1
|
Li S, Ren W, Zheng J, Li S, Zhi K, Gao L. Role of O-linked N-acetylglucosamine protein modification in oxidative stress-induced autophagy: a novel target for bone remodeling. Cell Commun Signal 2024; 22:358. [PMID: 38987770 PMCID: PMC11238385 DOI: 10.1186/s12964-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic post-translational modification (PTM) involving the covalent binding of serine and/or threonine residues, which regulates bone cell homeostasis. Reactive oxygen species (ROS) are increased due to oxidative stress in various pathological contexts related to bone remodeling, such as osteoporosis, arthritis, and bone fracture. Autophagy serves as a scavenger for ROS within bone marrow-derived mesenchymal stem cells, osteoclasts, and osteoblasts. However, oxidative stress-induced autophagy is affected by the metabolic status, leading to unfavorable clinical outcomes. O-GlcNAcylation can regulate the autophagy process both directly and indirectly through oxidative stress-related signaling pathways, ultimately improving bone remodeling. The present interventions for the bone remodeling process often focus on promoting osteogenesis or inhibiting osteoclast absorption, ignoring the effect of PTM on the overall process of bone remodeling. This review explores how O-GlcNAcylation synergizes with autophagy to exert multiple regulatory effects on bone remodeling under oxidative stress stimulation, indicating the application of O-GlcNAcylation as a new molecular target in the field of bone remodeling.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
2
|
Balsollier C, Bijkerk S, de Smit A, van Eekelen K, Bozovičar K, Husstege D, Tomašič T, Anderluh M, Pieters RJ. Discovery of two non-UDP-mimic inhibitors of O-GlcNAc transferase by screening a DNA-encoded library. Bioorg Chem 2024; 147:107321. [PMID: 38604018 DOI: 10.1016/j.bioorg.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Arjan de Smit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Kevin van Eekelen
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Krištof Bozovičar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Dirk Husstege
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands.
| |
Collapse
|
3
|
Regulation of O-Linked N-Acetyl Glucosamine Transferase (OGT) through E6 Stimulation of the Ubiquitin Ligase Activity of E6AP. Int J Mol Sci 2021; 22:ijms221910286. [PMID: 34638625 PMCID: PMC8508608 DOI: 10.3390/ijms221910286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Glycosyltransferase OGT catalyzes the conjugation of O-linked β-D-N-acetylglucosamine (O-GlcNAc) to Ser and Thr residues of the cellular proteins and regulates many key processes in the cell. Here, we report the identification of OGT as a ubiquitination target of HECT-type E3 ubiquitin (UB) ligase E6AP, whose overexpression in HEK293 cells would induce the degradation of OGT. We also found that the expression of E6AP in HeLa cells with the endogenous expression of the E6 protein of the human papillomavirus (HPV) would accelerate OGT degradation by the proteasome and suppress O-GlcNAc modification of OGT substrates in the cell. Overall, our study establishes a new mechanism of OGT regulation by the ubiquitin–proteasome system (UPS) that mediates the crosstalk between protein ubiquitination and O-GlcNAcylation pathways underlying diverse cellular processes.
Collapse
|
4
|
Worth M, Hu CW, Li H, Fan D, Estevez A, Zhu D, Wang A, Jiang J. Targeted covalent inhibition of O-GlcNAc transferase in cells. Chem Commun (Camb) 2019; 55:13291-13294. [PMID: 31626249 PMCID: PMC6823131 DOI: 10.1039/c9cc04560k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
O-GlcNAc transferase (OGT) glycosylates numerous proteins and is implicated in many diseases. To date, most OGT inhibitors lack either sufficient potency or characterized specificity in cells. We report the first targeted covalent inhibitor that predominantly reacts with OGT but does not affect other functionally similar enzymes. This study provides a new strategy to interrogate cellular OGT functions and to investigate other glycosyltransferases.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chia-Wei Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Dacheng Fan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Arielis Estevez
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Dongsheng Zhu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Ao Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| |
Collapse
|
5
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Kubota Y, Fujioka K, Takekawa M. WGA-based lectin affinity gel electrophoresis: A novel method for the detection of O-GlcNAc-modified proteins. PLoS One 2017; 12:e0180714. [PMID: 28686627 PMCID: PMC5501588 DOI: 10.1371/journal.pone.0180714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/20/2017] [Indexed: 11/29/2022] Open
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs selectively on serine and/or threonine residues of cytoplasmic and nuclear proteins, and dynamically regulates their molecular functions. Since conventional strategies to evaluate the O-GlcNAcylation level of a specific protein require time-consuming steps, the development of a rapid and easy method for the detection and quantification of an O-GlcNAcylated protein has been a challenging issue. Here, we describe a novel method in which O-GlcNAcylated and non-O-GlcNAcylated forms of proteins are separated by lectin affinity gel electrophoresis using wheat germ agglutinin (WGA), which primarily binds to N-acetylglucosamine residues. Electrophoresis of cell lysates through a gel containing copolymerized WGA selectively induced retardation of the mobility of O-GlcNAcylated proteins, thereby allowing the simultaneous visualization of both the O-GlcNAcylated and the unmodified forms of proteins. This method is therefore useful for the quantitative detection of O-GlcNAcylated proteins.
Collapse
Affiliation(s)
- Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ko Fujioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Qi J, Wang R, Zeng Y, Yu W, Gu Y. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro. Prep Biochem Biotechnol 2017; 47:699-702. [PMID: 28296566 DOI: 10.1080/10826068.2017.1303614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
O-GlcNAcylation is a dynamic, reversible, post-translational modification that regulates many cellular processes. O-GlcNAc transferase (OGT) is the sole enzyme transferring N-acetylglucosamine from uridine diphosphate (UDP)-GlcNAc to selected serine/threonine residues of cytoplasm and nucleus proteins. Aberrant of OGT activity is associated with several diseases, suggesting OGT as a novel therapeutic target. In this study, we created a new enzyme linked immunosorbent assays (ELISA)-based method for detection of OGT activity. First, casein kinase II (CKII), a well-known OGT substrate, was coated onto ELISA plate. Second, the GlcNAc transferred by OGT from UDP-GlcNAc to CKII was detected using an antibody to O-GlcNAc and then the horseradish peroxidase (HRP)-labeled secondary antibody. At last, 3,3',5,5'-tetramethylbenzidine (TMB), the substrate of HRP, was used to detect the O-GlcNAcylation level of CKII which reflected the activity of OGT. Based on a series of optimization experiments, the RL2 antibody was selected for O-GlcNAc detection and the concentrations of CKII, OGT, and UDP-GlcNAc were determined in this study. ST045849, a commercial OGT inhibitor, was used to verify the functionality of the system. Altogether, this study showed a method that could be applied to detect OGT activity and screen OGT inhibitors.
