1
|
Ayinuola YA, Castellino FJ. Inactivation of the lysine binding sites of human plasminogen (hPg) reveals novel structural requirements for the tight hPg conformation, M-protein binding, and rapid activation. Front Mol Biosci 2023; 10:1166155. [PMID: 37081852 PMCID: PMC10110952 DOI: 10.3389/fmolb.2023.1166155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Accelerated activation of the human plasminogen zymogen (hPg) to two-chain active plasmin (hPm) is achieved following conformational changes induced by ligand-binding at the lysine-binding sites (LBSs) in four of the five hPg kringle domains. In this manner, pattern D skin-trophic strains of Group A streptococci (GAS), through the expression of surface plasminogen-binding M-protein (PAM), immobilize surface hPg, thereby enabling rapid hPg activation by GAS-secreted streptokinase (SK). Consequently, GAS enhances virulence by digesting extracellular and tight cellular junctional barriers using hPm activity. Many studies have demonstrated the singular importance of the kringle-2 domain of hPg (K2hPg) to PAM-binding using hPg fragments. Recently, we showed, using full-length hPg, that K2hPg is critical for PAM binding. However, these studies did not eliminate any modulatory effects of the non-K2hPg LBS on this interaction. Moreover, we sought to establish the significance of the intramolecular interaction between Asp219 of the LBS of K2hPg and its serine protease domain binding partner, Lys708, to conformational changes in hPg. In the current study, selective inactivation of the LBS of K1hPg, K4hPg, and K5hPg revealed that the LBS of these kringle domains are dispensable for hPg binding to PAM. However, the attendant conformational change upon inactivation of K4hPg LBS increased the affinity of hPg for PAM by an order of magnitude. This finding suggests that the native hPg conformation encloses PAM-binding exosites or sterically hinders access to K2hPg. While simultaneous inactivation of the LBS of K1hPg, K4hPg, and K5hPg inhibited hPg/SK association alongside hPg activation, the replacement of Lys708 generated a slight conformational change that optimally accelerated hPg activation. Thus, we accentuate disparate functions of hPg LBS and conclude, using intact proteins, that K2hPg plays a central role in regulating hPg activation.
Collapse
Affiliation(s)
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- *Correspondence: Francis J. Castellino,
| |
Collapse
|
2
|
Ayinuola YA, Brito-Robinson T, Ayinuola O, Beck JE, Cruz-Topete D, Lee SW, Ploplis VA, Castellino FJ. Streptococcus co-opts a conformational lock in human plasminogen to facilitate streptokinase cleavage and bacterial virulence. J Biol Chem 2021; 296:100099. [PMID: 33208461 PMCID: PMC7948469 DOI: 10.1074/jbc.ra120.016262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/06/2022] Open
Abstract
Virulent strains of Streptococcus pyogenes (gram-positive group A Streptococcus pyogenes [GAS]) recruit host single-chain human plasminogen (hPg) to the cell surface-where in the case of Pattern D strains of GAS, hPg binds directly to the cells through a surface receptor, plasminogen-binding group A streptococcal M-protein (PAM). The coinherited Pattern D GAS-secreted streptokinase (SK2b) then accelerates cleavage of hPg at the R561-V562 peptide bond, resulting in the disulfide-linked two-chain protease, human plasmin (hPm). hPm localizes on the bacterial surface, assisting bacterial dissemination via proteolysis of host defense proteins. Studies using isolated domains from PAM and hPg revealed that the A-domain of PAM binds to the hPg kringle-2 module (K2hPg), but how this relates to the function of the full-length proteins is unclear. Herein, we use intact proteins to show that the lysine-binding site of K2hPg is a major determinant of the activation-resistant T-conformation of hPg. The binding of PAM to the lysine-binding site of K2hPg relaxes the conformation of hPg, leading to a greatly enhanced activation rate of hPg by SK2b. Domain swapping between hPg and mouse Pg emphasizes the importance of the Pg latent heavy chain (residues 1-561) in PAM binding and shows that while SK2b binds to both hPg and mouse Pg, the activation properties of streptokinase are strictly attributed to the serine protease domain (residues 562-791) of hPg. Overall, these data show that native hPg is locked in an activation-resistant conformation that is relaxed upon its direct binding to PAM, allowing hPm to form and provide GAS cells with a proteolytic surface.
Collapse
Affiliation(s)
- Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Teresa Brito-Robinson
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Olawole Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Julia E Beck
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Diana Cruz-Topete
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
3
|
Ploplis VA, Castellino FJ. Host Pathways of Hemostasis that Regulate Group A Streptococcus pyogenes Pathogenicity. Curr Drug Targets 2020; 21:193-201. [PMID: 31556853 PMCID: PMC7670306 DOI: 10.2174/1389450120666190926152914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
A hallmark feature of severe Group A Streptococcus pyogenes (GAS) infection is dysregulated hemostasis. Hemostasis is the primary pathway for regulating blood flow through events that contribute towards clot formation and its dissolution. However, a number of studies have identified components of hemostasis in regulating survival and dissemination of GAS. Several proteins have been identified on the surface of GAS and they serve to either facilitate invasion to host distal sites or regulate inflammatory responses to the pathogen. GAS M-protein, a surface-exposed virulence factor, appears to be a major target for interactions with host hemostasis proteins. These interactions mediate biochemical events both on the surface of GAS and in the solution when M-protein is released into the surrounding environment through shedding or regulated proteolytic processes that dictate the fate of this pathogen. A thorough understanding of the mechanisms associated with these interactions could lead to novel approaches for altering the course of GAS pathogenicity.
