1
|
Pineux F, Federico S, Klotz KN, Kachler S, Michiels C, Sturlese M, Prato M, Spalluto G, Moro S, Bonifazi D. Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem 2020; 15:1909-1920. [PMID: 32706529 DOI: 10.1002/cmdc.202000466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The A3 adenosine receptor (AR) is a G protein-coupled receptor (GPCR) overexpressed in the membrane of specific cancer cells. Thus, the development of nanosystems targeting this receptor could be a strategy to both treat and diagnose cancer. Iron-filled carbon nanotubes (CNTs) are an optimal platform for theranostic purposes, and the use of a magnetic field can be exploited for cancer magnetic cell sorting and thermal therapy. In this work, we have conjugated an A3 AR ligand on the surface of iron-filled CNTs with the aim of targeting cells overexpressing A3 ARs. In particular, two conjugates bearing PEG linkers of different length were designed. A docking analysis of A3 AR showed that neither CNT nor linker interferes with ligand binding to the receptor; this was confirmed by in vitro preliminary radioligand competition assays on A3 AR. Encouraged by this result, magnetic cell sorting was applied to a mixture of cells overexpressing or not the A3 AR in which our compound displayed indiscriminate binding to all cells. Despite this, it is the first time that a GPCR ligand has been anchored to a magnetic nanosystem, thus it opens the door to new applications for cancer treatment.
Collapse
Affiliation(s)
- Florent Pineux
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Carine Michiels
- Namur Research Institute for Life Science (NARILIS), Unité de Recherche en Biologie Cellulaire (URBC), University of Namur, 5000, Namur, Belgium
| | - Mattia Sturlese
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain.,Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Stefano Moro
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Str. 38, 1090, Wien, Austria
| |
Collapse
|
2
|
Fatemi SM, Fatemi SJ, Abbasi Z. PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-03076-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
3
|
Federico S, Margiotta E, Moro S, Kozma E, Gao ZG, Jacobson KA, Spalluto G. Conjugable A 3 adenosine receptor antagonists for the development of functionalized ligands and their use in fluorescent probes. Eur J Med Chem 2019; 186:111886. [PMID: 31787357 DOI: 10.1016/j.ejmech.2019.111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
Compounds able to simultaneously bind a biological target and be conjugated to a second specific moiety are attractive tools for the development of multi-purpose ligands useful as multi-target ligands, receptor probes or drug delivery systems, with both therapeutic and diagnostic applications. The human A3 adenosine receptor is a G protein-coupled receptor involved in many physio-pathological conditions, e.g. cancer and inflammation, thus representing a promising research target. In this work, two series of conjugable hA3AR antagonists, based on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine nucleus, were developed. The introduction of an aromatic ring at the 5 position of the scaffold, before (phenylacetamido moiety) or after (1,2,3-triazole obtained by click chemistry) the conjugation is aimed to increase affinity and selectivity towards the hA3AR receptor. As expected, conjugable compounds showed good affinity towards the hA3AR. In order to prove their potential in the development of hA3AR ligands for different purposes, compounds were also functionalized with fluorescent probes. Unfortunately, conjugation decreased affinity and selectivity for the target as compared to the hA2AAR. Computational studies identified specific non-conserved residues of the extracellular loops which constitute a structural barrier able to discriminate between ligands, giving insights into the rational development of new highly selective ligands.
Collapse
Affiliation(s)
- Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università Degli Studi di Trieste, Via Licio Giorgeri 1, 34127, Trieste, Italy.
| | - Enrico Margiotta
- Molecular Modeling Section (MMS), Dipartimento di Scienze Del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze Del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Eszter Kozma
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università Degli Studi di Trieste, Via Licio Giorgeri 1, 34127, Trieste, Italy
| |
Collapse
|
4
|
Federico S, Margiotta E, Paoletta S, Kachler S, Klotz KN, Jacobson KA, Pastorin G, Moro S, Spalluto G. Pyrazolo[4,3- e][1,2,4]triazolo[1,5- c]pyrimidines to develop functionalized ligands to target adenosine receptors: fluorescent ligands as an example. MEDCHEMCOMM 2019; 10:1094-1108. [PMID: 31391881 PMCID: PMC6644567 DOI: 10.1039/c9md00014c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/16/2019] [Indexed: 01/07/2023]
Abstract
A series of adenosine receptor antagonists bearing a reactive linker was developed. Functionalization of these derivatives is useful to easily obtain multi-target ligands, receptor probes, drug delivery systems, and diagnostic or theranostic systems. The pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine scaffold was chosen as a pharmacophore for the adenosine receptors. It was substituted at the 5 position with reactive linkers of different lengths. Then, these compounds were used to synthesise probes for the adenosine receptors by functionalization with a fluorescent moiety. Both series of compounds were evaluated for their binding at the four adenosine receptor subtypes. Different affinity and selectivity profiles were observed towards hA1, hA2A and hA3 adenosine receptors. In particular, fluorescent compounds behave as dual hA2A/hA3 ligands. Computational studies suggested different binding modes for developed compounds at the three receptors. Both molecular docking and supervised molecular dynamics (SuMD) simulations confirmed that the preferred binding mode at the single receptor was driven by the substitution present at the 5 position. Obtained results rationalized the compounds' binding profile at the adenosine receptors and pave the way for the development of more potent conjugable and conjugated ligands targeting these membrane receptors.
