1
|
Zhang X, Tamaki H, Kikukawa T, Fujiwara T, Matsuki Y. Structural changes of Natronomonas pharaonis halorhodopsin in its late photocycle revealed by solid-state NMR spectroscopy. Biophys Chem 2024; 315:107329. [PMID: 39369577 DOI: 10.1016/j.bpc.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven Cl- inward pump that is widely used as an optogenetic tool. Although NpHR is previously extensively studied, its Cl- uptake process is not well understood from the protein structure perspective, mainly because in crystalline lattice, it has been difficult to analyze the structural changes associated with the Cl- uptake process. In this study, we used solid-state NMR to analyze NpHR both in the Cl--bound and -free states under near-physiological transmembrane condition. Chemical shift perturbation analysis suggested that while the structural change caused by the Cl- depletion is widespread over the NpHR molecule, residues in the extracellular (EC) part of helix D exhibited significant conformational changes that may be related to the Cl- uptake process. By combining photochemical analysis and dynamic nuclear polarization (DNP)-enhanced solid-state NMR measurement on NpHR point mutants for the suggested residues, we confirmed their importance in the Cl- uptake process. In particular, we found the mutation at Ala165 position, located at the trimer interface, to an amino acid with bulky sidechain (A165V) significantly perturbs the late photocycle and disrupts its trimeric assembly in the Cl--free state as well as during the ion-pumping cycle under the photo-irradiated condition. This strongly suggested an outward movement of helix D at EC part, disrupting the trimer integrity. Together with the spectroscopic data and known NpHR crystal structures, we proposed a model that this helix movement is required for creating the Cl- entrance path on the extracellular surface of the protein and is crucial to the Cl- uptake process.
Collapse
Affiliation(s)
- Xin Zhang
- Institute for Protein Research, Osaka University, Japan
| | - Hajime Tamaki
- Institute for Protein Research, Osaka University, Japan
| | | | | | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan.
| |
Collapse
|
2
|
Miyazaki K, Kikukawa T, Unno M, Fujisawa T. Chromophore Structural Change during the Photocycle of a Light-Driven Cl - Pump from Mastigocladopsis repens: A Cryogenic Raman Study. J Phys Chem B 2024; 128:9692-9698. [PMID: 39350671 DOI: 10.1021/acs.jpcb.4c04136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Microbial rhodopsins are the most widely distributed photoreceptors that bind a retinal Schiff base chromophore. Among them, a light-driven Cl- pump discovered from Mastigocladopsis repens (MrHR) is distinctive in that it has the structural features of both H+ and Cl- pumps. While the photocycle has been characterized by light-induced changes of the absorption spectrum, the structural changes of the retinal chromophore remain largely unknown. In this study, we examined the chromophore structural changes of MrHR by using cryogenic Raman spectroscopy. We observed five photointermediates─K, L, N1, N2, and MrHR'─that show distinct vibrational spectra, indicating atypical chromophore structures, e.g., small distortion in the K intermediate and Schiff base configurational change in the MrHR' intermediate. Based on the Raman spectra of two N intermediates (N1 and N2), we propose that N1 is the Cl--bound state and N2 is the Cl--unbound state, which are responsible for the Cl- release and uptake, respectively, to achieve Cl- pumping.