Collapse
Affiliation(s)
- Victoria A. Ploplis
- University of Notre Dame, W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, Notre Dame, IN 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- University of Notre Dame, W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, Notre Dame, IN 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
4
|
Verhamme IM, Bock PE. Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism. J Biol Chem 2014; 289:28006-18. [PMID: 25138220 DOI: 10.1074/jbc.m114.589077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid kinetics demonstrate a three-step pathway of streptokinase (SK) binding to plasminogen (Pg), the zymogen of plasmin (Pm). Formation of a fluorescently silent encounter complex is followed by two conformational tightening steps reported by fluorescence quenches. Forward reactions were defined by time courses of biphasic quenching during complex formation between SK or its COOH-terminal Lys(414) deletion mutant (SKΔK414) and active site-labeled [Lys]Pg ([5-(acetamido)fluorescein]-D-Phe-Phe-Arg-[Lys]Pg ([5F]FFR-[Lys]Pg)) and by the SK dependences of the quench rates. Active site-blocked Pm rapidly displaced [5F]FFR-[Lys]Pg from the complex. The encounter and final SK ·[5F]FFR-[Lys]Pg complexes were weakened similarly by SK Lys(414) deletion and blocking of lysine-binding sites (LBSs) on Pg kringles with 6-aminohexanoic acid or benzamidine. Forward and reverse rates for both tightening steps were unaffected by 6-aminohexanoic acid, whereas benzamidine released constraints on the first conformational tightening. This indicated that binding of SK Lys(414) to Pg kringle 4 plays a role in recognition of Pg by SK. The substantially lower affinity of the final SK · Pg complex compared with SK · Pm is characterized by a ∼ 25-fold weaker encounter complex and ∼ 40-fold faster off-rates for the second conformational step. The results suggest that effective Pg encounter requires SK Lys(414) engagement and significant non-LBS interactions with the protease domain, whereas Pm binding additionally requires contributions of other lysines. This difference may be responsible for the lower affinity of the SK · Pg complex and the expression of a weaker "pro"-exosite for binding of a second Pg in the substrate mode compared with SK · Pm.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Paul E Bock
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
5
|
Cook SM, Skora A, Gillen CM, Walker MJ, McArthur JD. Streptokinase variants fromStreptococcus pyogenesisolates display altered plasminogen activation characteristics - implications for pathogenesis. Mol Microbiol 2012; 86:1052-62. [DOI: 10.1111/mmi.12037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2012] [Indexed: 01/23/2023]
Affiliation(s)
- Simon M. Cook
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| | - Amanda Skora
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre; University of Queensland; Brisbane; Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre; University of Queensland; Brisbane; Australia
| | - Jason D. McArthur
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| |
Collapse
|
6
|
Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012; 2012:482096. [PMID: 23118509 PMCID: PMC3477821 DOI: 10.1155/2012/482096] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023] Open
Abstract
In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.
Collapse
|
7
|
Figuera-Losada M, Ranson M, Sanderson-Smith ML, Walker MJ, Castellino FJ, Prorok M. Effects on human plasminogen conformation and activation rate caused by interaction with VEK-30, a peptide derived from the group A streptococcal M-like protein (PAM). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1342-9. [PMID: 20152941 PMCID: PMC2846993 DOI: 10.1016/j.bbapap.2010.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 11/18/2022]
Abstract
In vertebrates, fibrinolysis is primarily carried out by the serine protease plasmin (Pm), which is derived from activation of the zymogen precursor, plasminogen (Pg). One of the most distinctive features of Pg/Pm is the presence of five homologous kringle (K) domains. These structural elements possess conserved Lys-binding sites (LBS) that facilitate interactions with substrates, activators, inhibitors and receptors. In human Pg (hPg), K2 displays weak Lys affinity, however the LBS of this domain has been implicated in an atypical interaction with the N-terminal region of a bacterial surface protein known as PAM (Pg-binding group A streptococcal M-like protein). A direct correlation has been established between invasiveness of group A streptococci and their ability to bind Pg. It has been previously demonstrated that a 30-residue internal peptide (VEK-30) from the N-terminal region of PAM competitively inhibits binding of the full-length parent protein to Pg. We have attempted to determine the effects of this ligand-protein interaction on the regulation of Pg zymogen activation and conformation. Our results show minimal effects on the sedimentation velocity coefficients (S degrees (20,w)) of Pg when associated to VEK-30 and a direct relationship between the concentration of VEK-30 or PAM and the activation rate of Pg. These results are in contrast with the major conformational changes elicited by small-molecule activators of Pg, and point towards a novel mechanism of Pg activation that may underlie group A streptococcal (GAS) virulence.
