1
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
2
|
Choi HK, Yoon J. Enzymatic Electrochemical/Fluorescent Nanobiosensor for Detection of Small Chemicals. BIOSENSORS 2023; 13:bios13040492. [PMID: 37185567 PMCID: PMC10136675 DOI: 10.3390/bios13040492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
The detection of small molecules has attracted enormous interest in various fields, including the chemical, biological, and healthcare fields. In order to achieve such detection with high accuracy, up to now, various types of biosensors have been developed. Among those biosensors, enzymatic biosensors have shown excellent sensing performances via their highly specific enzymatic reactions with small chemical molecules. As techniques used to implement the sensing function of such enzymatic biosensors, electrochemical and fluorescence techniques have been mostly used for the detection of small molecules because of their advantages. In addition, through the incorporation of nanotechnologies, the detection property of each technique-based enzymatic nanobiosensors can be improved to measure harmful or important small molecules accurately. This review provides interdisciplinary information related to developing enzymatic nanobiosensors for small molecule detection, such as widely used enzymes, target small molecules, and electrochemical/fluorescence techniques. We expect that this review will provide a broad perspective and well-organized roadmap to develop novel electrochemical and fluorescent enzymatic nanobiosensors.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Rodik RV, Cherenok SO, Postupalenko VY, Oncul S, Brusianska V, Borysko P, Kalchenko VI, Mely Y, Klymchenko AS. Anionic amphiphilic calixarenes for peptide assembly and delivery. J Colloid Interface Sci 2022; 624:270-278. [PMID: 35660896 DOI: 10.1016/j.jcis.2022.05.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Shape-persistent macrocycles enable superior control on molecular self-assembly, allowing the preparation of well-defined nanostructures with new functions. Here, we report on anionic amphiphilic calixarenes of conic shape and their self-assembly behavior in aqueous media for application in intracellular delivery of peptides. Newly synthesized calixarenes bearing four phosphonate groups and two or four long alkyl chains were found to form micelles of ∼ 10 nm diameter, in contrast to an analogue with short alkyl chains. These amphiphilic calixarenes are able to complex model (oligo-lysine) and biologically relevant (HIV-1 nucleocapsid peptide) cationic peptides into small nanoparticles (20-40 nm). By contrast, a control anionic calixarene with short alkyl chains fails to form small nanoparticles with peptides, highlighting the importance of micellar assembly of amphiphilic calixarenes for peptide complexation. Cellular studies reveal that anionic amphiphilic calixarenes exhibit low cytotoxicity and enable internalization of fluorescently labelled peptides into live cells. These findings suggest anionic amphiphilic macrocycles as promising building blocks for the preparation of peptide delivery vehicles.
Collapse
Affiliation(s)
- Roman V Rodik
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine.
| | - Sergiy O Cherenok
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine
| | - Viktoriia Y Postupalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Sule Oncul
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France; İstanbul Medeniyet Üniversitesi, Istanbul, Turkey
| | | | - Petro Borysko
- Enamine Ltd, Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Vitaly I Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France.
| |
Collapse
|
4
|
Wang X, Li Y, Zhao M, Wang H, Wan Q, Shi C, Ma C. An ultrafast ratiometric electrochemical biosensor based on potential-assisted hybridization for nucleic acids detection. Anal Chim Acta 2022; 1211:339915. [DOI: 10.1016/j.aca.2022.339915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/24/2023]
|
5
|
Abdallah B, Lissouck D, Owono LCO, Kenfack CA. In silico simulation of the excited state proton transfer reaction of 2-(2-furyl)-3-hydroxychromone (FHC) in solution by empirical valence bond (EVB) method in conjunction with classical molecular dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Messina GML, Mazzuca C, Dettin M, Zamuner A, Di Napoli B, Ripani G, Marletta G, Palleschi A. From nanoaggregates to mesoscale ribbons: the multistep self-organization of amphiphilic peptides. NANOSCALE ADVANCES 2021; 3:3605-3614. [PMID: 36133720 PMCID: PMC9418424 DOI: 10.1039/d1na00216c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 06/16/2023]
Abstract
This paper reports atomic force microscopy results and molecular dynamics simulations of the striking differences of long-term self-organization structures of negatively charged (AcA4)2KD (double tail) and AcA4D (single tail) peptides, respectively, forming micrometer-long, linearly ordered ribbon-like structures and nanometer-sized, unstructured, round-shaped aggregates. The subsequent formation steps of the long-range nanoribbons, experimentally observed only for the "double tail" (AcA4)2KD peptide, are analyzed in detail, showing that the initial "primary" unstructured round-shaped aggregates progressively evolve into longer nanofilaments and into micrometer-long, network-forming nanoribbon moieties. In particular, the long-range self-organization of the "double tail" peptides appears to be closely related to electrostatically driven diffusional motions of the primary aggregates and nanofilaments. The diffusional freedom degrees are prompted by the formation of a dynamic ternary air/liquid/substrate interface, due to the water evaporation process from the ultrathin films of the peptide solution cast onto a solid mica substrate. Overall, the initial aggregation of unstructured round-shaped moieties, for both the peptides, can be seen as an entropy-driven process, involving the intra- and intermolecular interactions of hydrophobic parts of the peptides, while the further formation of long nanoribbons, only for "double tail" peptides, can be viewed in terms of an enthalpy-driven process, mainly due to the predominant electrostatic interactions between the charged heads of the interacting peptides. The role of the solid-liquid interface, as the locus of the enthalpy-driven linear organization, is also highlighted.