Collapse
Affiliation(s)
- Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via Licio Giorgeri 1 , 34127 Trieste , Italy .
| | - Enrico Margiotta
- Molecular Modeling Section (MMS) , Dipartimento di Scienze del Farmaco , Università degli Studi di Padova , Via F. Marzolo 5 , 35131 Padova , Italy
| | - Silvia Paoletta
- Molecular Modeling Section (MMS) , Dipartimento di Scienze del Farmaco , Università degli Studi di Padova , Via F. Marzolo 5 , 35131 Padova , Italy
| | - Sonja Kachler
- Institut für Pharmakologie und Toxicologie , Universität Würzburg , Versbacher Straße 9 , 97078 Würzburg , Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxicologie , Universität Würzburg , Versbacher Straße 9 , 97078 Würzburg , Germany
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0810 , USA
| | - Giorgia Pastorin
- Department of Pharmacy , National University of Singapore , 3 Science Drive 3 , 117543 Singapore
| | - Stefano Moro
- Molecular Modeling Section (MMS) , Dipartimento di Scienze del Farmaco , Università degli Studi di Padova , Via F. Marzolo 5 , 35131 Padova , Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via Licio Giorgeri 1 , 34127 Trieste , Italy .
| |
Collapse
|
5
|
Akhtar S, Chandrasekhar B, Yousif MH, Renno W, Benter IF, El-Hashim AZ. Chronic administration of nano-sized PAMAM dendrimers in vivo inhibits EGFR-ERK1/2-ROCK signaling pathway and attenuates diabetes-induced vascular remodeling and dysfunction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:78-89. [PMID: 30844576 DOI: 10.1016/j.nano.2019.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
We investigated whether chronic administration of nano-sized polyamidoamine (PAMAM) dendrimers can have beneficial effects on diabetes-induced vascular dysfunction by inhibiting the epidermal growth factor receptor (EGFR)-ERK1/2-Rho kinase (ROCK)-a pathway known to be critical in the development of diabetic vascular complications. Daily administration of naked PAMAMs for up to 4 weeks to streptozotocin-induced diabetic male Wistar rats inhibited EGFR-ERK1/2-ROCK signaling and improved diabetes-induced vascular remodeling and dysfunction in a dose, generation (G6 > G5) and surface chemistry-dependent manner (cationic > anionic > neutral). PAMAMs, AG1478 (a selective EGFR inhibitor), or anti-EGFR siRNA also inhibited vascular EGFR-ERK1/2-ROCK signaling in vitro. These data showed that naked PAMAM dendrimers have the propensity to modulate key (e.g. EGFR) cell signaling cascades with associated pharmacological consequences in vivo that are dependent on their physicochemical properties. Thus, PAMAMs, alone or in combination with vasculoprotective agents, may have a beneficial role in the potential treatment of diabetes-induced vascular complications.
Collapse
Affiliation(s)
- Saghir Akhtar
- College of Medicine, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | - Mariam Hm Yousif
- Department of Pharmacology and Toxicology, Kuwait University, Safat, Kuwait
| | - Waleed Renno
- Department of Pathology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Ahmed Z El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University.
| |
Collapse
|
6
|
Fischer-Durand N, Lizinska D, Guérineau V, Rudolf B, Salmain M. ‘Clickable’ cyclopentadienyl iron carbonyl complexes for bioorthogonal conjugation of mid-infrared labels to a model protein and PAMAM dendrimer. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathalie Fischer-Durand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université; 4 place Jussieu 75005 Paris France
| | - Daria Lizinska
- Department of Organic Chemistry; University of Lodz; Tamka 12 91-403 Lodz Poland
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301; Université Paris-Sud, Université Paris-Saclay; Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Bogna Rudolf
- Department of Organic Chemistry; University of Lodz; Tamka 12 91-403 Lodz Poland
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université; 4 place Jussieu 75005 Paris France
| |
Collapse
|
7
|
Desmecht A, Steenhaut T, Pennetreau F, Hermans S, Riant O. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids. Chemistry 2018; 24:12992-13001. [PMID: 29924884 DOI: 10.1002/chem.201802301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/14/2018] [Indexed: 01/06/2025]
Abstract
Polyamidoamine (PAMAM) dendrimers were covalently immobilized on multi-walled carbon nanotubes (MWNT) by two "grafting to" strategies. We demonstrate the existence of non-covalent interactions between the two components but outline the superiority of our two grafting approaches, namely xanthate and click chemistry. MWNT surfaces were functionalized with activated ester and propargylic moieties prior to their reaction with PAMAM or azido-PAMAM dendrimers, respectively. The grafting of PAMAM generations 0 to 3 was evaluated with X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The versatility of our hybrids was demonstrated by post-functionalization sequences involving copper alkyne-azide cycloaddition (CuAAC). We synthesized homogeneous supported iridium complexes at the extremities of the dendrimers. In addition, our materials were used as templates for the encapsulation of Pd nanoparticles (NPs), validating our nanocomposites for catalytic applications. The palladium-based catalyst was active for carbonylative coupling over five consecutive runs without loss of activity.