Collapse
Affiliation(s)
- Kana Miyazaki
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
3
|
Singh M, Ito S, Hososhima S, Abe-Yoshizumi R, Tsunoda SP, Inoue K, Kandori H. Light-Driven Chloride and Sulfate Pump with Two Different Transport Modes. J Phys Chem B 2023; 127:7123-7134. [PMID: 37552856 DOI: 10.1021/acs.jpcb.3c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ion pumps are membrane proteins that actively translocate ions by using energy. All known pumps bind ions in the resting state, and external energy allows ion transport through protein structural changes. The light-driven sodium-ion pump Krokinobacter eikastus rhodopsin 2 (KR2) is an exceptional case in which ion binding follows the energy input. In this study, we report another case of this unusual transport mode. The NTQ rhodopsin from Alteribacter aurantiacus (AaClR) is a natural light-driven chloride pump, in which the chloride ion binds to the resting state. AaClR is also able to pump sulfate ions, though the pump efficiency is much lower for sulfate ions than for chloride ions. Detailed spectroscopic analysis revealed no binding of the sulfate ion to the resting state of AaClR, indicating that binding of the substrate (sulfate ion) to the resting state is not necessary for active transport. This property of the AaClR sulfate pump is similar to that of the KR2 sodium pump. Photocycle dynamics of the AaClR sulfate pump resemble a non-functional cycle in the absence of anions. Despite this, flash photolysis and difference Fourier transform infrared spectroscopy suggest transient binding of the sulfate ion to AaClR. The molecular mechanism of this unusual active transport by AaClR is discussed.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| |
Collapse
|
4
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
5
|
Functional Mechanism of Cl --Pump Rhodopsin and Its Conversion into H + Pump. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:55-71. [PMID: 33398807 DOI: 10.1007/978-981-15-8763-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cl--pump rhodopsin is the second discovered microbial rhodopsin. Although its physiological role has not been fully clarified, its functional mechanism has been studied as a model for anion transporters. After the success of neural activation by channel rhodopsin, the first Cl--pump halorhodopsin (HR) had become widely used as a neural silencer. The emergence of artificial and natural anion channel rhodopsins lowered the importance of HRs. However, the longer absorption maxima of approximately 585-600 nm for HRs are still advantageous for applications in mammalian brains and collaborations with neural activators possessing shorter absorption maxima. In this chapter, the variation and functional mechanisms of Cl- pumps are summarized. After the discovery of HR, Cl--pump rhodopsins were confined to only extremely halophilic haloarchaea. However, after 2014, two Cl--pump groups were newly discovered in marine and terrestrial bacteria. These Cl- pumps are phylogenetically distinct from HRs and have unique characteristics. In particular, the most recently identified Cl- pump has close similarity with the H+ pump bacteriorhodopsin and was converted into the H+ pump by a single amino acid replacement.
Collapse
|
6
|
Yamamoto A, Tsukamoto T, Suzuki K, Hashimoto E, Kobashigawa Y, Shibasaki K, Uchida T, Inagaki F, Demura M, Ishimori K. Spectroscopic Characterization of Halorhodopsin Reconstituted into Nanodisks Using Native Lipids. Biophys J 2020; 118:2853-2865. [PMID: 32396848 DOI: 10.1016/j.bpj.2020.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022] Open
Abstract
We successfully reconstituted single Natronomonas pharaonis halorhodopsin (NpHR) trimers into a nanodisk (ND) using the native archaeal lipid (NL) and an artificial lipid having a zwitterionic headgroup, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Incorporation of single trimeric NpHR into NDs was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, and visible circular dichroism spectroscopy. The Cl- binding affinity of NpHR in NDs using NL (NL-ND NpHR) or POPC (POPC-ND NpHR) was examined by absorption spectroscopy, showing that the Cl--releasing affinities (Kd,N↔O) of these ND-reconstituted NpHRs are more than 10 times higher than that obtained from native NpHR membrane fragments (MFs) harvested from a NpHR-overexpressing archaeal strain (MF NpHR). The photoreaction kinetics of these ND-reconstituted NpHRs revealed that the Cl- uptake was faster than that of MF NpHR. These differences in the Cl--releasing and uptake properties of ND-reconstituted NpHRs and MF NpHR may arise from suppression of protein conformational changes associated with Cl- release from the trimeric NpHR caused by ND reconstitution, conformational perturbation in the trimeric state, and loss of the trimer-trimer interactions. On the other hand, POPC-ND NpHR demonstrated accelerated Cl- uptake compared to NL-ND NpHR, suggesting that the negative charge on the archaeal membrane surface regulates the photocycle of NpHR. Although NL-ND NpHR and MF NpHR are embedded in the same lipid, the lower Cl--binding affinity at the initial state (Kd,initial) and faster recovering from the NpHR' state to the original state of the photoreaction cycle were observed for NL-ND NpHR, probably because of insufficient interactions with a chromophore in the native membrane, bacterioruberin in reconstituted NDs. Our results indicate that specific interactions of NpHR with surrounding lipids and bacterioruberin, structural flexibility of the membrane, and interactions between trimeric NpHRs may be necessary for efficient Cl- pumping.