Collapse
Affiliation(s)
- Grazia M L Messina
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania, CSGI Viale A. Doria 6 I-95125 Catania Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova Padova Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova Padova Italy
| | - Benedetta Di Napoli
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Giorgio Ripani
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania, CSGI Viale A. Doria 6 I-95125 Catania Italy
| | - Antonio Palleschi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
7
|
Shaydyuk Y, Bashmakova NV, Dmytruk AM, Kachkovsky OD, Koniev S, Strizhak AV, Komarov IV, Belfield KD, Bondar MV, Babii O. Nature of Fast Relaxation Processes and Spectroscopy of a Membrane-Active Peptide Modified with Fluorescent Amino Acid Exhibiting Excited State Intramolecular Proton Transfer and Efficient Stimulated Emission. ACS OMEGA 2021; 6:10119-10128. [PMID: 34056166 PMCID: PMC8153670 DOI: 10.1021/acsomega.1c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A fluorescently labeled peptide that exhibited fast excited state intramolecular proton transfer (ESIPT) was synthesized, and the nature of its electronic properties was comprehensively investigated, including linear photophysical and photochemical characterization, specific relaxation processes in the excited state, and its stimulated emission ability. The steady-state absorption, fluorescence, and excitation anisotropy spectra, along with fluorescence lifetimes and emission quantum yields, were obtained in liquid media and analyzed based on density functional theory quantum-chemical calculations. The nature of ESIPT processes of the peptide's chromophore moiety was explored using a femtosecond transient absorption pump-probe technique, revealing relatively fast ESIPT velocity (∼10 ps) in protic MeOH at room temperature. Efficient superluminescence properties of the peptide were realized upon femtosecond excitation in the main long-wavelength absorption band with a corresponding threshold of the pump pulse energy of ∼1.5 μJ. Quantum-chemical analysis of the electronic structure of the peptide was performed using the density functional theory/time-dependent density functional theory level of theory, affording good agreement with experimental data.
Collapse
Affiliation(s)
- Yevgeniy
O. Shaydyuk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Nataliia V. Bashmakova
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy M. Dmytruk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Olexiy D. Kachkovsky
- V.P.
Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the
National Academy of Sciences, Murmanskaya Street 1, Kyiv 02660, Ukraine
| | - Serhii Koniev
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | | | - Igor V. Komarov
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Kevin D. Belfield
- New
Jersey Institute of Technology, College of Science and Liberal Arts, University Heights, Newark, New Jersey 07102, United States
| | - Mykhailo V. Bondar
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Oleg Babii
- Institute
of Biological Interfaces (IBG-2), Karlsruhe
Institute of Technology (KIT), POB3640, Karlsruhe 76021, Germany
| |
Collapse
|
8
|
Dutta Choudhury S, Pal H. Supramolecular and suprabiomolecular photochemistry: a perspective overview. Phys Chem Chem Phys 2021; 22:23433-23463. [PMID: 33112299 DOI: 10.1039/d0cp03981k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this perspective review article, we have attempted to bring out the important current trends of research in the areas of supramolecular and suprabiomolecular photochemistry. Since the spans of the subject areas are very vast, it is impossible to cover all the aspects within the limited space of this review article. Nevertheless, efforts have been made to assimilate the basic understanding of how supramolecular interactions can significantly change the photophysical and other related physiochemical properties of chromophoric dyes and drugs, which have enormous academic and practical implications. We have discussed with reference to relevant chemical systems where supramolecularly assisted modulations in the properties of chromophoric dyes and drugs can be used or have already been used in different areas like sensing, dye/drug stabilization, drug delivery, functional materials, and aqueous dye laser systems. In supramolecular assemblies, along with their conventional photophysical properties, the acid-base properties of prototropic dyes, as well as the excited state prototautomerization and related proton transfer behavior of proton donor/acceptor dye molecules, are also largely modulated due to supramolecular interactions, which are often reflected very explicitly through changes in their absorption and fluorescence characteristics, providing us many useful insights into these chemical systems and bringing out intriguing applications of such changes in different applied areas. Another interesting research area in supramolecular photochemistry is the excitation energy transfer from the donor to acceptor moieties in self-assembled systems which have immense importance in light harvesting applications, mimicking natural photosynthetic systems. In this review article, we have discussed varieties of these aspects, highlighting their academic and applied implications. We have tried to emphasize the progress made so far and thus to bring out future research perspectives in the subject areas concerned, which are anticipated to find many useful applications in areas like sensors, catalysis, electronic devices, pharmaceuticals, drug formulations, nanomedicine, light harvesting, and smart materials.
Collapse
Affiliation(s)
- Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. and Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India and Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| |
Collapse
|
9
|
Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021; 50:1219-1250. [DOI: 10.1039/d0cs00115e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review comprehensively summarizes various types of fluorescent probes for PD and their applications for detection of various PD biomarkers.
Collapse
Affiliation(s)
- Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Liuxing Xie
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Jun Shen
- Department of Radiology
- Sun Yat-Sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Shao Q. Yao
- Department of Chemistry
- National University of Singapore
- Singapore
| |
Collapse
|
10
|
Zheng Q, Ayala AX, Chung I, Weigel AV, Ranjan A, Falco N, Grimm JB, Tkachuk AN, Wu C, Lippincott-Schwartz J, Singer RH, Lavis LD. Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging. ACS CENTRAL SCIENCE 2019; 5:1602-1613. [PMID: 31572787 PMCID: PMC6764213 DOI: 10.1021/acscentsci.9b00676] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 05/24/2023]
Abstract
Rhodamine dyes exist in equilibrium between a fluorescent zwitterion and a nonfluorescent lactone. Tuning this equilibrium toward the nonfluorescent lactone form can improve cell-permeability and allow creation of "fluorogenic" compounds-ligands that shift to the fluorescent zwitterion upon binding a biomolecular target. An archetype fluorogenic dye is the far-red tetramethyl-Si-rhodamine (SiR), which has been used to create exceptionally useful labels for advanced microscopy. Here, we develop a quantitative framework for the development of new fluorogenic dyes, determining that the lactone-zwitterion equilibrium constant (K L-Z) is sufficient to predict fluorogenicity. This rubric emerged from our analysis of known fluorophores and yielded new fluorescent and fluorogenic labels with improved performance in cellular imaging experiments. We then designed a novel fluorophore-Janelia Fluor 526 (JF526)-with SiR-like properties but shorter fluorescence excitation and emission wavelengths. JF526 is a versatile scaffold for fluorogenic probes including ligands for self-labeling tags, stains for endogenous structures, and spontaneously blinking labels for super-resolution immunofluorescence. JF526 constitutes a new label for advanced microscopy experiments, and our quantitative framework will enable the rational design of other fluorogenic probes for bioimaging.