Collapse
Affiliation(s)
- Antonin Desmecht
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Timothy Steenhaut
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Florence Pennetreau
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Ma X, Xiong Y, Lee LTO. Application of Nanoparticles for Targeting G Protein-Coupled Receptors. Int J Mol Sci 2018; 19:E2006. [PMID: 29996469 PMCID: PMC6073629 DOI: 10.3390/ijms19072006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023] Open
Abstract
Nanoparticles (NPs) have attracted unequivocal attention in recent years due to their potential applications in therapeutics, bio-imaging and material sciences. For drug delivery, NP-based carrier systems offer several advantages over conventional methods. When conjugated with ligands and drugs (or other therapeutic molecules), administrated NPs are able to deliver cargo to targeted sites through ligand-receptor recognition. Such targeted delivery is especially important in cancer therapy. Through this targeted cancer nanotherapy, cancer cells are killed with higher specificity, while the healthy cells are spared. Furthermore, NP drug delivery leads to improved drug load, enhanced drug solubility and stability, and controlled drug release. G protein-coupled receptors (GPCRs) are a superfamily of cell transmembrane receptors. They regulate a plethora of physiological processes through ligand-receptor-binding-induced signaling transduction. With recent evidence unveiling their roles in cancer, GPCR agonists and antagonists have quickly become new targets in cancer therapy. This review focuses on the application of some notable nanomaterials, such as dendrimers, quantum dots, gold nanoparticles, and magnetic nanoparticles, in GPCR-related cancers.
Collapse
Affiliation(s)
- Xin Ma
- Centre of Reproduction Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Yunfang Xiong
- Centre of Reproduction Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Leo Tsz On Lee
- Centre of Reproduction Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
9
|
Köse M, Gollos S, Karcz T, Fiene A, Heisig F, Behrenswerth A, Kieć-Kononowicz K, Namasivayam V, Müller CE. Fluorescent-Labeled Selective Adenosine A 2B Receptor Antagonist Enables Competition Binding Assay by Flow Cytometry. J Med Chem 2018; 61:4301-4316. [PMID: 29681156 DOI: 10.1021/acs.jmedchem.7b01627] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescent ligands represent powerful tools for biological studies and are considered attractive alternatives to radioligands. In this study, we developed fluorescent antagonists for A2B adenosine receptors (A2BARs), which are targeted by antiasthmatic xanthines and were proposed as novel targets in immuno-oncology. Our approach was to merge a small borondipyrromethene (BODIPY) derivative with the pharmacophore of 8-substituted xanthine derivatives. On the basis of the design, synthesis, and evaluation of model compounds, several fluorescent ligands were synthesized. Compound 29 (PSB-12105), which displayed high affinity for human, rat, and mouse A2BARs ( Ki = 0.2-2 nM) and high selectivity for this AR subtype, was selected for further studies. A homology model of the human A2BAR was generated, and docking studies were performed. Moreover, 29 allowed us to establish a homogeneous receptor-ligand binding assay using flow cytometry. These compounds constitute the first potent, selective fluorescent A2BAR ligands and are anticipated to be useful for a variety of applications.
Collapse
Affiliation(s)
- Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Sabrina Gollos
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Fabian Heisig
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Andrea Behrenswerth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| |
Collapse
|
10
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
11
|
Zhou Z, Cong M, Li M, Tintaru A, Li J, Yao J, Xia Y, Peng L. Negative dendritic effect on enzymatic hydrolysis of dendrimer conjugates. Chem Commun (Camb) 2018; 54:5956-5959. [DOI: 10.1039/c8cc01221k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The “negative dendritic effect” observed during enzymatic hydrolysis of dendrimer conjugates can be positively exploited for tailored, generation-dependent drug release.