Collapse
Affiliation(s)
- Jieqiong Qi
- a Key Laboratory of Marine Drugs, Chinese Ministry of Education , Ocean University of China , Qingdao , China.,b Key Laboratory of Glycoscience and Glycotechnology of Shandong Province , Ocean University of China , Qingdao , China.,c School of Medicine and Pharmacy , Ocean University of China , Qingdao , China
| | - Ruihong Wang
- d Outpatient Department , Qingdao Central Hospital , Qingdao , China
| | - Yazhen Zeng
- a Key Laboratory of Marine Drugs, Chinese Ministry of Education , Ocean University of China , Qingdao , China.,b Key Laboratory of Glycoscience and Glycotechnology of Shandong Province , Ocean University of China , Qingdao , China.,c School of Medicine and Pharmacy , Ocean University of China , Qingdao , China
| | - Wengong Yu
- a Key Laboratory of Marine Drugs, Chinese Ministry of Education , Ocean University of China , Qingdao , China.,b Key Laboratory of Glycoscience and Glycotechnology of Shandong Province , Ocean University of China , Qingdao , China.,c School of Medicine and Pharmacy , Ocean University of China , Qingdao , China
| | - Yuchao Gu
- a Key Laboratory of Marine Drugs, Chinese Ministry of Education , Ocean University of China , Qingdao , China.,b Key Laboratory of Glycoscience and Glycotechnology of Shandong Province , Ocean University of China , Qingdao , China.,c School of Medicine and Pharmacy , Ocean University of China , Qingdao , China
| |
Collapse
|
8
|
Shen DL, Liu TW, Zandberg W, Clark T, Eskandari R, Alteen MG, Tan HY, Zhu Y, Cecioni S, Vocadlo D. Catalytic Promiscuity of O-GlcNAc Transferase Enables Unexpected Metabolic Engineering of Cytoplasmic Proteins with 2-Azido-2-deoxy-glucose. ACS Chem Biol 2017; 12:206-213. [PMID: 27935279 DOI: 10.1021/acschembio.6b00876] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
O-GlcNAc transferase (OGT) catalyzes the installation of N-acetylglucosamine (GlcNAc) O-linked to nucleocytoplasmic proteins (O-GlcNAc) within multicellular eukaryotes. OGT shows surprising tolerance for structural changes in the sugar component of its nucleotide sugar donor substrate, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). Here, we find that OGT uses UDP-glucose to install O-linked glucose (O-Glc) onto proteins only 25-fold less efficiently than O-GlcNAc. Spurred by this observation, we show that OGT transfers 2-azido-2-deoxy-d-glucose (GlcAz) in vitro from UDP-GlcAz to proteins. Further, feeding cells with per-O-acetyl GlcAz (AcGlcAz), in combination with inhibition or inducible knockout of OGT, shows OGT-dependent modification of nuclear and cytoplasmic proteins with O-GlcAz as detected using microscopy, immunoblot, and proteomics. We find that O-GlcAz is reversible within cells, and an unidentified cellular enzyme exists to cleave O-Glc that can also process O-GlcAz. We anticipate that AcGlcAz will prove to be a useful tool to study the O-GlcNAc modification. We also speculate that, given the high concentration of UDP-Glc within certain mammalian tissues, O-Glc may exist within mammals and serve as a physiologically relevant modification.
Collapse
Affiliation(s)
- David L. Shen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ta-Wei Liu
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Wesley Zandberg
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tom Clark
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Razieh Eskandari
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew G. Alteen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Yee Tan
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Yanping Zhu
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samy Cecioni
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David Vocadlo
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
9
|
Lee A, Miller D, Henry R, Paruchuri VDP, O'Meally RN, Boronina T, Cole RN, Zachara NE. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress. J Proteome Res 2016; 15:4318-4336. [PMID: 27669760 DOI: 10.1021/acs.jproteome.6b00369] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
O-Linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival. We achieved this goal by employing Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and a novel "G5-lectibody" immunoprecipitation strategy that combines four O-GlcNAc-specific antibodies (CTD110.6, RL2, HGAC39, and HGAC85) and the lectin WGA. Using the G5-lectibody column in combination with basic reversed phase chromatography and C18 RPLC-MS/MS, 990 proteins were identified and quantified. Hundreds of proteins that were identified demonstrated increased (>250) or decreased (>110) association with the G5-lectibody column upon oxidative stress, of which we validated the O-GlcNAcylation status of 24 proteins. Analysis of proteins with altered glycosylation suggests that stress-induced changes in O-GlcNAcylation cluster into pathways known to regulate the cell's response to injury and include protein folding, transcriptional regulation, epigenetics, and proteins involved in RNA biogenesis. Together, these data suggest that stress-induced O-GlcNAcylation regulates numerous and diverse cellular pathways to promote cell and tissue survival.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Devin Miller
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Roger Henry
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Venkata D P Paruchuri
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N O'Meally
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States.,Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
10
|
Im J. Synthesis of a Benzene-containing C1-Phosphonate Analogue of UDP-GlcNAc for the Inhibition ofO-GlcNAc Transferase. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jungkyun Im
- Department of Nanochemical Engineering; Soonchunhyang University; Asan 336-745 Korea
| |
Collapse
|
11
|
Han C, Shan H, Bi C, Zhang X, Qi J, Zhang B, Gu Y, Yu W. A highly effective and adjustable dual plasmid system for O-GlcNAcylated recombinant protein production in E. coli. J Biochem 2015; 157:477-84. [PMID: 25619971 DOI: 10.1093/jb/mvv006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/16/2014] [Indexed: 11/14/2022] Open
Abstract
O-GlcNAcylation is a ubiquitous, dynamic and reversible post-translational protein modification in metazoans, and it is catalysed and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. Prokaryotes lack endogenous OGT activity. It has been reported that coexpression of mammalian OGT with its target substrates in Escherichia coli produce O-GlcNAcylated recombinant proteins, but the plasmids used were not compatible, and the expression of both OGT and its target protein were induced by the same inducer. Here, we describe a compatible dual plasmid system for coexpression of OGT and its target substrate for O-GlcNAcylated protein production in E. coli. The approach was validated using the CKII and p53 protein as control. This compatible dual plasmid system contains an arabinose-inducible OGT expression vector with a pUC origin and an isopropyl β-d-thiogalactopyranoside-inducible OGT target substrate expression vector bearing a p15A origin. The dual plasmid system produces recombinant proteins with varying O-GlcNAcylation levels by altering the inducer concentration. More importantly, the O-GlcNAcylation efficiency was much higher than the previously reported system. Altogether, we established an adjustable compatible dual plasmid system that can effectively yield O-GlcNAcylated proteins in E. coli.
Collapse
Affiliation(s)
- Cuifang Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hui Shan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Chuanlin Bi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinling Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jieqiong Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Boyuan Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
12
|
Chuh K, Zaro BW, Piller F, Piller V, Pratt MR. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. J Am Chem Soc 2014; 136:12283-95. [PMID: 25153642 PMCID: PMC4156869 DOI: 10.1021/ja504063c] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 12/15/2022]
Abstract
Metabolic chemical reporters (MCRs) of glycosylation are analogues of monosaccharides that contain bioorthogonal functionalities and enable the direct visualization and identification of glycoproteins from living cells. Each MCR was initially thought to report on specific types of glycosylation. We and others have demonstrated that several MCRs are metabolically transformed and enter multiple glycosylation pathways. Therefore, the development of selective MCRs remains a key unmet goal. We demonstrate here that 6-azido-6-deoxy-N-acetyl-glucosamine (6AzGlcNAc) is a specific MCR for O-GlcNAcylated proteins. Biochemical analysis and comparative proteomics with 6AzGlcNAc, N-azidoacetyl-glucosamine (GlcNAz), and N-azidoacetyl-galactosamine (GalNAz) revealed that 6AzGlcNAc exclusively labels intracellular proteins, while GlcNAz and GalNAz are incorporated into a combination of intracellular and extracellular/lumenal glycoproteins. Notably, 6AzGlcNAc cannot be biosynthetically transformed into the corresponding UDP sugar-donor by the canonical salvage-pathway that requires phosphorylation at the 6-hydroxyl. In vitro experiments showed that 6AzGlcNAc can bypass this roadblock through direct phosphorylation of its 1-hydroxyl by the enzyme phosphoacetylglucosamine mutase (AGM1). Taken together, 6AzGlcNAc enables the specific analysis of O-GlcNAcylated proteins, and these results suggest that specific MCRs for other types of glycosylation can be developed. Additionally, our data demonstrate that cells are equipped with a somewhat unappreciated metabolic flexibility with important implications for the biosynthesis of natural and unnatural carbohydrates.