Collapse
Affiliation(s)
- Qinsi Zheng
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Anthony X. Ayala
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Inhee Chung
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Aubrey V. Weigel
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Anand Ranjan
- Department of Biology and Department of Molecular
Biology and Genetics, Johns Hopkins University, Baltimore,
Maryland 21218, United States
| | - Natalie Falco
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Ariana N. Tkachuk
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Carl Wu
- Department of Biology and Department of Molecular
Biology and Genetics, Johns Hopkins University, Baltimore,
Maryland 21218, United States
| | | | - Robert H. Singer
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
- Department of Anatomy and Structural Biology,
Albert Einstein College of Medicine, Bronx, New York 10461,
United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| |
Collapse
|
11
|
Lampkin BJ, Monteiro C, Powers ET, Bouc PM, Kelly JW, VanVeller B. A designed protein binding-pocket to control excited-state intramolecular proton transfer fluorescence. Org Biomol Chem 2019; 17:1076-1080. [PMID: 30534794 PMCID: PMC6549506 DOI: 10.1039/c8ob02673d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Excited-state intramolecular proton transfer involves a photochemical isomerization and creates the opportunity for the emission of two distinct wavelengths of light from a single fluorophore. The selectivity between these two wavelengths of emission is dependent on the environment around the fluorophore and suggests the possibility for ratiometric monitoring of protein microenvironments. Unfortunately, nonspecific binding of ESIPT fluorophores does not often lead to dramatic changes in the ratio between the two wavelengths of emission. A protein binding pocket was designed to selectively discriminate between the two channels of emission available to an ESIPT fluorophore. This work is significant because it demonstrates that specific interactions between the protein and the fluorophore are essential to realize strong ratiometric differences between the two possible wavelengths of emission. The design strategies proposed here lead to an ESIPT fluorophore that can discern subtle differences in the interface between two proteins.
Collapse
Affiliation(s)
- Bryan J Lampkin
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Cecilia Monteiro
- Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Evan T Powers
- Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Paige M Bouc
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Jeffery W Kelly
- Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
12
|
|
13
|
Skilitsi AI, Agathangelou D, Shulov I, Conyard J, Haacke S, Mély Y, Klymchenko A, Léonard J. Ultrafast photophysics of the environment-sensitive 4'-methoxy-3-hydroxyflavone fluorescent dye. Phys Chem Chem Phys 2018; 20:7885-7895. [PMID: 29509200 DOI: 10.1039/c7cp08584b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The excited state intramolecular proton transfer (ESIPT) of 3-hydroxyflavone derivatives results in a fluorescence spectrum composed of two emission bands, the relative intensity of which is strongly influenced by the interaction with the local environment. We use time-resolved fluorescence and ultrafast transient absorption spectroscopies to investigate the photophysics of 4'-methoxy-3-hydroxyflavone in different solvents characterized by various polarities and hydrogen (H) bonding capabilities. We evidence that in this compound, the ESIPT reaction rate varies by more than 3 orders of magnitude, depending on the H-bonding capability of its local environment. This remarkable property is attributed to the moderate electron-donating strength of the 4'-methoxy substituent, and turns this fluorescent dye into a very promising fluorescent probe of biomolecular structures and interactions, where local structural heterogeneity may possibly be revealed by resolving a distribution of ESIPT reaction rates.
Collapse
Affiliation(s)
- Anastasia Ioanna Skilitsi
- Institut de Physique et Chimie des Matériaux de Strasbourg, & Labex NIE CNRS Université de Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
A theoretical study about excited state behaviour for imide compound N-cyclohexyl-3-hydroxyphthalimide and 3,6-dihydroxy-N-cyclohexylphthalimide. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Matveeva EG, Moll JR, Khan MM, Thompson RB, Cliff RO. Surface Assay for Specific Detection of Soluble Amyloid Oligomers Utilizing Pronucleon Peptides Instead of Antibodies. ACS Chem Neurosci 2017; 8:1213-1221. [PMID: 28290668 DOI: 10.1021/acschemneuro.6b00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immunoassays such as enzyme-linked immunosorbent assays (ELISAs) are widely used for diagnostics; however, antibodies as detection reagents may be insufficiently selective and have other shortcomings. We present a novel non-antibody-based detection method based on binding target molecules to peptides (used as recognition molecules): a surface assay for A-β oligomers employing a peptide comprising amino acid residues of the human β-amyloid protein (Pronucleon peptide) as the capture agent. For the sake of convenience, we term this the "Pronucleon peptide-linked immunosorbent assay", or PLISA. Pronucleon peptides are amino acid sequences matched to target amyloids of interest, in particular soluble Aβ-1-42 amyloid protein oligomers, which are widely considered as an early biomarker for Alzheimer's disease in body fluids. The Pronucleon peptide in a PLISA is immobilized on the surface and substitutes for the capture antibody used in an ELISA for binding the Aβ-1-42 oligomers present in the sample. We present data comparing synthetic oligomer PLISAs in spiked buffer and body fluids (such as cerebrospinal fluid, brain extracts, or whole blood) to those from an ELISA and demonstrate better selectivity of the PLISA for amyloid β-42 oligomers versus monomers and fibrils. The detection limit, calculated as the mean (blank) plus three standard deviations, was in the range of 0.35-1.5 pM (32-135 ng/L) (oligomers contained approximately 20 monomers on average).