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Kenshiro Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Eri Hashimoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | | | - Kousuke Shibasaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Fuyuhiko Inagaki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Zhang C, Yang S, Flossmann T, Gao S, Witte OW, Nagel G, Holthoff K, Kirmse K. Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition. BMC Biol 2019; 17:95. [PMID: 31775747 PMCID: PMC6882325 DOI: 10.1186/s12915-019-0717-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background Optogenetic silencing techniques have expanded the causal understanding of the functions of diverse neuronal cell types in both the healthy and diseased brain. A widely used inhibitory optogenetic actuator is eNpHR3.0, an improved version of the light-driven chloride pump halorhodopsin derived from Natronomonas pharaonis. A major drawback of eNpHR3.0 is related to its pronounced inactivation on a time-scale of seconds, which renders it unsuited for applications that require long-lasting silencing. Results Using transgenic mice and Xenopus laevis oocytes expressing an eNpHR3.0-EYFP fusion protein, we here report optimized photo-stimulation techniques that profoundly increase the stability of eNpHR3.0-mediated currents during long-term photo-stimulation. We demonstrate that optimized photo-stimulation enables prolonged hyperpolarization and suppression of action potential discharge on a time-scale of minutes. Conclusions Collectively, our findings extend the utility of eNpHR3.0 to the long-lasting inhibition of excitable cells, thus facilitating the optogenetic dissection of neural circuits.
Collapse
Affiliation(s)
- Chuanqiang Zhang
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Present Address: Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Shang Yang
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Tom Flossmann
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Present Address: Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Shiqiang Gao
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Georg Nagel
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Knut Kirmse
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
8
|
Asido M, Eberhardt P, Kriebel CN, Braun M, Glaubitz C, Wachtveitl J. Time-resolved IR spectroscopy reveals mechanistic details of ion transport in the sodium pump Krokinobacter eikastus rhodopsin 2. Phys Chem Chem Phys 2019; 21:4461-4471. [PMID: 30734791 DOI: 10.1039/c8cp07418f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a comparative study on the structural dynamics of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 wild type under sodium and proton pumping conditions by means of time-resolved IR spectroscopy. The kinetics of KR2 under sodium pumping conditions exhibits a sequential character, whereas the kinetics of KR2 under proton pumping conditions involves several equilibrium states. The sodium translocation itself is characterized by major conformational changes of the protein backbone, such as distortions of the α-helices and probably of the ECL1 domain, indicated by distinct marker bands in the amide I region. Carbonyl stretch modes of specific amino acid residues helped to elucidate structural changes in the retinal Schiff base moiety, including the protonation and deprotonation of D116, which is crucial for a deeper understanding of the mechanistic features in the photocycle of KR2.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Fujisawa T, Kiyota H, Kikukawa T, Unno M. Low-Temperature Raman Spectroscopy of Halorhodopsin from Natronomonas pharaonis: Structural Discrimination of Blue-Shifted and Red-Shifted Photoproducts. Biochemistry 2019; 58:4159-4167. [PMID: 31538771 DOI: 10.1021/acs.biochem.9b00643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