Collapse
Affiliation(s)
- Kelly
N. Chuh
- Department of Chemistry and Department of Molecular and Computational
Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Balyn W. Zaro
- Department of Chemistry and Department of Molecular and Computational
Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Friedrich Piller
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans and INSERM, F45071 Orléans
Cedex 2, France
| | - Véronique Piller
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans and INSERM, F45071 Orléans
Cedex 2, France
| | - Matthew R. Pratt
- Department of Chemistry and Department of Molecular and Computational
Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| |
Collapse
|
13
|
Yuzwa SA, Vocadlo DJ. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem Soc Rev 2014; 43:6839-58. [PMID: 24759912 DOI: 10.1039/c4cs00038b] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting Mild Cognitive Impairment (MCI) and glucose hypometabolism is an early pathological change within AD brain. Further, type 2 diabetes mellitus (T2DM) is a strong risk factor for the development of AD. These findings have stimulated interest in the possibility that disrupted glucose regulated signaling within the brain could contribute to the progression of AD. One such process of interest is the addition of O-linked N-acetylglucosamine (O-GlcNAc) residues onto nuclear and cytoplasmic proteins within mammals. O-GlcNAc is notably abundant within brain and is present on hundreds of proteins including several, such as tau and the amyloid precursor protein, which are involved in the pathophysiology AD. The cellular levels of O-GlcNAc are coupled to nutrient availability through the action of just two enzymes. O-GlcNAc transferase (OGT) is the glycosyltransferase that acts to install O-GlcNAc onto proteins and O-GlcNAcase (OGA) is the glycoside hydrolase that acts to remove O-GlcNAc from proteins. Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) is the donor sugar substrate for OGT and its levels vary with cellular glucose availability because it is generated from glucose through the hexosamine biosynthetic pathway (HBSP). Within the brains of AD patients O-GlcNAc levels have been found to be decreased and aggregates of tau appear to lack O-GlcNAc entirely. Accordingly, glucose hypometabolism within the brain may result in disruption of the normal functions of O-GlcNAc within the brain and thereby contribute to downstream neurodegeneration. While this hypothesis remains largely speculative, recent studies using different mouse models of AD have demonstrated the protective benefit of pharmacologically increased brain O-GlcNAc levels. In this review we summarize the state of knowledge in the area of O-GlcNAc as it pertains to AD while also addressing some of the basic biochemical roles of O-GlcNAc and how these might contribute to protecting against AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
14
|
Substrate specificity provides insights into the sugar donor recognition mechanism of O-GlcNAc transferase (OGT). PLoS One 2013; 8:e63452. [PMID: 23700425 PMCID: PMC3660302 DOI: 10.1371/journal.pone.0063452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/02/2013] [Indexed: 01/17/2023] Open
Abstract
O-Linked β-N-acetylglucosaminyl transferase (OGT) plays an important role in the glycosylation of proteins, which is involved in various cellular events. In human, three isoforms of OGT (short OGT [sOGT]; mitochondrial OGT [mOGT]; and nucleocytoplasmic OGT [ncOGT]) share the same catalytic domain, implying that they might adopt a similar catalytic mechanism, including sugar donor recognition. In this work, the sugar-nucleotide tolerance of sOGT was investigated. Among a series of uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) analogs tested using the casein kinase II (CKII) peptide as the sugar acceptor, four compounds could be used by sOGT, including UDP-6-deoxy-GlcNAc, UDP-GlcNPr, UDP-6-deoxy-GalNAc and UDP-4-deoxy-GlcNAc. Determined values of Km showed that the substitution of the N-acyl group, deoxy modification of C6/C4-OH or epimerization of C4-OH of the GlcNAc in UDP-GlcNAc decreased its affinity to sOGT. A molecular docking study combined with site-directed mutagenesis indicated that the backbone carbonyl oxygen of Leu653 and the hydroxyl group of Thr560 in sOGT contributed to the recognition of the sugar moiety via hydrogen bonds. The close vicinity between Met501 and the N-acyl group of GlcNPr, as well as the hydrophobic environment near Met501, were responsible for the selective binding of UDP-GlcNPr. These findings illustrate the interaction of OGT and sugar nucleotide donor, providing insights into the OGT catalytic mechanism.
Collapse
|
15
|
Abstract
We recently showed that the three "channel" nucleoporins, Nup54, Nup58, and Nup62, interact with each other through only four distinct sites and established the crystal structures of the two resulting "interactomes," Nup54•Nup58 and Nup54•Nup62. We also reported instability of the Nup54•Nup58 interactome and previously determined the atomic structure of the relevant Nup58 segment by itself, demonstrating that it forms a twofold symmetric tetramer. Here, we report the crystal structure of the relevant free Nup54 segment and show that it forms a tetrameric, helical bundle that is structurally "conditioned" for instability by a central patch of polar hydrogen-bonded residues. Integrating these data with our previously reported results, we propose a "ring cycle" for dilating and constricting the nuclear pore. In essence, three homooligomeric rings, one consisting of eight modules of Nup58 tetramers, and two, each consisting of eight modules of Nup54 tetramers, are stacked in midplane and characterize a constricted pore of 10- to 20-nm diameter. In going to the dilated state, segments of one Nup58 and two Nup54 tetrameric modules reassort into a dodecameric module, eight of which form a single, heterooligomeric midplane ring, which is flexible in a diameter range of 40-50 nm. The ring cycle would be regulated by phenylalanine-glycine regions ("FG repeats") of channel nups. Akin to ligand-gated channels, the dilated state of the midplane ring may be stabilized by binding of [cargo•transport-factor] complexes to FG repeats, thereby linking the ratio of constricted to dilated nuclear pores to cellular transport need.
Collapse
|
16
|
Abstract
The dynamic addition of O-GlcNAc to target proteins is now recognized as a major signaling paradigm impacting phosphorylation, protein turnover, gene expression, and other posttranslational modifications influencing epigenetics. Here we describe the production of and methods for assay of the recombinant enzymes of O-GlcNAc cycling: O-linked GlcNAc Transferase (OGT) and O-GlcNAcase (OGA).
Collapse
Affiliation(s)
- Eun Ju Kim
- Laboratory Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
17
|
Shen DL, Gloster TM, Yuzwa SA, Vocadlo DJ. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. J Biol Chem 2012; 287:15395-408. [PMID: 22311971 DOI: 10.1074/jbc.m111.310664] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular O-linked N-acetylglucosamine (O-GlcNAc) levels are modulated by two enzymes: uridine diphosphate-N-acetyl-D-glucosamine:polypeptidyltransferase (OGT) and O-GlcNAcase (OGA). To quantitatively address the activity of these enzymes on protein substrates, we generated five structurally diverse proteins in both unmodified and O-GlcNAc-modified states. We found a remarkably invariant upper limit for k(cat)/K(m) values for human OGA (hOGA)-catalyzed processing of these modified proteins, which suggests that hOGA processing is driven by the GlcNAc moiety and is independent of the protein. Human OGT (hOGT) activity ranged more widely, by up to 15-fold, suggesting that hOGT is the senior partner in fine tuning protein O-GlcNAc levels. This was supported by the observation that K(m,app) values for UDP-GlcNAc varied considerably (from 1 μM to over 20 μM), depending on the protein substrate, suggesting that some OGT substrates will be nutrient-responsive, whereas others are constitutively modified. The ratios of k(cat)/K(m) values obtained from hOGT and hOGA kinetic studies enable a prediction of the dynamic equilibrium position of O-GlcNAc levels that can be recapitulated in vitro and suggest the relative O-GlcNAc stoichiometries of target proteins in the absence of other factors. We show that changes in the specific activities of hOGT and hOGA measured in vitro on calcium/calmodulin-dependent kinase IV (CaMKIV) and its pseudophosphorylated form can account for previously reported changes in CaMKIV O-GlcNAc levels observed in cells. These studies provide kinetic evidence for the interplay between O-GlcNAc and phosphorylation on proteins and indicate that these effects can be mediated by changes in hOGT and hOGA kinetic activity.
Collapse
Affiliation(s)
- David L Shen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
18
|
Sekiguchi S, Niikura K, Matsuo Y, Yoshimura SH, Ijiro K. Nuclear transport facilitated by the interaction between nuclear pores and carbohydrates. RSC Adv 2012. [DOI: 10.1039/c1ra00616a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci U S A 2011; 108:8146-51. [PMID: 21540332 DOI: 10.1073/pnas.1102458108] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic modification of nuclear and cytoplasmic proteins by the monosaccharide N-acetyl-glucosamine (GlcNAc) continues to emerge as an important regulator of many biological processes. Herein we describe the development of an alkynyl-modified GlcNAc analog (GlcNAlk) as a new chemical reporter of O-GlcNAc modification in living cells. This strategy is based on metabolic incorporation of reactive functionality into the GlcNAc biosynthetic pathway. When combined with the Cu(I)-catalyzed [3 + 2] azide-alkyne cycloaddition, this chemical reporter allowed for the robust in-gel fluorescent visualization of O-GlcNAc and affinity enrichment and identification of O-GlcNAc-modified proteins. Using in-gel fluorescence detection, we characterized the metabolic fates of GlcNAlk and the previously reported azido analog, GlcNAz. We confirmed previous results that GlcNAz can be metabolically interconverted to GalNAz, whereas GlcNAlk does not, thereby yielding a more specific metabolic reporter of O-GlcNAc modification. We also used GlcNAlk, in combination with a biotin affinity tag, to identify 374 proteins, 279 of which were not previously reported, and we subsequently confirmed the enrichment of three previously uncharacterized proteins. Finally we confirmed the O-GlcNAc modification of the ubiquitin ligase NEDD4-1, the first reported glycosylation of this protein.