Collapse
Affiliation(s)
- Mariana Figuera-Losada
- W.M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Marie Ranson
- School of Biological Sciences, University of Wollongong, Northfields Ave., New South Wales 2522, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Northfields Ave., New South Wales 2522, Australia
| | - Mark J. Walker
- School of Biological Sciences, University of Wollongong, Northfields Ave., New South Wales 2522, Australia
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Mary Prorok
- W.M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
8
|
Wiles KG, Panizzi P, Kroh HK, Bock PE. Skizzle is a novel plasminogen- and plasmin-binding protein from Streptococcus agalactiae that targets proteins of human fibrinolysis to promote plasmin generation. J Biol Chem 2010; 285:21153-64. [PMID: 20435890 DOI: 10.1074/jbc.m110.107730] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skizzle (SkzL), secreted by Streptococcus agalactiae, has moderate sequence identity to streptokinase and staphylokinase, bacterial activators of human plasminogen (Pg). SkzL binds [Glu]Pg with low affinity (K(D) 3-16 mum) and [Lys]Pg and plasmin (Pm) with indistinguishable high affinity (K(D) 80 and 50 nm, respectively). Binding of SkzL to Pg and Pm is completely lysine-binding site-dependent, as shown by the effect of the lysine analog, 6-aminohexanoic acid. Deletion of the COOH-terminal SkzL Lys(415) residue reduces affinity for [Lys]Pg and active site-blocked Pm 30-fold, implicating Lys(415) in a lysine-binding site interaction with a Pg/Pm kringle. SkzL binding to active site fluorescein-labeled Pg/Pm analogs demonstrates distinct high and low affinity interactions. High affinity binding is mediated by Lys(415), whereas the source of low affinity binding is unknown. SkzL enhances the activation of [Glu]Pg by urokinase (uPA) approximately 20-fold, to a maximum rate indistinguishable from that for [Lys]Pg and [Glu]Pg activation in the presence of 6-aminohexanoic acid. SkzL binds preferentially to the partially extended beta-conformation of [Glu]Pg, which is in unfavorable equilibrium with the compact alpha-conformation, thereby converting [Glu]Pg to the fully extended gamma-conformation and accelerating the rate of its activation by uPA. SkzL enhances [Lys]Pg and [Glu]Pg activation by single-chain tissue-type Pg activator, approximately 42- and approximately 650-fold, respectively. SkzL increases the rate of plasma clot lysis by uPA and single-chain tissue-type Pg activator approximately 2-fold, confirming its cofactor activity in a physiological model system. The results suggest a role for SkzL in S. agalactiae pathogenesis through fibrinolytic enhancement.
Collapse
Affiliation(s)
- Karen G Wiles
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
9
|
Gutiérrez-Fernández A, Gingles NA, Bai H, Castellino FJ, Parmer RJ, Miles LA. Plasminogen enhances neuritogenesis on laminin-1. J Neurosci 2009; 29:12393-400. [PMID: 19812315 PMCID: PMC2789650 DOI: 10.1523/jneurosci.3553-09.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 08/13/2009] [Indexed: 11/21/2022] Open
Abstract
Proteins of the plasminogen activation system are broadly expressed throughout the nervous system, and key roles for these proteins in neuronal function have been demonstrated. Recent reports have established that plasminogen is synthesized in neuroendocrine tissues, making this protein and the proteolytic activity of the product of its activation, plasmin, available at sites separated anatomically from circulating, hepatocyte-derived plasminogen. Results with plasminogen-deficient humans and mice suggest a role for plasminogen in neuritogenesis. To elucidate the role of the plasminogen activation system in these processes, the function of plasminogen during neuritogenesis and neurite outgrowth was studied. It is shown here that plasminogen participates in neuritogenesis, as plasmin inhibitors reduced both neurite outgrowth and neurite length in PC-12 cells. The addition of exogenous plasminogen enhanced neurite outgrowth and neurite length in both PC-12 cells and primary cortical neurons. The proteolytic activity of plasmin was required, since mutation of the catalytic serine residue completely abolished the stimulatory activity. Furthermore, mutation of the lysine binding site within kringle 5 of the plasminogen molecule also reduced the neuritogenic activity of plasminogen. Additionally, we demonstrate that plasminogen specifically bound to laminin-1, the interaction resulted in increased plasminogen activation by tissue-type plasminogen activator, and was dependent on a functional lysine binding site within plasminogen kringle 5. Moreover, during NGF-induced neuritogenesis, laminin-1 was degraded, and this cleavage was catalyzed by plasmin. This study provides the first direct evidence that plasminogen participates in neurite outgrowth and also suggests that laminin-1 degradation by plasmin contributes to the process of neuritogenesis.
Collapse
Affiliation(s)
- Ana Gutiérrez-Fernández
- Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Neill A. Gingles
- Department of Medicine, University of California, San Diego, and Veterans Administration San Diego Healthcare System, San Diego, California 92161, and
| | - Hongdong Bai
- Department of Medicine, University of California, San Diego, and Veterans Administration San Diego Healthcare System, San Diego, California 92161, and
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Robert J. Parmer
- Department of Medicine, University of California, San Diego, and Veterans Administration San Diego Healthcare System, San Diego, California 92161, and
| | - Lindsey A. Miles
- Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
10
|
Verhamme IM, Bock PE. Rapid-reaction kinetic characterization of the pathway of streptokinase-plasmin catalytic complex formation. J Biol Chem 2008; 283:26137-47. [PMID: 18658146 DOI: 10.1074/jbc.m804038200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of the fibrinolytic proteinase plasmin (Pm) to streptokinase (SK) in a tight stoichiometric complex transforms Pm into a potent proteolytic activator of plasminogen. SK binding to the catalytic domain of Pm, with a dissociation constant of 12 pm, is assisted by SK Lys(414) binding to a Pm kringle, which accounts for a 11-20-fold affinity decrease when Pm lysine binding sites are blocked by 6-aminohexanoic acid (6-AHA) or benzamidine. The pathway of SK.Pm catalytic complex formation was characterized by stopped-flow kinetics of SK and the Lys(414) deletion mutant (SKDeltaK414) binding to Pm labeled at the active site with 5-fluorescein ([5F]FFR-Pm) and the reverse reactions by competitive displacement of [5F]FFR-Pm with active site-blocked Pm. The rate constants for the biexponential fluorescence quenching caused by SK and SKDeltaK414 binding to [5F]FFR-Pm were saturable as a function of SK concentration, reporting encounter complex affinities of 62-110 nm in the absence of lysine analogs and 4900-6500 and 1430-2200 nm in the presence of 6-AHA and benzamidine, respectively. The encounter complex with SKDeltaK414 was approximately 10-fold weaker in the absence of lysine analogs but indistinguishable from that of native SK in the presence of 6-AHA and benzamidine. The studies delineate for the first time the sequence of molecular events in the formation of the SK.Pm catalytic complex and its regulation by kringle ligands. Analysis of the forward and reverse reactions supports a binding mechanism in which SK Lys(414) binding to a Pm kringle accompanies near-diffusion-limited encounter complex formation followed by two slower, tightening conformational changes.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