Collapse
Affiliation(s)
- Zhengwei Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Mei Cong
- Aix-Marseille Université
- CNRS
- Centre Interdisciplinaire de Nanoscience de Marseille
- UMR 7325
- “Equipe Labellisée Ligue Contre le Cancer”
| | - Mengyao Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Aura Tintaru
- Aix-Marseille Université
- CNRS
- UMR 7273
- Institut de Chimie Radicalaire
- Marseille
| | - Jia Li
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Jianhua Yao
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Ling Peng
- Aix-Marseille Université
- CNRS
- Centre Interdisciplinaire de Nanoscience de Marseille
- UMR 7325
- “Equipe Labellisée Ligue Contre le Cancer”
| |
Collapse
|
12
|
Chen J, Banaszak Holl MM. Dendrimer and dendrimer–conjugate protein complexes and protein coronas. CAN J CHEM 2017; 95:903-906. [DOI: 10.1139/cjc-2017-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dendrimers and dendrimer conjugates are widely employed for biological applications such as bio-imaging and drug delivery. Understanding the interaction between dendrimers and their biological environment is key to evaluating the efficacy and safety of these materials. Proteins can form an adsorbed layer, termed a “protein corona”, on dendrimers in either a non-specific or specific fashion. A tight-binding, non-exchangeable corona is defined as a “hard” corona, whereas a loosely bound, highly exchangeable corona is called a “soft” corona. Recent research indicates that small molecules conjugated to the polymer surface can induce protein structural change, leading to tighter protein–dendrimer binding and further protein aggregation. This “triggered” corona formation on dendrimer and dendrimer conjugates is reviewed and discussed along with the existing hard or soft corona model. This review describes the triggered corona model to further the understanding of protein corona formation.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Gorzkiewicz M, Klajnert-Maculewicz B. Dendrimers as nanocarriers for nucleoside analogues. Eur J Pharm Biopharm 2017; 114:43-56. [DOI: 10.1016/j.ejpb.2016.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/02/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
14
|
Hennig R, Veser A, Kirchhof S, Goepferich A. Branched Polymer-Drug Conjugates for Multivalent Blockade of Angiotensin II Receptors. Mol Pharm 2015; 12:3292-302. [PMID: 26252154 DOI: 10.1021/acs.molpharmaceut.5b00301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of angiotensin receptor blockers (ARBs) for treatment of ocular diseases associated with neovascularizations, such as proliferative diabetic retinopathy, shows tremendous promise but is presently limited due to short intravitreal half-life. Conjugation of ARB molecules to branched polymers could vastly augment their therapeutic efficacy. EXP3174, a potent non-peptide ARB, was conjugated to branched poly(ethylene glycol) (PEG) and poly(amido amine) (PAMAM) dendrimers: 7.8 ligand molecules were tethered to each 40 kDa PEG molecule whereas 16.7 ligand molecules were linked to each PAMAM generation 5 dendrimer. The multivalent PEG and PAMAM conjugates blocked AT1R signaling with an IC50 of 224 and 36.3 nM, respectively. The 6-fold higher affinity of the multivalent ligand-conjugated PAMAM dendrimers was due to their unique microarchitecture and ability to suppress polymer-drug interactions. Remarkably, both polymer-drug conjugates exhibited no cytotoxicity, in stark contrast to plain PAMAM dendrimers. With sufficiently long vitreous half-lives, both synthesized polymer-ARB conjugates have the potential to pave a new path for the therapy of ocular diseases accompanied by retinal neovascularizations.
Collapse
Affiliation(s)
- Robert Hennig
- Department of Pharmaceutical Technology, University of Regensburg , Regensburg, Germany
| | - Anika Veser
- Department of Pharmaceutical Technology, University of Regensburg , Regensburg, Germany
| | - Susanne Kirchhof
- Department of Pharmaceutical Technology, University of Regensburg , Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg , Regensburg, Germany
| |
Collapse
|
15
|
Marine JE, Liang X, Song S, Rudick JG. Azide-rich peptides via an on-resin diazotransfer reaction. Biopolymers 2015; 104:419-26. [PMID: 25753459 PMCID: PMC4516611 DOI: 10.1002/bip.22634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Azide-containing amino acids are valuable building blocks in peptide chemistry, because azides are robust partners in several bioorthogonal reactions. Replacing polar amino acids with apolar, azide-containing amino acids in solid-phase peptide synthesis can be tricky, especially when multiple azide residues are to be introduced in the amino acid sequence. We present a strategy for effectively incorporating multiple azide-containing residues site-specifically.