From the low-temperature absorption and Raman measurements of halorhodopsin from Natronomonas pharaonis (pHR), we observed that the two photoproducts were generated after exciting pHR at 80 K by green light. One photoproduct was the red-shifted K intermediate (pHRK) as the primary photointermediate for Cl- pumping, and the other was the blue-shifted one (pHRhypso), which was not involved in the Cl- pumping and thermally relaxed to the original unphotolyzed state by increasing temperature. The formation of these two kinds of photoproducts was previously reported for halorhodopsin from Halobacterium sarinarum [ Zimanyi et al. Biochemistry 1989 , 28 , 1656 ]. We found that the same took place in pHR, and we revealed the chromophore structures of the two photointermediates from their Raman spectra for the first time. pHRhypso had the distorted all-trans chromophore, while pHRK contained the distorted 13-cis form. The present results revealed that the structural analyses of pHRK carried out so far at ∼80 K potentially included a significant contribution from pHRhypso. pHRhypso was efficiently formed via the photoexcitation of pHRK, indicating that pHRhypso was likely a side product after photoexcitation of pHRK. The formation of pHRhypso suggested that the active site became tight in pHRK due to the slight movement of Cl-, and the back photoisomerization then produced the distorted all-trans chromophore in pHRhypso.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Hayato Kiyota
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science , Hokkaido University , Sapporo 060-0810 , Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education , Hokkaido University , Sapporo 060-0810 , Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| |
Collapse
|
10
|
Mizuno M, Shimoo Y, Kandori H, Mizutani Y. Effect of a bound anion on the structure and dynamics of halorhodopsin from Natronomonas pharaonis. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:054703. [PMID: 31673569 PMCID: PMC6811361 DOI: 10.1063/1.5125621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Active ion transport across membranes is vital to maintaining the electrochemical gradients of ions in cells and is mediated by transmembrane proteins. Halorhodopsin (HR) functions as a light-driven inward pump for chloride ions. The protein contains all-trans-retinal bound to a specific lysine residue through a protonated Schiff base. Interaction between the bound chloride ion and the protonated Schiff base is crucial for ion transport because chloride ion movement is driven by the flipping of the protonated Schiff base upon photoisomerization. However, it remains unknown how this interaction evolves in the HR photocycle. Here, we addressed the effect of the bound anion on the structure and dynamics of HR from Natronomonas pharaonis in the early stage of the photocycle. Comparison of the chloride-bound, formate-bound, and anion-depleted forms provided insights into the interaction between the bound anion and the chromophore/protein moiety. In the unphotolyzed state, the bound anion affects the π-conjugation of the polyene chain and the hydrogen bond of the protonated Schiff base of the retinal chromophore. Picosecond time scale measurements showed that the band intensities of the W16 and W18 modes of the tryptophan residues decreased instantaneously upon photoexcitation of the formate-bound form. In contrast, these intensity decreases were delayed for the chloride-bound and anion-depleted forms. These observations suggest the stronger interactions of the bound formate ion with the retinal chromophore and the chromophore pocket. On the nanosecond to microsecond timescales, we found that the interaction between the protonated Schiff base and the bound ion is broken upon formation of the K intermediate and is recovered following translocation of the bound anion toward the protonated Schiff base in the L intermediate. Our results demonstrate that the hydrogen-bonding ability of the bound anion plays an essential role in the ion transport of light-driven anion pumps.
Collapse
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yumi Shimoo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
11
|
Miyahara T, Nakatsuji H. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. J Phys Chem A 2019; 123:1766-1784. [DOI: 10.1021/acs.jpca.8b10203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomoo Miyahara
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan
| | - Hiroshi Nakatsuji
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan
| |
Collapse
|
12
|
Kouyama T, Ihara K, Maki K, Chan SK. Three-Step Isomerization of the Retinal Chromophore during the Anion Pumping Cycle of Halorhodopsin. Biochemistry 2018; 57:6013-6026. [PMID: 30211543 DOI: 10.1021/acs.biochem.8b00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The anion pumping cycle of halorhodopsin from Natronomonas pharaonis ( pHR) is initiated when the all- trans/15- anti isomer of retinal is photoisomerized into the 13- cis/15- anti configuration. A recent crystallographic study suggested that a reaction state with 13- cis/15- syn retinal occurred during the anion release process, i.e., after the N state with the 13- cis/15- anti retinal and before the O state with all- trans/15- anti retinal. In this study, we investigated the retinal isomeric composition in a long-living reaction state at various bromide ion concentrations. It was found that the 13- cis isomer (csHR'), in which the absorption spectrum was blue-shifted by ∼8 nm compared with that of the trans isomer (taHR), accumulated significantly when a cold suspension of pHR-rich claret membranes in 4 M NaBr was illuminated with continuous light. Analysis of flash-induced absorption changes suggested that the branching of the trans photocycle into the 13- cis isomer (csHR') occurs during the decay of an O-like state (O') with 13- cis/15- syn retinal; i.e., O' can decay to either csHR' or O with all- trans/15- anti retinal. The efficiency of the branching reaction was found to be dependent on the bromide ion concentration. At a very high bromide ion concentration, the anion pumping cycle is described by the scheme taHR -( hν) → K → L1a ↔ L1b ↔ N ↔ N' ↔ O' ↔ csHR' ↔ taHR. At a low bromide ion concentration, on the other hand, O' decays into taHR via O.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Kunio Ihara