11
|
Hall G, Lang D, Qiu X, Doctor V. Effect of native fucoidan, sulfated fucoidan, heparin and 6-aminohexanoic acid on the activation of glutamic-plasminogen by urokinase: role of NaCl. Blood Coagul Fibrinolysis 2007; 17:277-81. [PMID: 16651870 DOI: 10.1097/01.mbc.0000224847.12131.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Addition of a physiological concentration of NaCl (0.9%) to 0.05 mol/l Tris buffer (pH 7.4) reversed the enhancement of the activation of glutamic-type plasminogen (Glu-Plg) by low molecular weight urokinase by fucoidan and heparin, while addition of aminohexanoic acid (6-AH) enhanced the activation. Native fucoidan (N-2), sulfated fucoidan (S-2) and heparin alone and in the presence of 6-AH were investigated to determine the effect of NaCl addition to 0.05 mol/l Tris (pH 7.4) on the activation of Glu-plg by high molecular weight urokinase (HMW u-Pa). Heparin alone and in conjunction with 6-AH enhanced 4.5 to 5.5-fold the initial rate of activation of Glu-plg, while N-2 alone or in conjunction with 6-AH gave 3 to 5.5-fold enhancement and S-2 gave no enhancement of activation using 0.05 mol/l Tris buffer (pH 7.4). Addition of 0.9% NaCl to the buffer reversed the enhancement by the cofactors but, in the presence of 6-AH, N-2 gave two-fold and S-2 gave three-fold enhancement of activation while heparin gave 25% enhancement. The mechanism of enhancement by S-2 in the presence of 6-AH was investigated by dilution and enzyme kinetic studies. The results show that the enhancement was due to interaction with HMW u-PA and not with Glu-plg.
Collapse
Affiliation(s)
- Gustavia Hall
- Department of Chemistry, Prairie View A&M University, Texas 77446, USA
| | | | | | | |
Collapse
|
12
|
Panizzi P, Boxrud PD, Verhamme IM, Bock PE. Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase.plasmin(ogen) catalytic complexes. J Biol Chem 2006; 281:26774-8. [PMID: 16857686 PMCID: PMC2291350 DOI: 10.1074/jbc.c600171200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptokinase (SK) activates human fibrinolysis by inducing non-proteolytic activation of the serine proteinase zymogen, plasminogen (Pg), in the SK.Pg* catalytic complex. SK.Pg* proteolytically activates Pg to plasmin (Pm). SK-induced Pg activation is enhanced by lysine-binding site (LBS) interactions with kringles on Pg and Pm, as evidenced by inhibition of the reactions by the lysine analogue, 6-aminohexanoic acid. Equilibrium binding analysis and [Lys]Pg activation kinetics with wild-type SK, carboxypeptidase B-treated SK, and a COOH-terminal Lys414 deletion mutant (SKDeltaK414) demonstrated a critical role for Lys414 in the enhancement of [Lys]Pg and [Lys]Pm binding and conformational [Lys]Pg activation. The LBS-independent affinity of SK for [Glu]Pg was unaffected by deletion of Lys414. By contrast, removal of SK Lys414 caused 19- and 14-fold decreases in SK affinity for [Lys]Pg and [Lys]Pm binding in the catalytic mode, respectively. In kinetic studies of the coupled conformational and proteolytic activation of [Lys]Pg, SKDeltaK414 exhibited a corresponding 17-fold affinity decrease for formation of the SKDeltaK414.[Lys]Pg* complex. SKDeltaK414 binding to [Lys]Pg and [Lys]Pm and conformational [Lys]Pg activation were LBS-independent, whereas [Lys]Pg substrate binding and proteolytic [Lys]Pm generation remained LBS-dependent. We conclude that binding of SK Lys414 to [Lys]Pg and [Lys]Pm kringles enhances SK.[Lys]Pg* and SK.[Lys]Pm catalytic complex formation. This interaction is distinct structurally and functionally from LBS-dependent Pg substrate recognition by these complexes.
Collapse
Affiliation(s)
| | | | | | - Paul E. Bock
- To whom correspondence should be addressed: Dept. of Pathology, Vanderbilt University School of Medicine, C3321A Medical Center North, Nashville, TN 37232-2561. Tel.: 615-343-9863; Fax: 615-322-1855; E-mail:
| |
Collapse
|
13
|
|
14
|
Lang D, Williams T, Phillips A, Doctor VM. Mechanism of the stimulatory effect of native fucoidan, highly sulfated fucoidan and heparin on plasminogen activation by tissue plasminogen activator: The role of chloride. Eur J Drug Metab Pharmacokinet 2004; 29:269-75. [PMID: 15726889 DOI: 10.1007/bf03190610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native Fucoidan and unfractionated heparin enhanced by 6-fold the in vitro activation of human glutamic plasminogen (Glu-Plg) by tissue plasminogen activator (t-PA) using 0.05M Tris buffer pH 7.4, while sulfated fucoidan inhibited the activation under these conditions. Double reciprocal plots of these interactions showed that sulfated fucoidan inhibited the activation in a noncompetitive manner while the enhancements by heparin or native fucoidan were due to an increase of Vmax without affecting Km. To determine whether the stimulatory effect of the individual cofactor was due to its interaction with Glu-Plg or with t-PA, experiments were performed at a fixed level of the cofactor and either varying in a serial fashion the concentration of Glu-Plg or of t-PA. The ratios of the initial rate of plasmin generation in the presence or absence of the cofactors were plotted against the inverse of the volume fraction of Glu-Plg or of t-PA. The results showed that heparin interacted with Glu-Plg while native fucoidan and sulfated fucoidan interacted with t-PA. Studies were also conducted on the effect of the two fucoidans and heparin on the activation of Glu-Plg by t-PA using 0.05M Tris buffer pH 7.4 containing 0.1 M NaCl. Under these conditions, sulfated fucoidan was most effective in enhancing the activation followed by native fucoidan and heparin respectively. The results of this study showed that in presence of the buffer containing 0.1 M NaCl, heparin was interacting with t-PA while the two fucoidans were interacting with both t-PA and Glu-Plg. A comparison of the double reciprocal plots of the rate of enhancement by the cofactors using 0.05M Tris buffer pH 7.4 containing 0.1M NaCl or in presence of buffer alone showed that the cofactors were more effective using 0.05M Tris buffer pH 7.4 alone and that addition of NaCl to the buffer slowed down the reactions by decreasing Vmax without affecting Km. Circular Dichroism (CD) studies of Glu-Plg in the far ultraviolet (UV) range showed that addition of NaCl destabilized the beta sheet structure which was reversed by addition of 6-aminohexanoic acid (6-AH) or one of the cofactors, while the near UV CD spectra of Glu-Plg in presence of 0.1 M NaCl was enhanced by the cofactors by increasing its ellipticity as reported earlier for 6-AH.