Collapse
Affiliation(s)
- Jeannette E. Marine
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Xiaoli Liang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuang Song
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
16
|
Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2015; 67:74-102. [PMID: 25387804 DOI: 10.1124/pr.113.008540] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Pier Giovanni Baraldi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Mojgan Aghazadeh Tabrizi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| |
Collapse
|
17
|
Wan J, Huang JX, Vetter I, Mobli M, Lawson J, Tae HS, Abraham N, Paul B, Cooper MA, Adams DJ, Lewis RJ, Alewood PF. α-Conotoxin Dendrimers Have Enhanced Potency and Selectivity for Homomeric Nicotinic Acetylcholine Receptors. J Am Chem Soc 2015; 137:3209-12. [DOI: 10.1021/jacs.5b00244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingjing Wan
- Institute
of Molecular Bioscience, The University of Queensland, St Lucia Queensland 4072, Australia
| | - Johnny X. Huang
- Institute
of Molecular Bioscience, The University of Queensland, St Lucia Queensland 4072, Australia
| | - Irina Vetter
- Institute
of Molecular Bioscience, The University of Queensland, St Lucia Queensland 4072, Australia
- School
of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Mehdi Mobli
- Centre
for Advanced Imaging, The University of Queensland, St Lucia Queensland 4072, Australia
| | - Joshua Lawson
- Health
Innovations Research Institute, RMIT University, Bundoora, Victoria 3083, Australia
| | - Han-Shen Tae
- Health
Innovations Research Institute, RMIT University, Bundoora, Victoria 3083, Australia
| | - Nikita Abraham
- Institute
of Molecular Bioscience, The University of Queensland, St Lucia Queensland 4072, Australia
| | - Blessy Paul
- Institute
of Molecular Bioscience, The University of Queensland, St Lucia Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute
of Molecular Bioscience, The University of Queensland, St Lucia Queensland 4072, Australia
| | - David J. Adams
- Health
Innovations Research Institute, RMIT University, Bundoora, Victoria 3083, Australia
| | - Richard J. Lewis
- Institute
of Molecular Bioscience, The University of Queensland, St Lucia Queensland 4072, Australia
| | - Paul F. Alewood
- Institute
of Molecular Bioscience, The University of Queensland, St Lucia Queensland 4072, Australia
| |
Collapse
|
18
|
Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 2014; 16:1-27. [PMID: 25426779 DOI: 10.1021/bm501285t] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The main objective of nanomedicine research is the development of nanoparticles as drug delivery systems or drugs per se to tackle diseases as cancer, which are a leading cause of death with developed nations. Targeted treatments against solid tumors generally lead to dramatic regressions, but, unfortunately, the responses are often short-lived due to resistant cancer cells. In addition, one of the major challenges of combination drug therapy (called "cocktail") is the crucial optimization of different drug parameters. This issue can be solved using combination nanotherapy. Nanoparticles developed in oncology based on combination nanotherapy are either (a) those designed to combat multidrug resistance or (b) those used to circumvent resistance to clinical cancer drugs. This review provides an overview of the different nanoparticles currently used in clinical treatments in oncology. We analyze in detail the development of combinatorial nanoparticles including dendrimers for dual drug delivery via two strategic approaches: (a) use of chemotherapeutics and chemosensitizers to combat multidrug resistance and (b) use of multiple cytotoxic drugs. Finally, in this review, we discuss the challenges, clinical outlook, and perspectives of the nanoparticle-based combination therapy in cancer.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, 45, rue des Saints Pères, 75006 Paris, France
| | | | | | | | | |
Collapse
|
19
|
Gao X, Qian J, Zheng S, Changyi Y, Zhang J, Ju S, Zhu J, Li C. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS NANO 2014; 8:3678-89. [PMID: 24673594 DOI: 10.1021/nn5003375] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The extremely low permeability of the blood-brain barrier (BBB) poses the greatest impediment in the treatment of central nervous system (CNS) diseases. Recent work indicated that BBB permeability can be up-regulated by activating A2A adenosine receptor (AR), which temporarily increases intercellular spaces between the brain capillary endothelial cells. However, due to transient circulation lifetime of adenosine-based agonists, their capability to enhance brain delivery of drugs, especially macromolecular drugs, is limited. In this work, a series of nanoagonists (NAs) were developed by labeling different copies of A2A AR activating ligands on dendrimers. In vitro transendothelial electrical resistance measurements demonstrated that the NAs increased permeability of the endothelial cell monolayer by compromising the tightness of tight junctions, the key structure that restricts the entry of blood-borne molecules into the brain. In vivo imaging studies indicated the remarkably up-regulated brain uptake of a macromolecular model drug (45 kDa) after intravenous injection of NAs. Autoradiographic imaging showed that the BBB opening time-window can be tuned in a range of 0.5-2.0 h by the NAs labeled with different numbers of AR-activating ligands. By choosing a suitable NA, it is possible to maximize brain drug delivery and minimize the uncontrollable BBB leakage by matching the BBB opening time-window with the pharmacokinetics of a therapeutic agent. The NA-mediated brain drug delivery strategy holds promise for the treatment of CNS diseases with improved therapeutic efficiency and reduced side-effects.