- Center for Gene Research , Nagoya University , Nagoya 464-8602 , Japan
| | - Kosuke Maki
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Siu Kit Chan
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| |
Collapse
|
13
|
Tsukamoto T, Kikuchi C, Suzuki H, Aizawa T, Kikukawa T, Demura M. Implications for the impairment of the rapid channel closing of Proteomonas sulcata anion channelrhodopsin 1 at high Cl - concentrations. Sci Rep 2018; 8:13445. [PMID: 30194401 PMCID: PMC6128917 DOI: 10.1038/s41598-018-31742-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/24/2018] [Indexed: 01/15/2023] Open
Abstract
Natural anion channelrhodopsins (ACRs) have recently received increased attention because of their effectiveness in optogenetic manipulation for neuronal silencing. In this study, we focused on Proteomonas sulcata ACR1 (PsuACR1), which has rapid channel closing kinetics and a rapid recovery to the initial state of its anion channel function that is useful for rapid optogenetic control. To reveal the anion concentration dependency of the channel function, we investigated the photochemical properties of PsuACR1 using spectroscopic techniques. Recombinant PsuACR1 exhibited a Cl− dependent spectral red-shift from 531 nm at 0.1 mM to 535 nm at 1000 mM, suggesting that it binds Cl− in the initial state with a Kd of 5.5 mM. Flash-photolysis experiments revealed that the photocycle was significantly changed at high Cl− concentrations, which led not only to suppression of the accumulation of the M-intermediate involved in the Cl− non-conducting state but also to a drastic change in the equilibrium state of the other photo-intermediates. Because of this, the Cl− conducting state is protracted by one order of magnitude, which implies an impairment of the rapid channel closing of PsuACR1 in the presence of high concentrations of Cl−.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan. .,Division of Macromolecular Functions, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Chihiro Kikuchi
- Division of Macromolecular Functions, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiromu Suzuki
- Division of Macromolecular Functions, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan.,Division of Macromolecular Functions, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan.,Division of Macromolecular Functions, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan.,Division of Macromolecular Functions, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
14
|
Nakajima Y, Tsukamoto T, Kumagai Y, Ogura Y, Hayashi T, Song J, Kikukawa T, Demura M, Kogure K, Sudo Y, Yoshizawa S. Presence of a Haloarchaeal Halorhodopsin-Like Cl - Pump in Marine Bacteria. Microbes Environ 2018; 33:89-97. [PMID: 29553064 PMCID: PMC5877348 DOI: 10.1264/jsme2.me17197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Light-driven ion-pumping rhodopsins are widely distributed among bacteria, archaea, and eukaryotes in the euphotic zone of the aquatic environment. H+-pumping rhodopsin (proteorhodopsin: PR), Na+-pumping rhodopsin (NaR), and Cl--pumping rhodopsin (ClR) have been found in marine bacteria, which suggests that these genes evolved independently in the ocean. Putative microbial rhodopsin genes were identified in the genome sequences of marine Cytophagia. In the present study, one of these genes was heterologously expressed in Escherichia coli cells and the rhodopsin protein named Rubricoccus marinus halorhodopsin (RmHR) was identified as a light-driven inward Cl- pump. Spectroscopic assays showed that the estimated dissociation constant (Kd,int.) of this rhodopsin was similar to that of haloarchaeal halorhodopsin (HR), while the Cl--transporting photoreaction mechanism of this rhodopsin was similar to that of HR, but different to that of the already-known marine bacterial ClR. This amino acid sequence similarity also suggested that this rhodopsin is similar to haloarchaeal HR and cyanobacterial HRs (e.g., SyHR and MrHR). Additionally, a phylogenetic analysis revealed that retinal biosynthesis pathway genes (blh and crtY) belong to a phylogenetic lineage of haloarchaea, indicating that these marine Cytophagia acquired rhodopsin-related genes from haloarchaea by lateral gene transfer. Based on these results, we concluded that inward Cl--pumping rhodopsin is present in genera of the class Cytophagia and may have the same evolutionary origins as haloarchaeal HR.