Collapse
Affiliation(s)
- Evgenia G. Matveeva
- Adlyfe, Inc., 9430 Key West Avenue, Rockville, Maryland 20850, United States
| | - Jonathan R. Moll
- Adlyfe, Inc., 9430 Key West Avenue, Rockville, Maryland 20850, United States
| | - Mariam M. Khan
- Adlyfe, Inc., 9430 Key West Avenue, Rockville, Maryland 20850, United States
| | - Richard B. Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Richard O. Cliff
- Adlyfe, Inc., 9430 Key West Avenue, Rockville, Maryland 20850, United States
| |
Collapse
|
16
|
Klymchenko AS. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc Chem Res 2017; 50:366-375. [PMID: 28067047 DOI: 10.1021/acs.accounts.6b00517] [Citation(s) in RCA: 646] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push-pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solvents. Excited-state intramolecular proton transfer is the second key concept to design efficient solvatochromic dyes, which respond to the microenvironment by changing relative intensity of the two emissive tautomeric forms. Due to their sensitivity to polarity and hydration, solvatochromic dyes have been successfully applied to biological membranes for studying lipid domains (rafts), apoptosis and endocytosis. As fluorescent labels, solvatochromic dyes can detect practically any type of biomolecular interactions, involving proteins, nucleic acids and biomembranes, because the binding event excludes local water molecules from the interaction site. On the other hand, fluorogenic probes usually exploit intramolecular rotation (conformation change) as a design concept, with molecular rotors being main representatives. These probes were particularly efficient for imaging viscosity and lipid order in biomembranes as well as to light up biomolecular targets, such as antibodies, aptamers and receptors. The emerging concepts to achieve fluorogenic response to the microenvironment include ground-state isomerization, aggregation-caused quenching, and aggregation-induced emission. The ground-state isomerization exploits, for instance, polarity-dependent spiro-lactone formation in silica-rhodamines. The aggregation-caused quenching uses disruption of the self-quenched dimers and nanoassemblies of dyes in less polar environments of lipid membranes and biomolecules. The aggregation-induced emission couples target recognition with formation of highly fluorescent dye aggregates. Overall, solvatochromic and fluorogenic probes enable background-free bioimaging in wash-free conditions as well as quantitative analysis when combined with advanced microscopy, such as fluorescence lifetime (FLIM) and ratiometric imaging. Further development of fluorescent environment-sensitive probes should address some remaining problems: (i) improving their optical properties, especially brightness, photostability, and far-red to near-infrared operating range; (ii) minimizing nonspecific interactions of the probes in biological systems; (iii) their adaptation for advanced microscopies, notably for superresolution and in vivo imaging.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie,
UMR 7213 CNRS, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
17
|
Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes. Sci Rep 2016; 6:25362. [PMID: 27140831 PMCID: PMC4853721 DOI: 10.1038/srep25362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/13/2016] [Indexed: 01/17/2023] Open
Abstract
Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.
Collapse
|
18
|
Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors. Biosens Bioelectron 2015; 74:1076-86. [PMID: 26277908 DOI: 10.1016/j.bios.2015.07.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/05/2023]
Abstract
Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry.
Collapse
|
19
|
Tomin VI, Demchenko AP, Chou PT. Thermodynamic vs. kinetic control of excited-state proton transfer reactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.09.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Sholokh M, Zamotaiev OM, Das R, Postupalenko VY, Richert L, Dujardin D, Zaporozhets OA, Pivovarenko VG, Klymchenko AS, Mély Y. Fluorescent Amino Acid Undergoing Excited State Intramolecular Proton Transfer for Site-Specific Probing and Imaging of Peptide Interactions. J Phys Chem B 2014; 119:2585-95. [DOI: 10.1021/jp508748e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marianna Sholokh
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | | | - Ranjan Das
- Department
of Chemistry, West Bengal State University, Barasat, Kolkata 700126, West Bengal, India
| | - Viktoriia Y. Postupalenko
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Ludovic Richert
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Denis Dujardin
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Olga A. Zaporozhets
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | - Vasyl G. Pivovarenko
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | - Andrey S. Klymchenko
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| |
Collapse
|
21
|
Chandra D, Sankalia N, Arcibal I, Banta S, Cropek D, Karande P. Design of affinity peptides from natural protein ligands: A study of the cardiac troponin complex. Biopolymers 2014; 102:97-106. [DOI: 10.1002/bip.22436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Divya Chandra
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy NY
| | - Nitesh Sankalia
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
| | - Imee Arcibal
- U.S. Army Engineer Research and Development Center; Construction Engineering Research Laboratory (CERL); Champaign IL
| | - Scott Banta
- Department of Chemical Engineering; Columbia University; New York NY
| | - Donald Cropek
- U.S. Army Engineer Research and Development Center; Construction Engineering Research Laboratory (CERL); Champaign IL
| | - Pankaj Karande
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy NY
| |
Collapse
|
22
|
Parveen M, Malla AM, Yaseen Z, Ali A, Alam M. Synthesis, characterization, DNA-binding studies and acetylcholinesterase inhibition activity of new 3-formyl chromone derivatives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:179-87. [PMID: 24333766 DOI: 10.1016/j.jphotobiol.2013.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 01/06/2023]
Abstract
A series of new substituted 3-formyl chromone derivatives (4-6) were synthesized by one step reaction methodology by knoevenagel condensation, structurally similar to known bisintercalators. The new compounds were characterized by IR, (1)H NMR, (13)C NMR, MS and analytical data. The in vitro DNA binding profile of compounds (4-6) was carried out by absorption, fluorescence and viscosity measurements. It was found that synthesized compounds, especially compound 6 (evident from binding constant value) bind strongly with calf thymus DNA, presumably via an intercalation mode. Additionally, molecular docking studies of compounds (4-6) were carried out with B-DNA (PDBID: 1BNA) which revealed that partial intercalative mode of mechanism is operational in synthesized compounds (4-6) with CT-DNA. The binding constants evaluated from fluorescence spectroscopy of compounds with CT-DNA follows the order compound 6>compound 5>compound 4. All the compounds (4-6) were screened for acetylcholinesterase inhibition assay. It can be inferred from data, that compound (6) showed potent AChE inhibition having IC50=0.27μM, almost in vicinity to reference drug Tacrine (IC50=0.19μM).