Collapse
Affiliation(s)
- Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Molecular simulation study of PAMAM dendrimer composite membranes. J Mol Model 2014; 20:2119. [DOI: 10.1007/s00894-014-2119-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/14/2013] [Indexed: 01/20/2023]
|
21
|
|
22
|
Durán-Lara E, Guzmán L, John A, Fuentes E, Alarcón M, Palomo I, Santos LS. PAMAM dendrimer derivatives as a potential drug for antithrombotic therapy. Eur J Med Chem 2013; 69:601-8. [DOI: 10.1016/j.ejmech.2013.08.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022]
|
23
|
Heisig F, Gollos S, Freudenthal SJ, El-Tayeb A, Iqbal J, Müller CE. Synthesis of BODIPY derivatives substituted with various bioconjugatable linker groups: a construction kit for fluorescent labeling of receptor ligands. J Fluoresc 2013; 24:213-30. [PMID: 24052460 DOI: 10.1007/s10895-013-1289-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022]
Abstract
The goal of the present study was to design small, functionalized green-emitting BODIPY dyes, which can readily be coupled to target molecules such as receptor ligands, or even be integrated into their pharmacophores. A simple two-step one-pot procedure starting from 2,4-dimethylpyrrole and ω-bromoalkylcarboxylic acid chlorides was used to obtain new ω-bromoalkyl-substituted BODIPY fluorophores (1a-1f) connected via alkyl spacers of different length to the 8-position of the fluorescent dye. The addition of radical inhibitors reduced the amount of side products. The ω-bromoalkyl-substituted BODIPYs were further converted to introduce various functional groups: iodo-substituted dyes were obtained by Finkelstein reaction in excellent yields; microwave-assisted reaction with methanolic ammonia led to fast and clean conversion to the amino-substituted dyes; a hydroxyl-substituted derivative was prepared by reaction with sodium ethylate, and thiol-substituted BODIPYs were obtained by reaction of 1a-1f with potassium thioacetate followed by alkaline cleavage of the thioesters. Water-soluble derivatives were prepared by introducing sulfonate groups into the 2- and 6-position of the BODIPY core. The synthesized BODIPY derivatives showed high fluorescent yields and appeared to be stable under basic, reducing and oxidative conditions. As a proof of concept, 2-thioadenosine was alkylated with bromoethyl-BODIPY 1b. The resulting fluorescent 2-substituted adenosine derivative 15 displayed selectivity for the A3 adenosine receptor (ARs) over the other AR subtypes, showed agonistic activity, and may thus become a useful tool for studying A3ARs, or a lead structure for further optimization. The new functionalized dyes may be widely used for fluorescent labeling allowing the investigation of biological targets and processes.
Collapse
Affiliation(s)
- Fabian Heisig
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University Bonn, 53121, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Mignani S, Kazzouli SE, Bousmina M, Majoral JP. Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
El Brahmi N, El Kazzouli S, Mignani S, Bousmina M, Majoral JP. Copper in dendrimer synthesis and applications of copper–dendrimer systems in catalysis: a concise overview. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
27
|
Jayasekara PS, Barrett MO, Ball CB, Brown KA, Kozma E, Costanzi S, Squarcialupi L, Balasubramanian R, Maruoka H, Jacobson KA. 4-Alkyloxyimino-cytosine nucleotides: tethering approaches to molecular probes for the P2Y 6 receptor. MEDCHEMCOMM 2013; 4:1156-1165. [PMID: 26161252 DOI: 10.1039/c3md00132f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
4-Alkyloxyimino derivatives of pyrimidine nucleotides display high potency as agonists of certain G protein-coupled P2Y receptors (P2YRs). In an effort to functionalize a P2Y6R agonist for fluorescent labeling, we probed two positions (N4 and γ-phosphate of cytidine derivatives) with various functional groups, including alkynes for click chemistry. Functionalization of extended imino substituents at the 4 position of the pyrimidine nucleobase of CDP preserved P2Y6R potency generally better than γ-phosphoester formation in CTP derivatives. Fluorescent Alexa Fluor 488 conjugate 16 activated the human P2Y6R expressed in 1321N1 human astrocytoma cells with an EC50 of 9 nM, and exhibited high selectivity for this receptor over other uridine nucleotide-activated P2Y receptors. Flow cytometry detected specific labeling with 16 to P2Y6R-expressing but not to wild-type 1321N1 cells. Additionally, confocal microscopy indicated both internalized 16 (t1/2 of 18 min) and surface-bound fluorescence. Known P2Y6R ligands inhibited labeling. Theoretical docking of 16 to a homology model of the P2Y6R predicted electrostatic interactions between the fluorophore and extracellular portion of TM3. Thus, we have identified the N4-benzyloxy group as a structurally permissive site for synthesis of functionalized congeners leading to high affinity molecular probes for studying the P2Y6R.