Collapse
Affiliation(s)
- Yu Nakajima
- Atmosphere and Ocean research Institute (AORI), The University of Tokyo.,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, the University of Tokyo
| | - Takashi Tsukamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yohei Kumagai
- Atmosphere and Ocean research Institute (AORI), The University of Tokyo.,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, the University of Tokyo
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University
| | - Jaeho Song
- Department of Biological Sciences, Inha University
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University
| | - Kazuhiro Kogure
- Atmosphere and Ocean research Institute (AORI), The University of Tokyo.,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, the University of Tokyo
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Susumu Yoshizawa
- Atmosphere and Ocean research Institute (AORI), The University of Tokyo.,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, the University of Tokyo
| |
Collapse
|
15
|
Harris A, Saita M, Resler T, Hughes-Visentin A, Maia R, Pranga-Sellnau F, Bondar AN, Heberle J, Brown LS. Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin. Phys Chem Chem Phys 2018; 20:3184-3199. [PMID: 29057415 DOI: 10.1039/c7cp06068h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are well known as versatile and ubiquitous light-driven ion transporters and photosensors. While the proton transport mechanism has been studied in great detail, much less is known about various modes of anion transport. Until recently, only two main groups of light-driven anion pumps were known, archaeal halorhodopsins (HRs) and bacterial chloride pumps (known as ClRs or NTQs). Last year, another group of cyanobacterial anion pumps with a very distinct primary structure was reported. Here, we studied the chloride-transporting photocycle of a representative of this new group, Mastigocladopsis repens rhodopsin (MastR), using time-resolved spectroscopy in the infrared and visible ranges and site-directed mutagenesis. We found that, in accordance with its unique amino acid sequence containing many polar residues in the transmembrane region of the protein, its photocycle features a number of unusual molecular events not known for other anion-pumping rhodopsins. It appears that light-driven chloride ion transfers by MastR are coupled with translocation of protons and water molecules as well as perturbation of several polar sidechains. Of particular interest is transient deprotonation of Asp-85, homologous to the cytoplasmic proton donor of light-driven proton pumps (such as Asp-96 of bacteriorhodopsin), which may serve as a regulatory mechanism.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mizuno M, Nakajima A, Kandori H, Mizutani Y. Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis. J Phys Chem A 2018; 122:2411-2423. [DOI: 10.1021/acs.jpca.7b12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| | - Ayumi Nakajima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| |
Collapse
|
17
|
Yoshida K, Yamashita T, Sasaki K, Inoue K, Shichida Y, Kandori H. Chimeric microbial rhodopsins for optical activation of Gs-proteins. Biophys Physicobiol 2017; 14:183-190. [PMID: 29362703 PMCID: PMC5774426 DOI: 10.2142/biophysico.14.0_183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/10/2017] [Indexed: 12/01/2022] Open
Abstract
We previously showed that the chimeric proteins of microbial rhodopsins, such as light-driven proton pump bacteriorhodopsin (BR) and Gloeobacter rhodopsin (GR) that contain cytoplasmic loops of bovine rhodopsin, are able to activate Gt protein upon light absorption. These facts suggest similar protein structural changes in both the light-driven proton pump and animal rhodopsin. Here we report two trials to engineer chimeric rhodopsins, one for the inserted loop, and another for the microbial rhodopsin template. For the former, we successfully activated Gs protein by light through the incorporation of the cytoplasmic loop of β2-adrenergic receptor (β2AR). For the latter, we did not observe any G-protein activation for the light-driven sodium pump from Indibacter alkaliphilus (IndiR2) or a light-driven chloride pump halorhodopsin from Natronomonas pharaonis (NpHR), whereas the light-driven proton pump GR showed light-dependent G-protein activation. This fact suggests that a helix opening motion is common to G protein coupled receptor (GPCR) and GR, but not to IndiR2 and NpHR. Light-induced difference FTIR spectroscopy revealed similar structural changes between WT and the third loop chimera for each light-driven pump. A helical structural perturbation, which was largest for GR, was further enhanced in the chimera. We conclude that similar structural dynamics that occur on the cytoplasmic side of GPCR are needed to design chimeric microbial rhodopsins.