Collapse
Affiliation(s)
- DeShawn Lang
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas 77446, USA
| | | | | | | |
Collapse
|
15
|
Boxrud PD, Bock PE. Coupling of Conformational and Proteolytic Activation in the Kinetic Mechanism of Plasminogen Activation by Streptokinase. J Biol Chem 2004; 279:36642-9. [PMID: 15215239 DOI: 10.1074/jbc.m405265200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of streptokinase (SK) to plasminogen (Pg) induces conformational activation of the zymogen and initiates its proteolytic conversion to plasmin (Pm). The mechanism of coupling between conformational activation and Pm formation was investigated in kinetic studies. Parabolic time courses of Pg activation by SK monitored by chromogenic substrate hydrolysis had initial rates (v(1)) representing conformational activation and subsequent rates of activity increase (v(2)) corresponding to the rate of Pm generation determined by a specific discontinuous assay. The v(2) dependence on SK concentration for [Lys]Pg showed a maximum rate at a Pg to SK ratio of approximately 2:1, with inhibition at high SK concentrations. [Glu]Pg and [Lys]Pg activation showed similar kinetic behavior but much slower activation of [Glu]Pg, due to an approximately 12-fold lower affinity for SK and an approximately 20-fold lower k(cat)/K(m). Blocking lysine-binding sites on Pg inhibited SK.Pg* cleavage of [Lys]Pg to a rate comparable with that of [Glu]Pg, whereas [Glu]Pg activation was not significantly affected. The results support a kinetic mechanism in which SK activates Pg conformationally by rapid equilibrium formation of the SK.Pg* complex, followed by intermolecular cleavage of Pg to Pm by SK.Pg* and subsequent cleavage of Pg by SK.Pm. A unified model of SK-induced Pg activation suggests that generation of initial Pm by SK.Pg* acts as a self-limiting triggering mechanism to initiate production of one SK equivalent of SK.Pm, which then converts the remaining free Pg to Pm.
Collapse
Affiliation(s)
- Paul D Boxrud
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
16
|
Boxrud PD, Verhamme IM, Bock PE. Resolution of Conformational Activation in the Kinetic Mechanism of Plasminogen Activation by Streptokinase. J Biol Chem 2004; 279:36633-41. [PMID: 15215240 DOI: 10.1074/jbc.m405264200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptokinase (SK) activates plasminogen (Pg) by specific binding and nonproteolytic expression of the Pg catalytic site, initiating Pg proteolysis to form the fibrinolytic proteinase, plasmin (Pm). The SK-induced conformational activation mechanism was investigated in quantitative kinetic and equilibrium binding studies. Progress curves of Pg activation by SK monitored by chromogenic substrate hydrolysis were parabolic, with initial rates (v(1)) that indicated no transient species and subsequent rate increases (v(2)). The v(1) dependence on SK concentration for [Glu]Pg and [Lys]Pg was hyperbolic with dissociation constants corresponding to those determined in fluorescence-based binding studies for the native Pg species, identifying v(1) as rapid SK binding and conformational activation. Comparison of [Glu]Pg and [Lys]Pg activation showed an approximately 12-fold higher affinity of SK for [Lys]Pg that was lysine-binding site dependent and no such dependence for [Glu]Pg. Stopped-flow kinetics of SK binding to fluorescently labeled Pg demonstrated at least two fast steps in the conformational activation pathway. Characterization of the specificity of the conformationally activated SK.[Lys]Pg* complex for tripeptide-p-nitroanilide substrates demonstrated 5-18- and 10-130-fold reduced specificity (k(cat)/K(m)) compared with SK.Pm and Pm, respectively, with differences in K(m) and k(cat) dependent on the P1 residue. The results support a kinetic mechanism in which SK binding and reversible conformational activation occur in a rapid equilibrium, multistep process.