Collapse
|
20
|
Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol 2011; 7:174-81. [PMID: 21258330 PMCID: PMC3202988 DOI: 10.1038/nchembio.520] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/14/2010] [Indexed: 02/06/2023]
Abstract
Glycosyltransferases are ubiquitous enzymes that catalyze the assembly of glycoconjugates throughout all kingdoms of nature. A long-standing problem is the rational design of probes that can be used to manipulate glycosyltransferase activity in cells and tissues. Here we describe the rational design and synthesis of a nucleotide sugar analog that inhibits, with high potency both in vitro and in cells, the human glycosyltransferase responsible for the reversible post-translational modification of nucleocytoplasmic proteins with O-linked N-acetylglucosamine residues (O-GlcNAc). We show that the enzymes of the hexosamine biosynthetic pathway can transform, both in vitro and in cells, a synthetic carbohydrate precursor into the nucleotide sugar analog. Treatment of cells with the precursor lowers O-GlcNAc in a targeted manner with a single-digit micromolar EC(50). This approach to inhibition of glycosyltransferases should be applicable to other members of this superfamily of enzymes and enable their manipulation in a biological setting.
Collapse
Affiliation(s)
- Tracey M Gloster
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc Natl Acad Sci U S A 2011; 108:3141-6. [PMID: 21300897 DOI: 10.1073/pnas.1010045108] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of mammalian nuclear and cytoplasmic proteins are reversibly glycosylated by O-linked β-N-acetylglucosamine (O-GlcNAc) to regulate their function, localization, and stability. Despite its broad functional significance, the dynamic and posttranslational nature of O-GlcNAc signaling makes it challenging to study using traditional molecular and cell biological techniques alone. Here, we report that metabolic cross-talk between the N-acetylgalactosamine salvage and O-GlcNAcylation pathways can be exploited for the tagging and identification of O-GlcNAcylated proteins. We found that N-azidoacetylgalactosamine (GalNAz) is converted by endogenous mammalian biosynthetic enzymes to UDP-GalNAz and then epimerized to UDP-N-azidoacetylglucosamine (GlcNAz). O-GlcNAc transferase accepts UDP-GlcNAz as a nucleotide-sugar donor, appending an azidosugar onto its native substrates, which can then be detected by covalent labeling using azide-reactive chemical probes. In a proof-of-principle proteomics experiment, we used metabolic GalNAz labeling of human cells and a bioorthogonal chemical probe to affinity-purify and identify numerous O-GlcNAcylated proteins. Our work provides a blueprint for a wide variety of future chemical approaches to identify, visualize, and characterize dynamic O-GlcNAc signaling.
Collapse
|
22
|
Bottoni A, Pietro Miscione G, Calvaresi M. Computational evidence for the substrate-assisted catalytic mechanism of O-GlcNAcase. A DFT investigation. Phys Chem Chem Phys 2011; 13:9568-77. [DOI: 10.1039/c0cp02308f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
The E2F-1 associated retinoblastoma-susceptibility gene product is modified by O-GlcNAc. Amino Acids 2010; 40:877-83. [PMID: 20680651 DOI: 10.1007/s00726-010-0709-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
The retinoblastoma-susceptibility gene product (pRB) is a classical tumor suppressor. pRB regulates a number of cellular processes including proliferation, differentiation, and apoptosis. One of the essential mechanisms by which pRB, and the related p107 and p130 family members, act is through its interactions with the E2F class of transcription factors. E2F-1 transcription is necessary for entry into S-phase during the cell-cycle. pRB binds E2F-1 and represses transcription via recruitment of a histone deacetylase complex and by preventing co-activator complexes from binding E2F-1. Current dogma suggests that phosphorylation of pRB during mid- to late-G1 leads to release of E2F-1 and E2F-1 dependent transcriptional activation of essential S-phase genes. Here we show that pRB, and the related p107 protein, are modified by O-linked β-N-acetylglucosamine (O-GlcNAc) in an in vitro transcription/translation system. Furthermore, we show in vivo that pRB is more heavily glycosylated in G1 of the cell-cycle when pRB is known to be in an active, hypophosphorylated state. Finally, we demonstrate that E2F-1 associated pRB is modified by O-GlcNAc. These studies suggest that regulation of pRB function(s) may be controlled by dynamic O-GlcNAc modification, as well as phosphorylation.
Collapse
|
24
|
Ji S, Kang JG, Park SY, Lee J, Oh YJ, Cho JW. O-GlcNAcylation of tubulin inhibits its polymerization. Amino Acids 2010; 40:809-18. [PMID: 20665223 DOI: 10.1007/s00726-010-0698-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/13/2010] [Indexed: 01/30/2023]
Abstract
The attachment of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins is an abundant and reversible modification that involves many cellular processes including transcription, translation, cell proliferation, apoptosis, and signal transduction. Here, we found that the O-GlcNAc modification pattern was altered during all-trans retinoic acid (tRA)-induced neurite outgrowth in the MN9D neuronal cell line. We identified several O-GlcNAcylated proteins using mass spectrometric analysis, including α- and β-tubulin. Further analysis of α- and β-tubulin revealed that O-GlcNAcylated peptides mapped between residues 173 and 185 of α-tubulin and between residues 216 and 238 of β-tubulin, respectively. We found that an increase in α-tubulin O-GlcNAcylation reduced heterodimerization and that O-GlcNAcylated tubulin did not polymerize into microtubules. Consequently, when O-GlcNAcase inhibitors were co-incubated with tRA, the extent of neurite outgrowth was decreased by 20% compared to control. Thus, our data indicate that the O-GlcNAcylation of tubulin negatively regulates microtubule formation.
Collapse
Affiliation(s)
- Suena Ji
- Department of Biology, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Park N, Skern T, Gustin KE. Specific cleavage of the nuclear pore complex protein Nup62 by a viral protease. J Biol Chem 2010; 285:28796-805. [PMID: 20622012 DOI: 10.1074/jbc.m110.143404] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous work has shown that several nucleoporins, including Nup62 are degraded in cells infected with human rhinovirus (HRV) and poliovirus (PV) and that this contributes to the disruption of certain nuclear transport pathways. In this study, the mechanisms underlying proteolysis of Nup62 have been investigated. Analysis of Nup62 in lysates from HRV-infected cells revealed that Nup62 was cleaved at multiple sites during viral infection. The addition of purified HRV2 2A protease (2A(pro)) to uninfected HeLa whole cell lysates resulted in the cleavage of Nup62, suggesting that 2A(pro) is a major contributor to Nup62 processing. The ability of purified 2A(pro) to cleave bacterially expressed and purified Nup62 demonstrated that 2A(pro) directly cleaves Nup62 in vitro. Site-directed mutagenesis of putative cleavage sites in Nup62 identified six different positions that are cleaved by 2A(pro) in vitro. This analysis revealed that 2A(pro) cleavage sites were located between amino acids 103 and 298 in Nup62 and suggested that the N-terminal FG-rich region of Nup62 was released from the nuclear pore complex in infected cells. Analysis of HRV- and PV-infected cells using domain-specific antibodies confirmed that this was indeed the case. These results are consistent with a model whereby PV and HRV disrupt nucleo-cytoplasmic trafficking by selectively removing FG repeat domains from a subset of nuclear pore complex proteins.