Collapse
Affiliation(s)
- Kazuho Yoshida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kengo Sasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
18
|
Kaneko A, Inoue K, Kojima K, Kandori H, Sudo Y. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys Rev 2017; 9:861-876. [PMID: 29178082 DOI: 10.1007/s12551-017-0335-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023] Open
Abstract
Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.
Collapse
Affiliation(s)
- Akimasa Kaneko
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
19
|
Honda N, Tsukamoto T, Sudo Y. Comparative evaluation of the stability of seven-transmembrane microbial rhodopsins to various physicochemical stimuli. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Chen XR, Huang YC, Yi HP, Yang CS. A Unique Light-Driven Proton Transportation Signal in Halorhodopsin from Natronomonas pharaonis. Biophys J 2017; 111:2600-2607. [PMID: 28002736 DOI: 10.1016/j.bpj.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022] Open
Abstract
Halorhodopsin (HR) is a seven-transmembrane retinylidene protein from haloarchaea that is commonly known to function as a light-driven inward chloride pump. However, previous studies have indicated that despite the general characteristics that most HRs share, HRs from distinct species differ in many aspects. We present indium-tin-oxide-based photocurrent measurements that reveal a light-induced signal generated by proton release that is observed solely in NpHR via purified protein-based assays, demonstrating that indeed HRs are not all identical. We conducted mutagenesis studies on several conserved residues that are considered critical for chloride stability among HRs. Intriguingly, the photocurrent signals were eliminated after specific point mutations. We propose an NpHR light-driven, cytoplasmic-side proton circulation model to explain the unique light-induced photocurrent recorded in NpHR. Notably, the photocurrent and various photocycle intermediates were recorded simultaneously. This approach provides a high-resolution method for further investigations of the proton-assisted chloride translocation mechanism.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yuan-Chi Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Ping Yi
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Yamauchi Y, Konno M, Ito S, Tsunoda SP, Inoue K, Kandori H. Molecular properties of a DTD channelrhodopsin from Guillardia theta. Biophys Physicobiol 2017. [PMID: 28630812 PMCID: PMC5468465 DOI: 10.2142/biophysico.14.0_57] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microbial rhodopsins are membrane proteins found widely in archaea, eubacteria and eukaryotes (fungal and algal species). They have various functions, such as light-driven ion pumps, light-gated ion channels, light sensors and light-activated enzymes. A light-driven proton pump bacteriorhodopsin (BR) contains a DTD motif at positions 85, 89, and 96, which is unique to archaeal proton pumps. Recently, channelrhodopsins (ChRs) containing the DTD motif, whose sequential identity is ~20% similar to BR and to cation ChRs in Chlamydomonas reinhardtii (CrCCRs), were found. While extensive studies on ChRs have been performed with CrCCR2, the molecular properties of DTD ChRs remain an intrigue. In this paper, we studied a DTD rhodopsin from G. theta (GtCCR4) using electrophysiological measurements, flash photolysis, and low-temperature difference FTIR spectroscopy. Electrophysiological measurements clearly showed that GtCCR4 functions as a light-gated cation channel, similar to other G. theta DTD ChRs (GtCCR1-3). Light-driven proton pump activity was also suggested for GtCCR4. Both electrophysiological and flash photolysis experiments showed that channel closing occurs upon reprotonation of the Schiff base, suggesting that the dynamics of retinal and channels are tightly coupled in GtCCR4. From Fourier transform infrared (FTIR) spectroscopy at 77 K, we found that the primary reaction is an all-trans to a 13-cis photoisomerization, like other microbial rhodopsins, although perturbations in the secondary structure were much smaller in GtCCR4 than in CrCCR2.