Collapse
Affiliation(s)
- Paul D Boxrud
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
17
|
Sazonova IY, Robinson BR, Gladysheva IP, Castellino FJ, Reed GL. alpha Domain deletion converts streptokinase into a fibrin-dependent plasminogen activator through mechanisms akin to staphylokinase and tissue plasminogen activator. J Biol Chem 2004; 279:24994-5001. [PMID: 15069059 DOI: 10.1074/jbc.m400253200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of action of plasminogen (Pg) activators may affect their therapeutic properties in humans. Streptokinase (SK) is a robust Pg activator in physiologic fluids in the absence of fibrin. Deletion of a "catalytic switch" (SK residues 1-59), alters the conformation of the SK alpha domain and converts SKDelta59 into a fibrin-dependent Pg activator through unknown mechanisms. We show that the SK alpha domain binds avidly to the Pg kringle domains that maintain Glu-Pg in a tightly folded conformation. By virtue of deletion of SK residues 1-59, SKDelta59 loses the ability to unfold Glu-Pg during complex formation and becomes incapable of nonproteolytic active site formation. In this manner, SKDelta59 behaves more like staphylokinase than like SK; it requires plasmin to form a functional activator complex, and in this complex SKDelta59 does not protect plasmin from inhibition by alpha(2)-antiplasmin. At the same time, SKDelta59 is unlike staphylokinase or SK and is more like tissue Pg activator, because it is a poor activator of the tightly folded form of Glu-Pg in physiologic solutions. SKDelta59 can only activate Glu-Pg when it was unfolded by fibrin interactions or by Cl(-)-deficient buffers. Taken together, these studies indicate that an intact alpha domain confers on SK the ability to nonproteolytically activate Glu-Pg, to unfold and process Glu-Pg substrate in physiologic solutions, and to alter the substrate-inhibitor interactions of plasmin in the activator complex. The loss of an intact alpha domain makes SKDelta59 activate Pg through classical "fibrin-dependent mechanisms" (akin to both staphylokinase and tissue Pg activator) that include: 1) a marked preference for a fibrin-bound or unfolded Glu-Pg substrate, 2) a requirement for plasmin in the activator complex, and 3) the creation of an activator complex with plasmin that is readily inhibited by alpha(2)-antiplasmin.
Collapse
Affiliation(s)
- Irina Y Sazonova
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Originally discovered in 1994 by Folkman and coworkers, angiostatin was identified through its antitumor effects in mice and later shown to be a potent inhibitor of angiogenesis. An internal fragment of plasminogen, angiostatin consists of kringle domains that are known to be lysine-binding. The crystal structure of angiostatin was the first multikringle domain-containing structure to be published. This review will focus on what is known about the structure of angiostatin and its implications in function from the current literature.
Collapse
Affiliation(s)
- J H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
19
|
Guinn L, Doctor VM. Mechanism of the stimulatory effect of 6-aminohexanoic acid on plasminogen activation by streptokinase or tissue plasminogen activator: The role of chloride. Eur J Drug Metab Pharmacokinet 2003; 28:315-20. [PMID: 14743974 DOI: 10.1007/bf03220185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Studies were conducted on the mechanism of the stimulatory effect of 6-aminohexanoic acid (6-AH) during the in vitro activation of human glutamic plasminogen (Glu-Plg) by streptokinase or by tissue plasminogen activator (t-PA) and the possible role of the addition of physiological concentrations of NaCl to the buffer solution. Enhancement by 6-AH was investigated by measuring the rate of plasmin generation using chromogenic substrate H-D-glu-phe-lys-pNA (S-2403). Control studies using plasmin showed that the addition of 6-AH at concentrations below 20 mM did not significantly affect the initial rate of the amidolytic activity of plasmin with or without the addition of NaCl to 0.05 M Tris buffer (pH 7.4). On the other hand, addition of NaCl to the buffer slowed down the initial rate of activation of Glu-Plg by streptokinase or by t-PA while increasing the percent enhancement by 6-AH when compared with the controls. The ratios of the initial rates of plasmin generation in the presence or in the absence of 6-AH were plotted against the inverse of the volume fraction of Glu-Plg, streptokinase or t-PA after serial dilutions. The results showed that when the activation reactions were performed in 50 mM of Tris buffer (pH 7.4), the enhancements by 6-AH were related to its interaction with streptokinase or t-PA, while using the same Tris buffer containing 0.6 % NaCl, the enhancements by 6-AH were related to its interaction with both Glu-Plg and streptokinase or t-PA. However, upon increasing the NaCl to 0.9%, the results showed that the enhancements by 6-AH of the activation of Glu-Plg by streptokinase or t-PA were related to its interaction with Glu-Plg. The results suggested that changes in the concentrations of NaCl play a regulatory role during the activation process.
Collapse
Affiliation(s)
- L Guinn
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas 77446, USA
| | | |
Collapse
|
20
|
Bell J, Duhon S, Doctor VM. The effect of fucoidan, heparin and cyanogen bromide-fibrinogen on the activation of human glutamic-plasminogen by tissue plasminogen activator. Blood Coagul Fibrinolysis 2003; 14:229-34. [PMID: 12695744 DOI: 10.1097/01.mbc.0000061292.28953.c5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Earlier studies on the stimulatory effect of fucoidan, heparin, and cyanogen bromide (CNBr)-fibrinogen digest on the in-vitro activation of glutamic type plasminogen by tissue plasminogen activator, which were performed using subphysiologic ionic strengths of buffers, gave inconsistent results because of the variation in the ionic strengths of the buffers used. Studies were therefore conducted on the effect of these cofactors using 0.05 mol/l Tris buffer containing a physiologic concentration of sodium chloride. The double reciprocal plots of the activation of glutamic type plasminogen by tissue plasminogen activator in the presence of fucoidan and 6-aminohexanoic acid (6-AH) or heparin and 6-AH showed a four- to six-fold increase in K(cat), while the K(m) remained unchanged. On the other hand, there was greater than six-fold lowering of K(m) from 0.213 to 0.035 micromol/l in the presence of CNBr-fibrinogen, while K(cat) was only slightly increased. The ratios of the initial rate of plasmin generation in the presence or absence of the cofactors were plotted against the inverse of the volume fraction of glutamic type plasminogen or of tissue plasminogen activator after serial dilution. The results suggested that the enhancements by fucoidan and 6-AH or CNBr-fibrinogen were due to their interactions directed towards glutamic type plasminogen, while for heparin and 6-AH, the interaction was directed towards tissue plasminogen activator. Circular dichroism studies in the near ultraviolet range (250-308 nm) showed that 6-AH enhanced the circular dichroism spectra of glutamic type plasminogen around certain chromophores, while fucoidan and heparin had no effect, suggesting that the enhancement by the cofactors may be related to the favorable conformational changes of glutamic type plasminogen by 6-AH.