Collapse
Affiliation(s)
- P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Matthew O Barrett
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | - Christopher B Ball
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | - Kyle A Brown
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | - Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Stefano Costanzi
- Department of Chemistry, American University, Washington, DC 20016, USA
| | - Lucia Squarcialupi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Hiroshi Maruoka
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| |
Collapse
|
28
|
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012; 64:1020-37. [DOI: 10.1016/s1734-1140(12)70901-5] [Citation(s) in RCA: 753] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/22/2012] [Indexed: 01/30/2023]
|
29
|
Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2012; 2:307-24. [PMID: 23741608 PMCID: PMC3363024 DOI: 10.1098/rsfs.2012.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure-function relationship of ligand-dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Warren D. Gray
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
| | - Michael E. Davis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- National Engineering Laboratory for Regenerative and Implantable Medical Devices, Room 408, Building D, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, People's Republic of China
| |
Collapse
|
30
|
Tosh DK, Phan K, Deflorian F, Wei Q, Yoo LS, Gao ZG, Jacobson KA. Click modification in the N6 region of A3 adenosine receptor-selective carbocyclic nucleosides for dendrimeric tethering that preserves pharmacophore recognition. Bioconjug Chem 2012; 23:232-47. [PMID: 22175234 PMCID: PMC3291892 DOI: 10.1021/bc200526c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adenosine derivatives were modified with alkynyl groups on N(6) substituents for linkage to carriers using Cu(I)-catalyzed click chemistry. Two parallel series, both containing a rigid North-methanocarba (bicyclo[3.1.0]hexane) ring system in place of ribose, behaved as A(3) adenosine receptor (AR) agonists: (5'-methyluronamides) or partial agonists (4'-truncated). Terminal alkynyl groups on a chain at the 3 position of a N(6)-benzyl group or simply through a N(6)-propargyl group were coupled to azido derivatives, which included both small molecules and G4 (fourth-generation) multivalent poly(amidoamine) (PAMAM) dendrimers, to form 1,2,3-triazolyl linkers. The small molecular triazoles probed the tolerance in A(3)AR binding of distal, sterically bulky groups such as 1-adamantyl. Terminal 4-fluoro-3-nitrophenyl groups anticipated nucleophilic substitution for chain extension and (18)F radiolabeling. N(6)-(4-Fluoro-3-nitrophenyl)-triazolylmethyl derivative 32 displayed a K(i) of 9.1 nM at A(3)AR with ∼1000-fold subtype selectivity. Multivalent conjugates additionally containing click-linked water-solubilizing polyethylene glycol groups potently activated A(3)AR in the 5'-methyluronamide, but not 4' truncated series. N(6)-Benzyl nucleoside conjugate 43 (apparent K(i) 24 nM) maintained binding affinity of the monomer better than a N(6)-triazolylmethyl derivative. Thus, the N(6) region of 5'-methyluronamide derivatives, as modeled in receptor docking, is suitable for functionalization and tethering by click chemistry to achieve high A(3)AR agonist affinity and enhanced selectivity.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Yu YH, Kim E, Park DE, Shim G, Lee S, Kim YB, Kim CW, Oh YK. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm 2012; 80:268-73. [DOI: 10.1016/j.ejpb.2011.11.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/23/2011] [Accepted: 11/04/2011] [Indexed: 11/29/2022]
|
32
|
Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery. Pharm Res 2012; 29:902-21. [DOI: 10.1007/s11095-012-0683-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/06/2012] [Indexed: 01/08/2023]
|
33
|
Chanyshev B, Shainberg A, Isak A, Litinsky A, Chepurko Y, Tosh DK, Phan K, Gao ZG, Hochhauser E, Jacobson KA. Anti-ischemic effects of multivalent dendrimeric A₃ adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart. Pharmacol Res 2011; 65:338-46. [PMID: 22154845 DOI: 10.1016/j.phrs.2011.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
Abstract
Adenosine released during myocardial ischemia mediates cardioprotective preconditioning. Multivalent drugs covalently bound to nanocarriers may differ greatly in chemical and biological properties from the corresponding monomeric agents. Here, we conjugated chemically functionalized nucleosides to poly(amidoamine) (PAMAM) dendrimeric polymers and investigated their effects in rat primary cardiac cell cultures and in the isolated heart. Three conjugates of A₃ adenosine receptor (AR) agonists, chain-functionalized at the C2 or N⁶ position, were cardioprotective, with greater potency than monomeric agonist Cl-IB-MECA. Multivalent amide-linked MRS5216 was selective for A₁ and A₃ARs, and triazole-linked MRS5246 and MRS5539 (optionally containing fluorescent label) were A₃AR-selective. The conjugates protected ischemic rat cardiomyocytes, an effect blocked by an A₃AR antagonist MRS1523, and isolated hearts with significantly improved infarct size, rate of pressure product, and rate of contraction and relaxation. Thus, strategically derivatized nucleosides tethered to biocompatible polymeric carriers display enhanced cardioprotective potency via activation of A₃AR on the cardiomyocyte surface.