Collapse
Affiliation(s)
- Nogi Park
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona 85004, USA
| | | | | |
Collapse
|
26
|
Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery. J Virol 2009; 83:3150-61. [PMID: 19144712 DOI: 10.1128/jvi.01456-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Representatives of several picornavirus genera have been shown previously to significantly enhance non-controllable bidirectional exchange of proteins between nuclei and cytoplasm. In enteroviruses and rhinoviruses, enhanced permeabilization of the nuclear pores appears to be primarily due to proteolytic degradation of some nucleoporins (protein components of the pore), whereas this effect in cardiovirus-infected cells is triggered by the leader (L) protein, devoid of any enzymatic activities. Here, we present evidence that expression of L alone was sufficient to cause permeabilization of the nuclear envelope in HeLa cells. In contrast to poliovirus, mengovirus infection of these cells did not elicit loss of nucleoporins Nup62 and Nup153 from the nuclear pore complex. Instead, nuclear envelope permeabilization was accompanied by hyperphosphorylation of Nup62 in cells infected with wild-type mengovirus, whereas both of these alterations were suppressed in L-deficient virus mutants. Since phosphorylation of Nup62 (although less prominent) did accompany permeabilization of the nuclear envelope prior to its mitotic disassembly in uninfected cells, we hypothesize that cardiovirus L alters the nucleocytoplasmic traffic by hijacking some components of the normal cell division machinery. The variability and biological significance of picornaviral interactions with the nucleocytoplasmic transport in the infected cells are discussed.
Collapse
|
27
|
Scaffidi A, Stubbs KA, Vocadlo DJ, Stick RV. The synthesis and biological evaluation of some carbocyclic analogues of PUGNAc. Carbohydr Res 2008; 343:2744-53. [DOI: 10.1016/j.carres.2008.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/04/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
|
28
|
Riu IH, Shin IS, Do SI. Sp1 modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli. Biochem Biophys Res Commun 2008; 372:203-9. [PMID: 18486602 DOI: 10.1016/j.bbrc.2008.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
cDNAs encoding three isoforms of OGT (ncOGT, mOGT, and sOGT) were expressed in Escherichia coli in which the coexpression system of OGT with target substrates was established in vivo. No endogenous bacterial proteins were significantly O-GlcNAcylated by any type of OGT isoform while co-expressed p62 and Sp1 were strongly O-GlcNAcylated by ncOGT. These results suggest that most of bacterial proteins appear not to be recognized as right substrates by mammalian OGT whereas cytosolic environments may supply UDP-GlcNAc enough to proceed to O-GlcNAcylation in E. coli. Under these conditions, sOGT was auto-O-GlcNAcylated whereas ncOGT and mOGT were not. Importantly, we found that when Sp1 was coexpressed, ncOGT can O-GlcNAcylate not only Sp1 but also many bacterial proteins. Our findings suggest that Sp1 may modulate the capability of target recognition of ncOGT by which ncOGT can be led to newly recognize bacterial proteins as target substrates, finally generating the O-glyco-bacteria. Our results demonstrate that the O-glyco-bacteria showed enhanced thermal resistance to allow cell survival at a temperature as high as 52 degrees C.
Collapse
Affiliation(s)
- In-Hyun Riu
- Department of Life Science, Laboratory of Functional Glycomics, Ajou University, San 5, Wonchon-dong, Youngtong-gu, Suwon City 443-749, Republic of Korea
| | | | | |
Collapse
|
29
|
Affiliation(s)
- Heather E. Murrey
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
30
|
Hajduch J, Nam G, Kim EJ, Fröhlich R, Hanover JA, Kirk KL. A convenient synthesis of the C-1-phosphonate analogue of UDP-GlcNAc and its evaluation as an inhibitor of O-linked GlcNAc transferase (OGT). Carbohydr Res 2007; 343:189-95. [PMID: 18039537 DOI: 10.1016/j.carres.2007.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/18/2007] [Accepted: 10/25/2007] [Indexed: 11/28/2022]
Abstract
The C-1-phosphonate analogue of UDP-GlcNAc has been synthesized using an alpha-configured C-1-aldehyde as a key intermediate. Addition of the anion of diethyl phosphate to the aldehyde produced the hydroxyphosphonate. The configuration of this key intermediate was determined by X-ray crystallography. Deoxygenation, coupling of the resulting phosphonic acid with UMP and deprotection gave the target molecule as a di-sodium salt. This analogue had no detectable activity as an inhibitor of (OGT).
Collapse
Affiliation(s)
- Jan Hajduch
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, United States
| | | | | | | | | | | |
Collapse
|
31
|
Leavy TM, Bertozzi CR. A high-throughput assay for O-GlcNAc transferase detects primary sequence preferences in peptide substrates. Bioorg Med Chem Lett 2007; 17:3851-4. [PMID: 17531489 PMCID: PMC3225185 DOI: 10.1016/j.bmcl.2007.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
O-GlcNAc transferase (OGT) catalyzes the addition of N-acetylglucosamine (O-GlcNAc) onto a diverse array of intracellular proteins. Although hundreds of proteins are known to be modified by O-GlcNAc, a strict amino acid consensus sequence for OGT has not been identified. In this study, we describe the development of a high-throughput assay for OGT and use it to profile the specificity of the enzyme among a panel of peptide substrates.
Collapse
Affiliation(s)
- Tanya M Leavy
- Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley 94720, USA
| | | |
Collapse
|
32
|
Schlummer S, Vetter R, Kuder N, Henkel A, Chen YX, Li YM, Kuhlmann J, Waldmann H. Influence of serine O-glycosylation or O-phosphorylation close to the vJun nuclear localisation sequence on nuclear import. Chembiochem 2006; 7:88-97. [PMID: 16345111 DOI: 10.1002/cbic.200500212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nuclear import triggered by the nuclear-localisation sequence (NLS) of the viral Jun (vJun) protein is mediated by phosphorylation of a serine close to the NLS. Since phosphorylation and glycosylation of serine residues are often in a reciprocal "yin-yang" relationship, we investigated whether glycosylation of this serine with O-linked N-acetylglucosamine (O-GlcNAc) would also regulate nuclear import via the vJun NLS. Peptides containing the vJun NLS with an adjacent O-phosphorylated, O-GlcNAc-functionalised or unmodified serine, and equipped with an N-terminal biotin or a 7-nitrobenz-2-oxa-1,3-diazolyl (NBD) fluorescent label, were synthesised on the solid phase by means of an Fmoc/Boc strategy and a Pd0-sensitive HYCRON linker. Fluorescence-polarisation measurements on the NBD-labelled peptides indicated that modification with phosphate or O-GlcNAc leads to a decrease in affinity to the import-mediating adapter protein, importin alpha, of about one order of magnitude compared to the unmodified NLS. Microinjection of biotinylated NLS peptide conjugated with fluorescently labelled avidin into NIH/3T3 and MDCK cells, revealed that avidin-unmodified-NLS peptide was rapidly imported into the nucleus. However, either phosphate or O-GlcNAc next to the NLS caused almost complete exclusion of the protein conjugate from nuclear import. These findings indicate that nuclear import by the vJun NLS might not be regulated by a "yin-yang" modification of an adjacent serine with phosphate or O-GlcNAc. Rather, negative regulation of binding between the polybasic NLS and importin by a negatively charged or a bulky, uncharged residue appears likely.
Collapse
Affiliation(s)
- Stefanie Schlummer
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim EJ, Perreira M, Thomas CJ, Hanover JA. An O-GlcNAcase-Specific Inhibitor and Substrate Engineered by the Extension of the N-Acetyl Moiety. J Am Chem Soc 2006; 128:4234-5. [PMID: 16568991 DOI: 10.1021/ja0582915] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel analogue of PUGNAc, a potent O-GlcNAcase inhibitor, was synthesized and analyzed as an inhibitor of O-GlcNAcase, hexosaminidase A, and hexosaminidase B. While PUGNAc does not demonstrate selective inhibition of these related enzymes, the extension of the acetyl moiety to the longer butyl chain provided a compound with depressed inhibition of O-GlcNAcase and no observed inhibition of either hexosaminidase A or hexosaminidase B. Further, we applied this knowledge of substrate recognition at the N-acetyl group to our recently reported fluorogenic substrate for monitoring O-GlcNAcase activity. Gratifyingly, this altered small molecule was demonstrated to be a potent substrate for O-GlcNAcase while possessing no activity at hexosaminidase A. This reagent provides, for the first time, a means for monitoring O-GlcNAcase activity independent of the related enzymes hexosaminidase A and hexosaminidase B.