Collapse
Affiliation(s)
- Jason Bell
- Chemistry Department, Prairie View A University, Prairie View, TX 77446, USA
| | | | | |
Collapse
|
21
|
Bell J, Duhon S, Doctor V. Blood Coagul Fibrinolysis 2003; 14:229-234. [DOI: 10.1097/00001721-200304000-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
|
23
|
An SS, Marti DN, Carreño C, Albericio F, Schaller J, Llinas M. Structural/functional properties of the Glu1-HSer57 N-terminal fragment of human plasminogen: conformational characterization and interaction with kringle domains. Protein Sci 1998; 7:1947-59. [PMID: 9761475 PMCID: PMC2144169 DOI: 10.1002/pro.5560070910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Glu1-Val79 N-terminal peptide (NTP) domain of human plasminogen (Pgn) is followed by a tandem array of five kringle (K) structures of approximately 9 kDa each. K1, K2, K4, and K5 contain each a lysine-binding site (LBS). Pgn was cleaved with CNBr and the Glul-HSer57 N-terminal fragment (CB-NTP) isolated. In addition, the Ile27-Ile56 peptide (L-NTP) that spans the doubly S-S bridged loop segment of NTP was synthesized. Pgn kringles were generated either by proteolytic fragmentation of Pgn (K4, K5) or via recombinant gene expression (rK1, rK2, and rK3). Interactions of CB-NTP with each of the Pgn kringles were monitored by 1H-NMR at 500 MHz and values for the equilibrium association constants (Ka) determined: rK1, Ka approximately 4.6 mM(-1); rK2, Ka approximately 3.3 mM(-1); K4, Ka approximately 6.2 mM-'; K5, K, 2.3 mM(-1). Thus, the lysine-binding kringles interact with CB-NTP more strongly than with Nalpha-acetyl-L-lysine methyl ester (Ka < 0.6 mM(-l), which reveals specificity for the NTP. In contrast, CB-NTP does not measurably interact with rK3. which is devoid of a LBS. CB-NTP and L-NTP 1H-NMR spectra were assigned and interproton distances estimated from 1H-1H Overhauser (NOESY) experiments. Structures of L-NTP and the Glul-Ile27 segment of CB-NTP were computed via restrained dynamic simulated annealing/energy minimization (SA/EM) protocols. Conformational models of CB-NTP were generated by joining the two (sub)structures followed by a round of constrained SA/EM. Helical turns are indicated for segments 6-9, 12-16, 28-30, and 45-48. Within the Cys34-Cys42 loop of L-NTP, the structure of the Glu-Glu-Asp-Glu-Glu39 segment appears to be relatively less defined, as is the case for the stretch containing Lys5O within the Cys42-Cys54 segment, consistent with the latter possibly interacting with kringle domains in intact Glul-Pgn. Overall, the CB-NTP and L-NTP fragments are of low regular secondary structure content-as indicated by UV-CD spectra- and exhibit fast amide 1H-2H exchange in 2H2O, suggestive of high flexibility.
Collapse
Affiliation(s)
- S S An
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
24
|
Cockell CS, Marshall JM, Dawson KM, Cederholm-Williams SA, Ponting CP. Evidence that the conformation of unliganded human plasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-terminal peptide. Biochem J 1998; 333 ( Pt 1):99-105. [PMID: 9639568 PMCID: PMC1219561 DOI: 10.1042/bj3330099] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human Glu-plasminogen adopts at least three conformations that provide a means for regulating the specificity of its activation in vivo. It has been proposed previously that the closed (alpha) conformation of human Glu-plasminogen is maintained through physical interaction of the kringle 5 domain and a lysine residue within the N-terminal peptide (NTP). To examine this hypothesis, site-directed mutagenesis was used to generate variant proteins containing substitutions either for aspartic acid residues within the anionic centre of the kringle 5 domain or for conserved lysine residues within the NTP. Size-exclusion HPLC and rates of plasminogen activation by urokinase-type plasminogen activator were used to determine the conformational states of these variants. Variants with substitutions within the kringle 5 lysine-binding site demonstrated extended conformations, as did variants with alanine substitutions for Lys50 and Lys62. In contrast, molecules in which NTP residues Lys20 or Lys33 were replaced were shown to adopt closed conformations. We conclude that the lysine-binding site of kringle 5 is involved in maintaining the closed conformation of human Glu-plasminogen via an interaction with the NTP, probably through Lys50 and/or Lys62. These conclusions advance the current model for the initial stages of fibrinolysis during which fibrin is thought to compete with the NTP for the kringle 5 lysine-binding site.