Collapse
Affiliation(s)
- Mehtab Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Ali Mohammed Malla
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Zahid Yaseen
- Department of Civil Engineering, Islamic University of Science and Technology, Kashmir 192122, India
| | - Akhtar Ali
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mahboob Alam
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
23
|
Demchenko AP, Tang KC, Chou PT. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem Soc Rev 2013; 42:1379-408. [PMID: 23169387 DOI: 10.1039/c2cs35195a] [Citation(s) in RCA: 463] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha street, Kiev 01030, Ukraine.
| | | | | |
Collapse
|
24
|
Design of peptide affinity ligands for S-protein: a comparison of combinatorial and de novo design strategies. Mol Divers 2013; 17:357-69. [DOI: 10.1007/s11030-013-9436-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 12/11/2022]
|
25
|
Klymchenko AS, Mely Y. Fluorescent environment-sensitive dyes as reporters of biomolecular interactions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:35-58. [PMID: 23244788 DOI: 10.1016/b978-0-12-386932-6.00002-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monitoring biomolecular interactions is a fundamental issue in biosensing, with numerous applications ranging from biological research to clinical diagnostics. Fluorescent dyes capable of changing their color and brightness in response to changes of their environment properties, the so-called environment-sensitive dyes, have recently emerged as reporters of these interactions. The most well established of these are dyes that undergo excited-state charge transfer showing red shift of their single emission band with increase in the solvent polarity. The other promising class are dyes of the 3-hydroxychromone family that undergo excited-state intramolecular proton transfer and show solvent-sensitive dual emission. Examples of existing solvatochromic dyes and their biosensing applications are given, with particular focus on the 3-hydroxychromones. It is shown that solvatochromic dyes are powerful tools for monitoring conformation changes of proteins and their interactions with nucleic acids, proteins, and lipid membranes.
Collapse
Affiliation(s)
- Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch Cedex, France
| | | |
Collapse
|
26
|
D'Aléo A, Fages F. Boron difluoride complexes of 3-hydroxyflavone derivatives: efficient bioinspired dyes for solution and solid-state emission. Photochem Photobiol Sci 2013. [DOI: 10.1039/c2pp25300c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Doroshenko AO, Matsakov AY, Nevskii OV, Grygorovych OV. Excited state intramolecular proton transfer reaction revisited: S1 state or general reversibility? J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Strizhak AV, Postupalenko VY, Shvadchak VV, Morellet N, Guittet E, Pivovarenko VG, Klymchenko AS, Mély Y. Two-color fluorescent l-amino acid mimic of tryptophan for probing peptide-nucleic acid complexes. Bioconjug Chem 2012; 23:2434-43. [PMID: 23153224 DOI: 10.1021/bc300464u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-natural amino acids are important tools for site-selective probing of peptide properties and interactions. Here, for the first time a fluorescent l-amino acid, exhibiting excited-state intramolecular proton transfer (ESIPT) and hydration-sensitive dual emission, was synthesized. It is an analogue of l-tryptophan bearing a slightly larger 2-(2-furyl)-3-hydroxychromone aromatic moiety instead of indole. This new amino acid was incorporated through solid-phase synthesis into NC(11-55), the zinc finger domain of the HIV-1 nucleocapsid protein, that exhibits potent nucleic acid chaperone properties. It was substituted for the Trp37 and Ala30 residues, located in the distal finger motif and the linker between the fingers of NC(11-55), respectively. Though the highly conserved Trp37 residue plays a key role in NC(11-55) structure and activity, its substitution for the new fluorescent analogue preserved the folding, the nucleic acid binding and chaperone activity of the peptide, indicating that the new amino acid can conservatively substitute Trp residues. In the presence of oligonucleotides, the Trp37-substituted peptide, but not the Ala30 variant, showed strong changes of the dual emission corresponding to local dehydration. The results are in line with NMR data, suggesting that the fluorescent amino acid interacts similarly to Trp37 with the nucleobases and is thus screened from water. Due to the exceptional sensitivity of its ESIPT fluorophore to hydration in highly polar environment, the new amino acid appears as a promising tool for substituting Trp residues and site-selectively investigating peptide-nucleic acid complexes.