Collapse
Affiliation(s)
- Bella Chanyshev
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kecskés A, Tosh DK, Wei Q, Gao ZG, Jacobson KA. GPCR ligand dendrimer (GLiDe) conjugates: adenosine receptor interactions of a series of multivalent xanthine antagonists. Bioconjug Chem 2011; 22:1115-27. [PMID: 21539392 DOI: 10.1021/bc1005812] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previously, G protein-coupled receptor (GPCR) agonists were tethered from polyamidoamine (PAMAM) dendrimers to provide high receptor affinity and selectivity. Here, we prepared GPCR ligand--dendrimer (GLiDe) conjugates from a potent adenosine receptor (AR) antagonist; such agents are of interest for treating Parkinson's disease, asthma, and other conditions. Xanthine amine congener (XAC) was appended with an alkyne group on an extended C8 substituent for coupling by Cu(I)-catalyzed click chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. These conjugates also contained triazole-linked PEG groups (8 or 22 moieties per 64 terminal positions) for increasing water-solubility and optionally prosthetic groups for spectroscopic characterization and affinity labeling. Human AR binding affinity increased progressively with the degree of xanthine substitution to reach K(i) values in the nanomolar range. The order of affinity of each conjugate was hA(2A)AR > hA(3)AR > hA(1)AR, while the corresponding monomer was ranked hA(2A)AR > hA(1)AR ≥ hA(3)AR. The antagonist activity of the most potent conjugate 14 (34 xanthines per dendrimer) was examined at the G(i)-coupled A(1)AR. Conjugate 14 at 100 nM right-shifted the AR agonist concentration--response curve in a cyclic AMP functional assay in a parallel manner, but at 10 nM (lower than its K(i) value), it significantly suppressed the maximal agonist effect in calcium mobilization. This is the first systematic probing of a potent AR antagonist tethered on a dendrimer and its activity as a function of variable loading.
Collapse
Affiliation(s)
- Angela Kecskés
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
35
|
de Castro S, Maruoka H, Hong K, Kilbey SM, Costanzi S, Hechler B, Brown GG, Gachet C, Harden TK, Jacobson KA. Functionalized congeners of P2Y1 receptor antagonists: 2-alkynyl (N)-methanocarba 2'-deoxyadenosine 3',5'-bisphosphate analogues and conjugation to a polyamidoamine (PAMAM) dendrimer carrier. Bioconjug Chem 2010; 21:1190-205. [PMID: 20565071 DOI: 10.1021/bc900569u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The P2Y(1) receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y(1) receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y(1) receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K(i) 23 nM) and extended amine congener 15 (K(i) 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended epsilon-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y(1) receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y(1) receptor modeling and ligand docking. Attempted P2Y(1) antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to produce a multivalent conjugate exhibiting a desired biological effect, i.e., antithrombotic action.
Collapse
Affiliation(s)
- Sonia de Castro
- Molecular Recognition Section and Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, 20892-0810, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jacobson KA. GPCR ligand-dendrimer (GLiDe) conjugates: future smart drugs? Trends Pharmacol Sci 2010; 31:575-9. [PMID: 20961625 DOI: 10.1016/j.tips.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022]
Abstract
Unlike nanocarriers that are intended to release their drug cargo at the site of action, biocompatibile polyamidoamine (PAMAM) conjugates are designed to act at cell surface G protein-coupled receptors (GPCRs) without drug release. These multivalent GPCR ligand-dendrimer (GLiDe) conjugates display qualitatively different pharmacological properties in comparison with monomeric drugs. They might be useful as novel tools to study GPCR homodimers and heterodimers as well as higher aggregates. The structure of the conjugate determines the profile of biological activity, receptor selectivity, and physical properties such as water solubility. Prosthetic groups for characterization and imaging of receptors can be introduced without loss of affinity. The feasibility of targeting multiple adenosine and P2Y receptors for synergistic effects has been shown. Testing in vivo will be needed to explore the effects on pharmacokinetics and tissue targeting.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Gao Y, Chen L, Zhang Z, Gu W, Li Y. Linear Cationic Click Polymer for Gene Delivery: Synthesis, Biocompatibility, and In Vitro Transfection. Biomacromolecules 2010; 11:3102-11. [DOI: 10.1021/bm100906m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yu Gao
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lingli Chen
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wangwen Gu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Li
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|