Collapse
Affiliation(s)
- C S Cockell
- University of Oxford, Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, South Parks Road, Oxford OX1 3QU, U.K
| | | | | | | | | |
Collapse
|
25
|
Castellino FJ, McCance SG. The kringle domains of human plasminogen. CIBA FOUNDATION SYMPOSIUM 1998; 212:46-60; discussion 60-5. [PMID: 9524763 DOI: 10.1002/9780470515457.ch4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mature form of the zymogen, human plasminogen (HPlg), contains 791 amino acids present in a single polypeptide chain. The fibrinolytic enzyme, human plasmin (HPlm), is formed from HPlg as a result of activator-catalysed cleavage of the Arg561-Val562 peptide bond in HPlg. The resulting HPlm contains a heavy chain of 561 amino acid residues, originating from the N-terminus of HPlg, doubly disulfide-linked to a light chain of 230 amino acid residues. This latter region, containing the C-terminus of HPlg, is homologous to serine proteases such as trypsin and elastase. The heavy chain of HPlm consists of five repeating triple-disulfide-linked peptide regions, c. 80 amino acid residues in length, termed kringles (K), that are responsible for interactions of HPlg and HPlm with substrates, inhibitors and regulators of HPlg activation. Important among the ligands of the kringles are positive activation effectors, typified by lysine and its analogues, and negative activation effectors, such as Cl-. The kringle domains of HPlg that participate in these binding interactions are K1, K4 and K5, and perhaps K2. These modules appear to function as independent domains. The amino acid residues important in these kringle/ligand binding interactions have been proposed by structural determinations, and their relative importance quantified by site-directed mutagenesis experimentation.
Collapse
Affiliation(s)
- F J Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA
| | | |
Collapse
|
26
|
Okada K, Ueshima S, Takaishi T, Yuasa H, Fukao H, Matsuo O. Effects of fibrin and alpha2-antiplasmin on plasminogen activation by staphylokinase. Am J Hematol 1996; 53:151-7. [PMID: 8895684 DOI: 10.1002/(sici)1096-8652(199611)53:3<151::aid-ajh1>3.0.co;2-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Staphylokinase obtains plasminogen activating activity by forming a complex with plasminogen. Although the enzymatic activity of staphylokinase is enhanced by fibrin, how fibrin enhances enzymatic activity has not been determined yet. The effects of fibrin, or fibrinogen fragments, on the activation of plasminogen by staphylokinase was investigated using CNBr-digested fibrinogen fragments (FCB-2 and FCB-5) and plasmin-degraded cross-linked fibrin fragments ((DD)E complex, DD fragments and E fragments). Kinetic analysis of the activity of staphylokinase revealed that its plasminogen activating activity, which was expressed as kcat/Km, was enhanced by FCB-2 (10-fold) and FCB-5 (5-fold). These fibrin fragments caused 38-, 30-, and 8.5-fold increases in activity for the DD fragment, (DD)E complex and E fragment, respectively. Although alpha2-antiplasmin inhibited the activation of plasminogen by staphylokinase, FCB-2 abolished its inhibitory effects, and the plasminogen activating activity of staphylokinase was restored. The inhibitory effects of alpha2-antiplasmin on the activation of mini-plasminogen by staphylokinase were less than for Glu- or Lys-plasminogen, and the inhibitory effect of alpha2-antiplasmin was not altered by fibrin or EACA. These findings indicate that the staphylokinase/plasmin(ogen) complex reacts with fibrin even in the presence of alpha2-antiplasmin, and efficient plasminogen activation takes place on the surface of fibrin.
Collapse
Affiliation(s)
- K Okada
- Department of Physiology, Kinki University School of Medicine, Osakasayama, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Sakharov DV, Lijnen HR, Rijken DC. Interactions between staphylokinase, plasmin(ogen), and fibrin. Staphylokinase discriminates between free plasminogen and plasminogen bound to partially degraded fibrin. J Biol Chem 1996; 271:27912-8. [PMID: 8910391 DOI: 10.1074/jbc.271.44.27912] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Staphylokinase (STA), a protein of bacterial origin, induces highly fibrin-specific thrombolysis both in human plasma in vitro and in pilot clinical trials. Using fluorescence microscopy, we investigated the spatial distribution of fluorescein isothiocyanate (FITC)-labeled STA during lysis of a plasma clot and its binding to purified fibrin clots in the presence or in the absence of plasmin(ogen). STA highly accumulated in a thin superficial layer of the lysing plasma clot following the distribution of plasminogen (Pg) during lysis. Experiments with purified fibrin clots revealed that STA binds to Pg bound to partially degraded fibrin but not to Pg bound to intact fibrin. Binding of FITC-labeled STA to various forms of plasmin(ogen) in a buffer solution was studied by measuring fluorescence anisotropy. The binding constant for Glu-Pg was estimated as 7.4 microM and for Lys-Pg as 0.28 microM; for active-site blocked plasmin the binding constant was less than 0.05 microM. The much lower affinity of STA for Glu-Pg compared with that for active site-blocked plasmin was mainly due to a lower association rate constant, as assessed by real time biospecific interaction analysis. Gel filtration of a mixture of STA with a molar excess of Glu-Pg demonstrated that STA migrated as an unbound 18-kDa protein when activation of Pg into plasmin was precluded by inhibitors of plasmin. When gel-filtered under the same conditions with plasmin, STA migrated in complex with plasmin with an apparent molecular mass of 100 kDa. Confocal fluorescence microscopy finally demonstrated that when FITC-labeled STA was added to plasma before clotting, it did not bind to fibrin fibers during the first minutes (lag phase), although Pg bound to the fibers moderately. Then, both Pg and STA started to accumulate on the fibers progressively, followed by complete lysis of the clot. In conclusion, our results imply that, when STA is added to plasma, only a small percentage associates with Pg. In contrast, STA binds strongly to plasmin and to Pg, which is bound to partially degraded fibrin. These findings add a new mechanism to the known explanations for the inefficient Pg activation by STA in plasma and specify the mechanism for fibrin-dependent activation of Pg.
Collapse
Affiliation(s)
- D V Sakharov
- Gaubius Laboratory, TNO Prevention and Health, P. O. Box 2215, 2301 CE Leiden, The Netherlands.
| | | | | |
Collapse
|