Collapse
Affiliation(s)
- Aleksandr V Strizhak
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kenfack CA, Klymchenko AS, Duportail G, Burger A, Mély Y. Ab initio study of the solvent H-bonding effect on ESIPT reaction and electronic transitions of 3-hydroxychromone derivatives. Phys Chem Chem Phys 2012; 14:8910-8. [PMID: 22641242 DOI: 10.1039/c2cp40869d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic transitions occurring in 4-(N,N-dimethylamino)-3-hydroxyflavone (DMAF) and 2-furanyl-3-hydroxychromone (FHC) were investigated using the TDDFT method in aprotic and protic solvents. The solvent effect was incorporated into the calculations via the PCM formalism. The H-bonding between solute and protic solvent was taken into account by considering a molecular complex between these molecules. To examine the effect of the H-bond on the ESIPT reaction, the absorption and emission wavelengths as well as the energies of the different states that intervene during these electronic transitions were calculated in acetonitrile, ethanol and methanol. The calculated positions of the absorption and emission wavelengths in various solvents were in excellent agreement with the experimental spectra, validating our approach. We found that in DMAF, the hydrogen bonding with protic solvents makes the ESIPT reaction energetically unfavourable, which explains the absence of the ESIPT tautomer emission in protic solvents. In contrast, the excited tautomer state of FHC remains energetically favourable in both aprotic and protic solvents. Comparing our calculations with the previously reported time-resolved fluorescence data, the ESIPT reaction of DMAF in aprotic solvents is reversible because the emitting states are energetically close, whereas in FHC, ESIPT is irreversible because the tautomer state is below the corresponding normal state. Therefore, the ESIPT reaction in DMAF is controlled by the relative energies of the excited states (thermodynamic control), while in FHC the ESIPT is controlled probably by the energetic barrier (kinetic control).
Collapse
Affiliation(s)
- Cyril A Kenfack
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch Cedex, France.
| | | | | | | | | |
Collapse
|
30
|
Pivovarenko VG, Zamotaiev OM, Shvadchak VV, Postupalenko VY, Klymchenko AS, Mély Y. Quantification of local hydration at the surface of biomolecules using dual-fluorescence labels. J Phys Chem A 2012; 116:3103-9. [PMID: 22394312 DOI: 10.1021/jp2101732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By using four labels of the 3-hydroxyflavone family displaying selective sensitivity to hydrogen bond (HB) donors and poor response to other polar molecules, we developed an approach for measuring local water concentration [H(2)O](L) (or partial volume of water: W(A) = [H(2)O](L)/55.6) in the label surrounding both in solvent mixtures and in biomolecules by the intensity ratio of two emissive forms of the label, N*/T*. Using a series of binary water/solvent mixtures with limited preferential solvation effects, a linear dependence of log(N*/T*) on the local concentration of HB donor was obtained and then used as a calibration curve for estimating the W(A) values in the surroundings of the probes conjugated to biomolecules. By this approach, we estimated the hydration of the labels in different peptides and their complexes with DNAs. We found that W(A) values for the label at the peptide N-terminus are lower (0.63-0.91) than for free labels and depend strongly on the nature of the N-terminal amino acid. When complexed with different DNAs, the estimated hydration of the labels conjugated to the labeled peptides was much lower (W(A) = 0-0.47) and depended on the DNA nature and linker-label structure. Thus, the elaborated method allows a site-specific evaluation of hydration at the surface of a biomolecule through the determination of the partial volume of water. We believe the developed procedure can be successfully applied for monitoring hydration at the surface of any biomolecule or nanostructure.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Organic Chemistry Chair, Chemistry Faculty, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
31
|
Zhao J, Ji S, Chen Y, Guo H, Yang P. Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys 2011; 14:8803-17. [PMID: 22193300 DOI: 10.1039/c2cp23144a] [Citation(s) in RCA: 725] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this perspective we introduce the basic photophysics of the excited-state intramolecular proton transfer (ESIPT) chromophores, then the state-of-the-art development of the ESIPT chromophores and their applications in chemosensors, biological imaging and white-light emitting materials are summarized. Most of the applications of the ESIPT chromophores are based on the photophysics properties, such as design of fluorescent chemosensors by perturbation of the ESIPT process upon interaction with the analytes, their use as biological fluorescent tags to study DNA-protein interaction by probing the variation of the hydration, or design of white-light emitting materials by employing the large Stokes shift of the ESIPT chromophores (to inhibit the Föster energy transfer of the components). The photophysical mechanism of these applications is discussed. Furthermore, a new research topic concerning the ESIPT chromophores is proposed based on our group's results, that is, to develop organic triplet sensitizers with ESIPT chromophores.
