Saint-Michel 75005 Paris France
| | - Pascale Delangle
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
| |
Collapse
|
33
|
Grassin A, Jourdan M, Dumy P, Boturyn D. Influence of Pre-organised Architecture on Cell Adhesion by Using Multivalent RGD Compounds. Chembiochem 2016; 17:515-20. [DOI: 10.1002/cbic.201500495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Adrien Grassin
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| | - Muriel Jourdan
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| | - Pascal Dumy
- IBMM UMR 5247; Ecole Nationale Supérieure de Chimie de Montpellier; 8 rue de l'École Normale 34090 Montpellier France
| | - Didier Boturyn
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| |
Collapse
|
34
|
Zelli R, Bartolami E, Longevial JF, Bessin Y, Dumy P, Marra A, Ulrich S. A metal-free synthetic approach to peptide-based iminosugar clusters as novel multivalent glycosidase inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra20420h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxime ligation allowed the preparation of a set of iminosugar clusters from which new Jack bean α-mannosidase inhibitors were identified.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Jean-François Longevial
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
35
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
36
|
Thomas B, Pifferi C, Daskhan GC, Fiore M, Berthet N, Renaudet O. Divergent and convergent synthesis of GalNAc-conjugated dendrimers using dual orthogonal ligations. Org Biomol Chem 2015; 13:11529-38. [PMID: 26464062 DOI: 10.1039/c5ob01870f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of glycodendrimers remains a challenging task. In this paper we propose a protocol based on both oxime ligation (OL) to combine cyclopeptide repeating units as the dendritic core and the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) to conjugate peripheral α and β propargylated GalNAc. By contrast with the oxime-based iterative protocol reported in our group, our current strategy can be used in both divergent and convergent routes with similar efficiency and the resulting hexadecavalent glycodendrimers can be easily characterized compared to oxime-linked analogues. A series of glycoconjugates displaying four or sixteen copies of both α and β GalNAc have been prepared and their ability to inhibit the adhesion of the soybean agglutinin (SBA) lectin to polymeric-GalNAc immobilized on microtiter plates has been evaluated. As was anticipated, the higher inhibitory effect (IC50 = 0.46 μM) was measured with the structure displaying αGalNAc with the higher valency (compound 13), which demonstrates that the binding properties of these glycoconjugates are strongly dependent on the orientation and distribution of the GalNAc units.
Collapse
|
37
|
Daskhan GC, Berthet N, Thomas B, Fiore M, Renaudet O. Multivalent glycocyclopeptides: toward nano-sized glycostructures. Carbohydr Res 2015; 405:13-22. [DOI: 10.1016/j.carres.2014.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
38
|
Thomas B, Fiore M, Daskhan GC, Spinelli N, Renaudet O. A multi-ligation strategy for the synthesis of heterofunctionalized glycosylated scaffolds. Chem Commun (Camb) 2015; 51:5436-9. [DOI: 10.1039/c4cc05451b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Well-defined heterofunctionalized glycosylated scaffolds with unprecedented molecular combinations have been prepared using up to five different bioorthogonal ligations.
Collapse
|
39
|
Gade M, Paul A, Alex C, Choudhury D, Thulasiram HV, Kikkeri R. Supramolecular scaffolds on glass slides as sugar based rewritable sensors for bacteria. Chem Commun (Camb) 2015; 51:6346-9. [DOI: 10.1039/c5cc01019e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe here the sugar functionalized β-cyclodextrin–ferrocene glass slides as fully reversible bacterial biosensors under the influence of external adamantane carboxylic acid.
Collapse
Affiliation(s)
- Madhuri Gade
- Indian Institute of Science Education and Research
- Pune 411008
- India
| | - Ajay Paul
- Chemical Biology Unit
- Division of Organic chemistry
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Catherine Alex
- Indian Institute of Science Education and Research
- Pune 411008
- India
| | - Devika Choudhury
- Department of Energy Science and Engineering
- IIT Bombay
- Mumbai-400076
- India
| | | | | |
Collapse
|
40
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
41
|
Access to bifunctionalized biomolecular platforms using oxime ligation. Carbohydr Res 2014; 393:9-14. [DOI: 10.1016/j.carres.2014.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/12/2022]
|
42
|
Sharma R, Kottari N, Chabre YM, Abbassi L, Shiao TC, Roy R. A highly versatile convergent/divergent “onion peel” synthetic strategy toward potent multivalent glycodendrimers. Chem Commun (Camb) 2014; 50:13300-3. [DOI: 10.1039/c4cc06191h] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Both convergent and divergent strategies for the synthesis of “onion peel” glycodendrimers are reported which resulted in one of the best multivalent ligands known against the virulent factor from a bacterial lectin isolated from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Rishi Sharma
- Pharmaqam
- Department of Chemistry
- University of Quebec a Montreal
- Montreal, Canada H3C 3P8
| | - Naresh Kottari
- Pharmaqam
- Department of Chemistry
- University of Quebec a Montreal
- Montreal, Canada H3C 3P8
| | - Yoann M. Chabre
- Pharmaqam
- Department of Chemistry
- University of Quebec a Montreal
- Montreal, Canada H3C 3P8
| | - Leïla Abbassi
- Pharmaqam
- Department of Chemistry
- University of Quebec a Montreal
- Montreal, Canada H3C 3P8
| | - Tze Chieh Shiao
- Pharmaqam
- Department of Chemistry
- University of Quebec a Montreal
- Montreal, Canada H3C 3P8
| | - René Roy
- Pharmaqam
- Department of Chemistry
- University of Quebec a Montreal
- Montreal, Canada H3C 3P8
| |
Collapse
|
43
|
Ulrich S, Dumy P. Probing secondary interactions in biomolecular recognition by dynamic combinatorial chemistry. Chem Commun (Camb) 2014; 50:5810-25. [DOI: 10.1039/c4cc00263f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Ulrich S, Boturyn D, Marra A, Renaudet O, Dumy P. Oxime Ligation: A Chemoselective Click-Type Reaction for Accessing Multifunctional Biomolecular Constructs. Chemistry 2013; 20:34-41. [DOI: 10.1002/chem.201302426] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Thomas B, Berthet N, Garcia J, Dumy P, Renaudet O. Expanding the scope of oxime ligation: facile synthesis of large cyclopeptide-based glycodendrimers. Chem Commun (Camb) 2013; 49:10796-8. [DOI: 10.1039/c3cc45368e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|