Collapse
Affiliation(s)
- Eun Ju Kim
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
34
|
Lazarus BD, Love DC, Hanover JA. Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology 2006; 16:415-21. [PMID: 16434389 DOI: 10.1093/glycob/cwj078] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
O-linked N-acetylglucosaminyltransferase (OGT) catalyzes the transfer of O-linked GlcNAc to serine or threonine residues of a variety of substrate proteins, including nuclear pore proteins, transcription factors, and proteins implicated in diabetes and neurodegenerative disorders. We have identified two nucleocytoplasmic isoforms of OGT (ncOGT and sOGT) and one isoform that localizes to the mitochondria (mOGT). These three isoforms contain identical catalytic regions but differ in the number of tetratricopeptide repeat motifs found at the N-terminus of each enzyme. We expressed each of these OGT isoforms in a soluble form in Escherichia coli and have used them to identify novel targets including the Src-family tyrosine kinase yes and O-GlcNAc-ase. We demonstrate that some substrate proteins, such as Nup62 and casein kinase II, are glycosylated by both ncOGT and mOGT, while others such as O-GlcNAcase and tau are specifically modified by ncOGT. The yes kinase was specifically modified by mOGT. The short isoform of OGT (sOGT) did not glycosylate any of the substrates tested, although it retains a potentially active catalytic domain. Our findings demonstrate the potential utility of recombinant OGT in identifying new targets and illustrate the necessity to examine all active isoforms of the enzyme. The identification of a tyrosine kinase and O-GlcNAcase as OGT targets suggests the potential for OGT participation in numerous signal transduction cascades.
Collapse
Affiliation(s)
- Brooke D Lazarus
- Laboratory of Cell Biology and Biochemistry, NIDDK, National Institutes of Health, Bethesda, MD 20897-0851, USA
| | | | | |
Collapse
|
35
|
Abstract
A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. Like phosphorylation, protein O-GlcNAcylation dramatically alters the posttranslational fate and function of target proteins. Indeed, O-GlcNAcylation may compete with phosphorylation for certain Ser/Thr target sites. Like kinases and phosphatases, the enzymes of O-GlcNAc metabolism are highly compartmentalized and regulated. Yet, O-GlcNAc addition is subject to an additional and unique level of metabolic control. O-GlcNAc transfer is the terminal step in a "hexosamine signaling pathway" (HSP). In the HSP, levels of uridine 5'-diphosphate (UDP)-GlcNAc respond to nutrient excess to activate O-GlcNAcylation. Removal of O-GlcNAc may also be under similar metabolic regulation. Differentially targeted isoforms of the enzymes of O-GlcNAc metabolism allow the participation of O-GlcNAc in diverse intracellular functions. O-GlcNAc addition and removal are key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in animals and the gibberellin signaling pathway in plants. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. This review will focus on current approaches to deciphering the "O-GlcNAc code" in order to elucidate how O-GlcNAc participates in its diverse functions. This ongoing effort requires analysis of the enzymes of O-GlcNAc metabolism, their many targets, and how the O-GlcNAc modification may be regulated.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Lazarus BD, Roos MD, Hanover JA. Mutational analysis of the catalytic domain of O-linked N-acetylglucosaminyl transferase. J Biol Chem 2005; 280:35537-44. [PMID: 16105839 DOI: 10.1074/jbc.m504948200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosaminyltransferase (OGT) catalyzes the transfer of O-linked GlcNAc to serine/threonine residues of a variety of target proteins, many of which have been implicated in such diseases as diabetes and neurodegeneration. The addition of O-GlcNAc to proteins occurs in response to fluctuations in cellular concentrations of UDP-GlcNAc, which result from nutrients entering the hexosamine biosynthetic pathway. However, the molecular mechanisms involved in sugar nucleotide recognition and transfer to protein are poorly understood. We employed site-directed mutagenesis to target potentially important amino acid residues within the two conserved catalytic domains of OGT (CD I and CD II), followed by an in vitro glycosylation assay to evaluate N-acetylglucosaminyltransferase activity after bacterial expression. Although many of the amino acid substitutions caused inactivation of the enzyme, we identified three amino acid residues (two in CD I and one in CD II) that produced viable enzymes when mutated. Structure-based homology modeling revealed that these permissive mutants may be either in or near the sugar nucleotide-binding site. Our findings suggest a model in which the two conserved regions of the catalytic domain, CD I and CD II, contribute to the formation of a UDP-GlcNAc-binding pocket that catalyzes the transfer of O-GlcNAc to substrate proteins. Identification of viable OGT mutants may facilitate examination of its role in nutrient sensing and signal transduction cascades.
Collapse
Affiliation(s)
- Brooke D Lazarus
- Laboratory of Cell Biology and Biochemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
37
|
Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 2005; 280:25313-22. [PMID: 15795231 DOI: 10.1074/jbc.m413819200] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-translational modification of serine and threonine residues of nucleocytoplasmic proteins with 2-acetamido-2-deoxy-d-glucopyranose (GlcNAc) is a reversible process implicated in multiple cellular processes. The enzyme O-GlcNAcase catalyzes the cleavage of beta-O-linked GlcNAc (O-GlcNAc) from modified proteins and is a member of the family 84 glycoside hydrolases. The family 20 beta-hexosaminidases bear no apparent sequence similarity yet are functionally related to O-GlcNAcase because both enzymes cleave terminal GlcNAc residues from glycoconjugates. Lysosomal beta-hexosaminidase is known to use substrate-assisted catalysis involving the 2-acetamido group of the substrate; however, the catalytic mechanism of human O-GlcNAcase is unknown. By using a series of 4-methylumbelliferyl 2-deoxy-2-N-fluoroacetyl-beta-D-glucopyranoside substrates, Taft-like linear free energy analyses of these enzymes indicates that O-GlcNAcase uses a catalytic mechanism involving anchimeric assistance. Consistent with this proposal, 1,2-dideoxy-2'-methyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline, an inhibitor that mimics the oxazoline intermediate proposed in the catalytic mechanism of family 20 glycoside hydrolases, is shown to act as a potent competitive inhibitor of both O-GlcNAcase (K(I) = 0.070 microm) and beta-hexosaminidase (K = 0.070 microm). A series of 1,2-dideoxy-2'-methyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline analogues were prepared, and one inhibitor demonstrated a remarkable 1500-fold selectivity for O-GlcNAcase (K(I) = 0.230 microm) over beta-hexosaminidase (K(I) = 340 microm). These inhibitors are cell permeable and modulate the activity of O-GlcNAcase in tissue culture. Because both enzymes have vital roles in organismal health, these potent and selective inhibitors of O-GlcNAcase should prove useful in studying the role of this enzyme at the organismal level without generating a complex chemical phenotype stemming from concomitant inhibition of beta-hexosaminidase.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | |
Collapse
|
38
|
Jínek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 2004; 11:1001-7. [PMID: 15361863 DOI: 10.1038/nsmb833] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 07/20/2004] [Indexed: 11/08/2022]
Abstract
Addition of N-acetylglucosamine (GlcNAc) is a ubiquitous form of intracellular glycosylation catalyzed by the conserved O-linked GlcNAc transferase (OGT). OGT contains an N-terminal domain of tetratricopeptide (TPR) repeats that mediates the recognition of a broad range of target proteins. Components of the nuclear pore complex are major OGT targets, as OGT depletion by RNA interference (RNAi) results in the loss of GlcNAc modification at the nuclear envelope. To gain insight into the mechanism of target recognition, we solved the crystal structure of the homodimeric TPR domain of human OGT, which contains 11.5 TPR repeats. The repeats form an elongated superhelix. The concave surface of the superhelix is lined by absolutely conserved asparagines, in a manner reminiscent of the peptide-binding site of importin alpha. Based on this structural similarity, we propose that OGT uses an analogous molecular mechanism to recognize its targets.