Collapse
Affiliation(s)
- Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| | | | | | | | | |
Collapse
|
32
|
Engin O, Villa A, Peter C, Sayar M. A Challenge for Peptide Coarse Graining: Transferability of Fragment-Based Models. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201100005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Investigation of the effects of design parameters on sensitivity of surface plasmon resonance biosensors. Biomed Signal Process Control 2011. [DOI: 10.1016/j.bspc.2010.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Zamotaiev OM, Postupalenko VY, Shvadchak VV, Pivovarenko VG, Klymchenko AS, Mély Y. Improved hydration-sensitive dual-fluorescence labels for monitoring peptide-nucleic acid interactions. Bioconjug Chem 2010; 22:101-7. [PMID: 21174445 DOI: 10.1021/bc100434d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmentally sensitive labels constitute a new, attractive tool for monitoring biomolecular interactions. 3-Hydroxychromone derivatives are of particular interest because they undergo excited-state intramolecular proton transfer (ESIPT) showing dual emission highly sensitive to environmental hydration. To overcome the drawbacks of the previously developed label for sensing protein-DNA interactions based on 2-furanyl-3-hydroxychromone (FC), a series of hydration-sensitive labels based on 3-hydroxy-4'-methoxyflavone have been synthesized. As compared to FC, the new labels display higher sensitivity of the ratio of their two emission bands (N*/T*) to solvent polarity and H-bond donor ability, as well as higher fluorescence quantum yields in water. Moreover, they show higher pK(a) values of their 3-hydroxyl group, allowing their application at neutral pH without interference of anionic forms. To illustrate the applications of these labels, we covalently coupled them to the N-terminus of the Tat(44-61) peptide that corresponds to the basic domain of the HIV-1 Tat protein. This coupling did not modify the nucleic acid chaperone properties of the peptide. Binding of oligonucleotides of varying length, sequence, and strandedness to the labeled peptides induced dramatic change in the N*/T* ratio of their two emission bands. This change indicated that the level of probe hydration in the peptide/oligonucleotide complexes decreases in the following order: short ssDNAs ≫ long ssDNAs > DNA hairpins > dsDNAs. The level of probe hydration was related to the ability of the probe to stack with the DNA bases or base pairs in the various complexes. The changes in the N*/T* ratio upon interaction of the labeled Tat peptides with DNA were about 3-fold larger with the new probes as compared to the parent FC label, in line with the higher sensitivity of the new probes to the environment. One of these labels, presenting the most compact geometry, showed the highest sensitivity, probably due to its optimal stacking with the DNA bases. Thus, the new hydration-sensitive labels appear as improved highly sensitive tools to site-selectively monitor the binding of peptides to oligonucleotides and nucleic acids.
Collapse
Affiliation(s)
- Oleksandr M Zamotaiev
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
35
|
Chen CY, Chen CT. A PNIPAM-based fluorescent nanothermometer with ratiometric readout. Chem Commun (Camb) 2010; 47:994-6. [PMID: 21113519 DOI: 10.1039/c0cc04450d] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel molecular thermometer with ratiometric fluorescence readout was designed and synthesized. Within a sensing temperature range of 33 to 41 °C, the fluorescence color of the nanothermometer changes from blue to green. The ratiometric change magnitude is about 8.7-fold, rendering the visual differentiation of color by the naked eyes feasible.
Collapse
Affiliation(s)
- Chun-Yen Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, ROC
| | | |
Collapse
|
36
|
Yushchenko DA, Fauerbach JA, Thirunavukkuarasu S, Jares-Erijman EA, Jovin TM. Fluorescent ratiometric MFC probe sensitive to early stages of alpha-synuclein aggregation. J Am Chem Soc 2010; 132:7860-1. [PMID: 20491471 DOI: 10.1021/ja102838n] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We introduce a sensor molecule, AS140-MFC, consisting of a covalent adduct of an Ala-to-Cys mutant of alpha-synuclein with the 3-hydroxychromone dual emission dye MFC. We show that the AS140-MFC construct is a multiparametric fluorescent probe suitable for the continuous monitoring of protein aggregation and is sensitive to the early and intermediate stages of alpha-synuclein aggregation, a process associated with Parkinson's disease.
Collapse
Affiliation(s)
- Dmytro A Yushchenko
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
37
|
A peptide-based fluorescent ratiometric sensor for quantitative detection of proteins. Anal Biochem 2010; 401:188-95. [PMID: 20188691 DOI: 10.1016/j.ab.2010.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/21/2022]
|
38
|
The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging. J Fluoresc 2010; 20:1099-128. [DOI: 10.1007/s10895-010-0644-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
|
39
|
Environmentally sensitive fluorescent sensors based on synthetic peptides. SENSORS 2010; 10:3126-44. [PMID: 22319290 PMCID: PMC3274215 DOI: 10.3390/s100403126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/27/2010] [Accepted: 03/24/2010] [Indexed: 01/02/2023]
Abstract
Biosensors allow the direct detection of molecular analytes, by associating a biological receptor with a transducer able to convert the analyte-receptor recognition event into a measurable signal. We review recent work aimed at developing synthetic fluorescent molecular sensors for a variety of analytes, based on peptidic receptors labeled with environmentally sensitive fluorophores. Fluorescent indicators based on synthetic peptides are highly interesting alternatives to protein-based sensors, since they can be synthesized chemically, are stable, and can be easily modified in a site-specific manner for fluorophore coupling and for immobilization on solid supports.
Collapse
|
40
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
41
|
Loving G, Imperiali B. Thiol-reactive derivatives of the solvatochromic 4-N,N-dimethylamino-1,8-naphthalimide fluorophore: a highly sensitive toolset for the detection of biomolecular interactions. Bioconjug Chem 2010; 20:2133-41. [PMID: 19821578 DOI: 10.1021/bc900319z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN) possesses extremely sensitive emission properties due largely to the low intrinsic fluorescence it exhibits in polar protic solvents such as water. This makes it well suited as a probe for the detection of a wide range of biomolecular interactions. Herein we report the development and evaluation of a new series of thiol-reactive agents derived from this fluorophore. The members of this series vary according to linker type and the electrophilic group required for the labeling of proteins and other biologically relevant molecules. Using the calcium-binding protein calmodulin as a model system, we compare the performance of the 4-DMN derivatives to that of several commercially available solvatochromic fluorophores identifying many key factors important to the successful application of such tools. This study also demonstrates the power of this new series of labeling agents by yielding a fluorescent calmodulin construct capable of producing a greater than 100-fold increase in emission intensity upon binding to calcium.
Collapse
Affiliation(s)
- Galen Loving
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
42
|
Aili D, Selegård R, Baltzer L, Enander K, Liedberg B. Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2445-2452. [PMID: 19588465 DOI: 10.1002/smll.200900530] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel strategy is described for the colorimetric sensing of proteins, based on polypeptide-functionalized gold nanoparticles. Recognition is accomplished using a polypeptide sensor scaffold designed to specifically bind to the model analyte, human carbonic anhydrase II (HCAII). The extent of particle aggregation, induced by the Zn(2+)-triggered dimerization and folding of a second polypeptide also present on the surface of the gold nanoparticle, gives a readily detectable colorimetric shift that is dependent on the concentration of the target protein. In the absence of HCAII, particle aggregation results in a major redshift of the plasmon peak, whereas analyte binding prevented the formation of dense aggregates, significantly reducing the magnitude of the redshift. The versatility of the technique is demonstrated using a second model system based on the recognition of a peptide sequence from the tobacco mosaic virus coat protein (TMVP) by a recombinant antibody fragment (Fab57P). Concentrations down to approximately 10 nM and approximately 25 nM are detected for HCAII and Fab57P, respectively. This strategy is proposed as a generic platform for robust and specific protein analysis that can be further developed to monitor a wide range of target proteins.
Collapse
Affiliation(s)
- Daniel Aili
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | | | |
Collapse
|
43
|
Dyrager C, Friberg A, Dahlén K, Fridén-Saxin M, Börjesson K, Wilhelmsson LM, Smedh M, Grøtli M, Luthman K. 2,6,8-Trisubstituted 3-Hydroxychromone Derivatives as Fluorophores for Live-Cell Imaging. Chemistry 2009; 15:9417-23. [PMID: 19670192 DOI: 10.1002/chem.200900279] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christine Dyrager
- Department of Chemistry-Medicinal Chemistry, University of Gothenburg, 412 96 Göteborg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Spadafora M, Postupalenko VY, Shvadchak VV, Klymchenko AS, Mély Y, Burger A, Benhida R. Efficient Synthesis of Ratiometric Fluorescent Nucleosides Featuring 3-Hydroxychromone Nucleobases. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Aslan K, Zhang Y, Geddes CD. Sonication-assisted metal-enhanced fluorescence-based bioassays. Anal Chem 2009; 81:4713-9. [PMID: 19432434 DOI: 10.1021/ac802535s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new bioassay technique, sonication-assisted metal-enhanced fluorescence, which is based on the combined use of ultrasound waves and metal-enhanced fluorescence (MEF), is reported. In this technique, low-intensity ultrasound waves significantly reduce the bioassay time by creating a temperature gradient between the bulk and the surface, which is thought to result in a mass transport of biomolecules from the bulk to the surface. After the assay is completed in 1 min, fluorescence emission is enhanced due to the MEF phenomenon. For proof-of-concept, a model bioassay based on the interactions of biotin and fluorophore-labeled avidin was constructed on SIFs and was subsequently completed in <1 min using low-intensity ultrasound at 40 kHz. The end-point values for fluorescence emission from sonicated assays were compared to those measured from assays carried out at room temperature without sonication to confirm to accuracy of the new technique. The effect of sonication on the assay components were studied using optical absorption spectroscopy, atomic force microscopy, and fluorescence spectroscopy techniques. Real-time thermal imaging was used to measure the changes in temperature of the bioassay components during the sonication process. Fluorescence resonance energy transfer (FRET) was also employed to investigate the effect of sonication on potential surface protein denaturation and conformational changes.
Collapse
Affiliation(s)
- Kadir Aslan
- The Institute of Fluorescence, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
46
|
3-Hydroxybenzo[g]quinolones: dyes with red-shifted absorption and highly resolved dual emission. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.06.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
A multiple-ligand approach to extending the dynamic range of analyte quantification in protein microarrays. Biosens Bioelectron 2009; 24:2458-64. [DOI: 10.1016/j.bios.2008.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/18/2022]
|
48
|
Shvadchak VV, Klymchenko AS, de Rocquigny H, Mély Y. Sensing peptide-oligonucleotide interactions by a two-color fluorescence label: application to the HIV-1 nucleocapsid protein. Nucleic Acids Res 2009; 37:e25. [PMID: 19151084 PMCID: PMC2647317 DOI: 10.1093/nar/gkn1083] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We present a new methodology for site-specific sensing of peptide–oligonucleotide (ODN) interactions using a solvatochromic fluorescent label based on 3-hydroxychromone (3HC). This label was covalently attached to the N-terminus of a peptide corresponding to the zinc finger domain of the HIV-1 nucleocapsid protein (NC). On interaction with target ODNs, the labeled peptide shows strong changes in the ratio of its two emission bands, indicating an enhanced screening of the 3HC fluorophore from the bulk water by the ODN bases. Remarkably, this two-color response depends on the ODN sequence and correlates with the 3D structure of the corresponding complexes, suggesting that the 3HC label monitors the peptide–ODN interactions site-specifically. By measuring the two-color ratio, we were also able to determine the peptide–ODN-binding parameters and distinguish multiple binding sites in ODNs, which is rather difficult using other fluorescence methods. Moreover, this method was found to be more sensitive than the commonly used steady-state fluorescence anisotropy, especially in the case of small ODNs. The described methodology could become a new universal tool for investigating peptide–ODN interactions.
Collapse
Affiliation(s)
- Volodymyr V Shvadchak
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 du CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | |
Collapse
|
49
|
Boudier C, Klymchenko AS, Mely Y, Follenius-Wund A. Local environment perturbations in alpha1-antitrypsin monitored by a ratiometric fluorescent label. Photochem Photobiol Sci 2009; 8:814-21. [DOI: 10.1039/b902309g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Das R, Klymchenko AS, Duportail G, Mély Y. Unusually slow proton transfer dynamics of a 3-hydroxychromone dye in protic solvents. Photochem Photobiol Sci 2009; 8:1583-9. [DOI: 10.1039/b906710h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|