Collapse
Affiliation(s)
- Martin Jínek
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 2003; 100:9116-21. [PMID: 12874386 PMCID: PMC171382 DOI: 10.1073/pnas.1632821100] [Citation(s) in RCA: 429] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Indexed: 11/18/2022] Open
Abstract
The glycosylation of serine and threonine residues with a single GlcNAc moiety is a dynamic posttranslational modification of many nuclear and cytoplasmic proteins. We describe a chemical strategy directed toward identifying O-GlcNAc-modified proteins from living cells or proteins modified in vitro. We demonstrate, in vitro, that each enzyme in the hexosamine salvage pathway, and the enzymes that affect this dynamic modification (UDP-GlcNAc:polypeptidtyltransferase and O-GlcNAcase), tolerate analogues of their natural substrates in which the N-acyl side chain has been modified to bear a bio-orthogonal azide moiety. Accordingly, treatment of cells with N-azidoacetylglucosamine results in the metabolic incorporation of the azido sugar into nuclear and cytoplasmic proteins. These O-azidoacetylglucosamine-modified proteins can be covalently derivatized with various biochemical probes at the site of protein glycosylation by using the Staudinger ligation. The approach was validated by metabolic labeling of nuclear pore protein p62, which is known to be posttranslationally modified with O-GlcNAc. This strategy will prove useful for both the identification of O-GlcNAc-modified proteins and the elucidation of the specific residues that bear this saccharide.
Collapse
Affiliation(s)
- David J Vocadlo
- Center for New Directions in Organic Synthesis, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
40
|
Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA, Kochran J. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci 2003; 116:647-54. [PMID: 12538765 DOI: 10.1242/jcs.00246] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
O-linked GlcNAc transferase (OGT) mediates a novel glycan-dependent signaling pathway, but the intracellular targeting of OGT is poorly understood. We examined the localization of OGT by immunofluorescence microscopy, subcellular fractionation and immunoblotting using highly specific affinity-purified antisera. In addition to the expected nuclear localization, we found that OGT was highly concentrated in mitochondria. Since the mitochondrial OGT (103 kDa) was smaller than OGT found in other compartments (116 kDa) we reasoned that it was one of two predicted splice variants of OGT. The N-termini of these isoforms are unique; the shorter form contains a potential mitochondrial targeting sequence. We found that when epitope-tagged, the shorter form (mOGT; 103 kDa) concentrated in HeLa cell mitochondria, whereas the longer form (ncOGT; 116 kDa) localized to the nucleus and cytoplasm. The N-terminus of mOGT was essential for proper targeting. Although mOGT appears to be an active transferase, O-linked GlcNAc-modified substrates do not accumulate in mitochondria. Using immunoelectron microscopy and mitochondrial fractionation, we found that mOGT was tightly associated with the mitochondrial inner membrane. The differential localization of mitochondrial and nucleocytoplasmic isoforms of OGT suggests that they perform unique intracellular functions.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, Love DC. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 2003; 409:287-97. [PMID: 12504895 DOI: 10.1016/s0003-9861(02)00578-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-Linked N-acetylglucosamine (GlcNAc) transferase (OGT) mediates a novel hexosamine-dependent signal transduction pathway. Yet, little is known about the regulation of ogt gene expression in mammals. We report the sequence and characterization of the mouse ogt locus and provide a comparison with the human and rat ogt genes. The mammalian ogt genes are similar in structure and exhibit approximately 80% sequence identity. The mouse and human ogt genes contain two potential promoters producing four major transcripts. By analyzing 56 human cDNA clones and other existing expressed sequence tags, we found that at least three protein products differing at their amino terminus result from alternative splicing. We used OGT-specific antisera to demonstrate the presence of these isoforms in HeLa cells. The longest form is a nucleocytoplasmic OGT (ncOGT) with 12 tetratricopeptide repeats (TPRs); a shorter form of OGT encodes a mitochondrially sequestered enzyme with 9 TPRs and an N-terminal mitochondrion-targeting sequence (mOGT). An even shorter form of OGT (sOGT) contains only 2 TPRs. The genomic organization of OGT appears to be highly conserved throughout metazoan evolution. These results provide the basis for a more detailed analysis of the significance and regulation of the nucleocytoplasmic and mitochondrial isoforms of OGT in mammals.
Collapse
Affiliation(s)
- John A Hanover
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Building 8, Room 402, 8 Center Drive, MSC 0850, NIH, Bethesda, MD 20892-0850, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 2002; 1:791-804. [PMID: 12438562 DOI: 10.1074/mcp.m200048-mcp200] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identifying sites of post-translational modifications on proteins is a major challenge in proteomics. O-Linked beta-N-acetylglucosamine (O-GlcNAc) is a dynamic nucleocytoplasmic modification more analogous to phosphorylation than to classical complex O-glycosylation. We describe a mass spectrometry-based method for the identification of sites modified by O-GlcNAc that relies on mild beta-elimination followed by Michael addition with dithiothreitol (BEMAD). Using synthetic peptides, we also show that biotin pentylamine can replace dithiothreitol as the nucleophile. The modified peptides can be efficiently enriched by affinity chromatography, and the sites can be mapped using tandem mass spectrometry. This same methodology can be applied to mapping sites of serine and threonine phosphorylation, and we provide a strategy that uses modification-specific antibodies and enzymes to discriminate between the two post-translational modifications. The BEMAD methodology was validated by mapping three previously identified O-GlcNAc sites, as well as three novel sites, on Synapsin I purified from rat brain. BEMAD was then used on a purified nuclear pore complex preparation to map novel sites of O-GlcNAc modification on the Lamin B receptor and the nucleoporin Nup155. This method is amenable for performing quantitative mass spectrometry and can also be adapted to quantify cysteine residues. In addition, our studies emphasize the importance of distinguishing between O-phosphate versus O-GlcNAc when mapping sites of serine and threonine post-translational modification using beta-elimination/Michael addition methods.
Collapse
Affiliation(s)
- Lance Wells
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lefebvre T, Planque N, Leleu D, Bailly M, Caillet-Boudin ML, Saule S, Michalski JC. O-glycosylation of the nuclear forms of Pax-6 products in quail neuroretina cells. J Cell Biochem 2002. [DOI: 10.1002/jcb.10119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Lefebvre T, Cieniewski C, Lemoine J, Guerardel Y, Leroy Y, Zanetta JP, Michalski JC. Identification of N-acetyl-d-glucosamine-specific lectins from rat liver cytosolic and nuclear compartments as heat-shock proteins. Biochem J 2001; 360:179-88. [PMID: 11696006 PMCID: PMC1222216 DOI: 10.1042/0264-6021:3600179] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytosolic and nuclear O-linked N-acetylglucosaminylation has been proposed to be involved in the nuclear transport of cytosolic proteins. We have isolated nuclear and cytosolic N-acetyl-d-glucosamine (GlcNAc)-specific lectins from adult rat liver by affinity chromatography on immobilized GlcNAc and identified these lectins, by a proteomic approach, as belonging to the heat-shock protein (HSP)-70 family (one of them being heat-shock cognate 70 stress protein). Two-dimensional electrophoresis indicated that the HSP-70 fraction contained three equally abundant proteins with molecular masses of 70, 65 and 55 kDa. The p70 and p65 proteins are phosphorylated and are themselves O-linked GlcNAc (O-GlcNAc)-modified. The HSP-70 associated into high molecular mass complexes that dissociated in the presence of reductive and chaotropic agents. The lectin(s) present in this complex was (were) able to recognize cytosolic and nuclear ligands, which have been isolated using wheat germ agglutinin affinity chromatography. These ligands are O-GlcNAc glycosylated as demonstrated by [(3)H]galactose incorporation and analysis of the products released by reductive beta-elimination. The isolated lectins specifically recognized ligands present in both the cytosol and the nucleus of human resting lymphocytes. These results demonstrated the existence of endogenous GlcNAc-specific lectins, identified as HSP-70 proteins, which could act as a shuttle for the nucleo-cytoplasmic transport of O-GlcNAc glycoproteins between the cytosol and the nucleus.
Collapse
Affiliation(s)
- T Lefebvre
- Unité Mixte de Recherches 8576 du CNRS, Laboratoire de Chimie Biologique, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Slawson C, Pidala J, Potter R. Increased N-acetyl-beta-glucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1537:147-57. [PMID: 11566258 DOI: 10.1016/s0925-4439(01)00067-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-acetylglucosamine (O-GlcNAc) modification on serine or threonine residues of cytoplasmic and nuclear proteins has become a more recognized intracellular covalent modification. Removal of this modification is carried out by N-acetyl-beta-glucosaminidase (O-GlcNAcase). Since little information exists on monoglycosylation and O-GlcNAcase activity in mitogenic systems, we investigated O-GlcNAcase activity in primary breast tumors compared to matched normal adjacent breast tissue and examined enzymatic activity in relationship to the level of protein monoglycosylation. Using a variation of the acidic hexosaminidase activity assay, we demonstrated an increase in both O-GlcNAcase and lysosomal hexosaminidase activity in breast tumor tissue compared to matched adjacent tissue. Although no clear correlation with tumor grade or type was apparent among the samples examined (12 matched pairs), the increase in O-GlcNAcase and lysosomal hexosaminidase activity in tumor tissue was consistently elevated and statistically significant (P<0.05). Protein monoglycosylation was evaluated using immunoblotting, affinity blotting, and radioactive labeling. While the variety of modified proteins was greater in tumor tissue compared to adjacent tissue, the total amount of O-GlcNAc monoglycosylation was significantly decreased in the tumor tissue especially on proteins in the molecular mass range of 45-65 kDa. O-GlcNAcase may be involved in the selective removal of O-GlcNAc on certain proteins in breast tumor tissue.
Collapse
Affiliation(s)
- C Slawson
- Department of Chemistry and Institute for Biomolecular Science, University of South Florida, 4202 Fowler Avenue, Tampa, FL 33620, USA
| | | | | |
Collapse
|
46
|
Okuyama R, Yachi M. Cytosolic O-GlcNAc accumulation is not involved in beta-cell death in HIT-T15 or Min6. Biochem Biophys Res Commun 2001; 287:366-71. [PMID: 11554736 DOI: 10.1006/bbrc.2001.5607] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is attached to and detached from proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. It has been proposed that streptozotocin induces pancreatic beta-cell death by blocking O-GlcNAcase and increasing O-GlcNAc. To elucidate the relationship between cytosolic O-GlcNAc accumulation and beta-cell death, we treated beta-cell lines HIT-T15 and Min6 with glucosamine. Glucosamine markedly reduced cell viability in both cell lines only at 10 mM. The measurement of cytosolic O-GlcNAc under glucosamine treatment revealed that O-GlcNAc accumulation was observed even at 2 mM glucosamine and maximized at 5 mM, but did not occur very well at 10 mM. Furthermore, 100 microM PUGNAc, an inhibitor of O-GlcNAcase, increased cytosolic O-GlcNAc but did not induce cell death in these cells. Therefore, no correlation between accumulation of cytosolic O-GlcNAc and beta-cell death was suggested. Alternatively, inosine partially rescued cell death induced by glucosamine in Min6 cells, suggesting that energy depletion partly contributes to beta-cell death by glucosamine.
Collapse
Affiliation(s)
- R Okuyama
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co. Ltd., 2-58 Hiromachi-1-chome, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | |
Collapse
|
47
|
Abstract
The addition of O-linked N-acetylglucosamine (O-GlcNAc) to target proteins may serve as a signaling modification analogous to protein phosphorylation. Like phosphorylation, O-GlcNAc is a dynamic modification occurring in the nucleus and cytoplasm. Various analytical methods have been developed to detect O-GlcNAc and distinguish it from glycosylation in the endomembrane system. Many target molecules have been identified; these targets are typically components of supramolecular complexes such as transcription factors, nuclear pore proteins, or cytoskeletal components. The enzymes responsible for O-GlcNAc addition and removal are highly conserved molecules having molecular features consistent with a signaling role. The O-GlcNAc transferase and O-GlcNAcase are likely to act in consort with kinases and phosphatases generating various isoforms of physiological substrates. These isoforms may differ in such properties as protein-protein interactions, protein stability, and enzymatic activity. Since O-GlcNAc plays a critical role in the regulation of signaling pathways of higher plants, the glycan modification is likely to perform similar signaling functions in mammalian cells. Glucose and amino acid metabolism generates hexosamine precursors that may be key regulators of a nutrient sensing pathway involving O-GlcNAc signaling. Altered O-linked GlcNAc metabolism may also occur in human diseases including neurodegenerative disorders, diabetes mellitus and cancer.
Collapse
Affiliation(s)
- J A Hanover
- LCBB, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Konrad RJ, Liu K, Kudlow JE. A modified method of islet isolation preserves the ability of pancreatic islets to increase protein O-glycosylation in response to glucose and streptozotocin. Arch Biochem Biophys 2000; 381:92-8. [PMID: 11019824 DOI: 10.1006/abbi.2000.1960] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important link has recently been shown in vivo between beta-cell O-linked protein glycosylation and beta-cell apoptosis, with hyperglycemia having been demonstrated to reversibly increase beta-cell O-linked protein glycosylation by providing substrate for the glucosamine pathway. In contrast, the same study showed that the administration of streptozotocin to rats prior to the induction of hyperglycemia results in irreversible increases in O-glycosylation and subsequent beta-cell apoptosis. In light of these data, we investigated beta-cell O-glycosylation in vitro by exposing isolated rat islets to high glucose, glucosamine, or streptozotocin and analyzing the pattern of O-glycosylated proteins present. All three compounds acutely increased O-glycosylation of a predominate 135-kDa protein (p135); however, their ability to stimulate p135 O-glycosylation was only consistently observed when islets were isolated in the presence of high glucose and 1 mM L-glutamine. Islets isolated in low glucose and no added L-glutamine demonstrated no consistent increase in p135 O-glycosylation in response to glucose, glucosamine, or streptozotocin. These data suggest that during islet isolation, beta-cell enzymes responsible for regulating p135 O-glycosylation may be adversely affected by the absence of high glucose and glutamine, which together are necessary for O-linked N-acetylglucosamine synthesis. We propose that the combination of high glucose and glutamine during islet isolation generates UDP-N-acetylglucosamine and O-linked N-acetylglucosamine, thus providing substrate protection for these enzymes and preserving the ability of isolated islets to O-glycosylate p135.
Collapse
Affiliation(s)
- R J Konrad
- Department of Pathology, University of Alabama at Birmingham School of Medicine, 35233-7331, USA.
| | | | | |
Collapse
|
49
|
Chang Q, Su K, Baker JR, Yang X, Paterson AJ, Kudlow JE. Phosphorylation of human glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity. J Biol Chem 2000; 275:21981-7. [PMID: 10806197 DOI: 10.1074/jbc.m001049200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme in glucosamine synthesis. Prior studies from our laboratory indicated that activation of adenylate cyclase was associated with depletion of O-GlcNAc modification. This finding and evidence that human GFAT (hGFAT) might be regulated by cAMP-dependent protein kinase (PKA) led us to investigate the role of PKA in hGFAT function. We confirmed that adenylate cyclase activation by forskolin results in diminished O-GlcNAc modification of several cellular proteins which can be overcome by exposure of the cells to glucosamine but not glucose, suggesting the PKA activation results in depletion of UDP-GlcNAc for O-glycosylation. To determine if GFAT is indeed regulated by PKA, we expressed the active form of the enzyme using a vaccinia virus expression system and showed that the activity of the enzyme was to decrease to undetectable levels by PKA phosphorylation. We mapped the PKA phosphorylation sites with the aid of matrix-assisted laser desorption ionization mass spectroscopy and showed that the protein was stoichiometrically phosphorylated at serine 205 and also phosphorylated, to a lesser extent at serine 235. Mutagenesis studies indicated that the phosphorylation of serine 205 by PKA was necessary for the observed inhibition of enzyme activity while serine 235 phosphorylation played no observable role. The activity of GFAT is down-regulated by cAMP, thus placing regulation on the hexosamine pathway that is in concert with the energy requirements of the organism. During starvation, hormones acting through adenylate cyclase could direct the flux of glucose metabolism into energy production rather than into synthetic pathways that require hexosamines.
Collapse
Affiliation(s)
- Q Chang
- Departments of Medicine/Endocrinology, Cell Biology, and Biochemistry and Molecular Genetics, The University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
50
|
Roos MD, Hanover JA. Structure of O-linked GlcNAc transferase: mediator of glycan-dependent signaling. Biochem Biophys Res Commun 2000; 271:275-80. [PMID: 10799287 DOI: 10.1006/bbrc.2000.2600] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M D Roos
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | |
Collapse
|