Collapse
Affiliation(s)
- Yumeka Yamauchi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Masae Konno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,Frontier Research Institute for Material Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
22
|
Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S, Nakajima Y, Mizuno M, Kuramochi H, Tahara T, Mizutani Y, Sudo Y. Demonstration of a Light-Driven SO42– Transporter and Its Spectroscopic Characteristics. J Am Chem Soc 2017; 139:4376-4389. [DOI: 10.1021/jacs.6b12139] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akiko Niho
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Takashi Tsukamoto
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Marie Kurihara
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shinya Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yu Nakajima
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sudo
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
23
|
Gdor I, Mani-Hazan M, Friedman N, Sheves M, Ruhman S. Membrane Independence of Ultrafast Photochemistry in Pharaonis Halorhodopsin: Testing the Role of Bacterioruberin. J Phys Chem B 2017; 121:2319-2325. [PMID: 28230358 DOI: 10.1021/acs.jpcb.6b12698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast photochemistry of pharaonis halorhodopsin (p-HR) in the intact membrane of Natronomonas pharaonis has been studied by photoselective femtosecond pump-hyperspectral probe spectroscopy with high time resolution. Two variants of this sample were studied, one with wild-type retinal prosthetic groups and another after shifting the retinal absorption deep into the blue range by reducing the Schiff base linkage, and the results were compared to a previous study on detergent-solubilized p-HR. This comparison shows that retinal photoisomerization dynamics is identical in the membrane and in the solubilized sample. Selective photoexcitation of bacterioruberin, which is associated with the protein in the native membrane, in wild-type and reduced samples, demonstrates conclusively that unlike the carotenoids associated with some bacterial retinal proteins the carrotenoid in p-HR does not act as a light-harvesting antenna.
Collapse
Affiliation(s)
- Itay Gdor
- Institute of Chemistry, the Hebrew University , Jerusalem 91904, Israel
| | - Maya Mani-Hazan
- Department of Organic Chemistry, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Noga Friedman
- Department of Organic Chemistry, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry, the Hebrew University , Jerusalem 91904, Israel
| |
Collapse
|
24
|
Schreiner M, Schlesinger R, Heberle J, Niemann HH. Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site. Acta Crystallogr F Struct Biol Commun 2016; 72:692-9. [PMID: 27599860 PMCID: PMC5012209 DOI: 10.1107/s2053230x16012796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 05/17/2023] Open
Abstract
The transmembrane pump halorhodopsin in halophilic archaea translocates chloride ions from the extracellular to the cytoplasmic side upon illumination. In the ground state a tightly bound chloride ion occupies the primary chloride-binding site (CBS I) close to the protonated Schiff base that links the retinal chromophore to the protein. The light-triggered trans-cis isomerization of retinal causes structural changes in the protein associated with movement of the chloride ion. In reverse, chemical depletion of CBS I in Natronomonas pharaonis halorhodopsin (NpHR) through deprotonation of the Schiff base results in conformational changes of the protein: a state thought to mimic late stages of the photocycle. Here, crystals of Halobacterium salinarum halorhodopsin (HsHR) were soaked at high pH to provoke deprotonation of the Schiff base and loss of chloride. The crystals changed colour from purple to yellow and the occupancy of CBS I was reduced from 1 to about 0.5. In contrast to NpHR, this chloride depletion did not cause substantial conformational changes in the protein. Nevertheless, two observations indicate that chloride depletion could eventually result in structural changes similar to those found in NpHR. Firstly, the partially chloride-depleted form of HsHR has increased normalized B factors in the region of helix C that is close to CBS I and changes its conformation in NpHR. Secondly, prolonged soaking of HsHR crystals at high pH resulted in loss of diffraction. In conclusion, the conformation of the chloride-free protein may not be compatible with this crystal form of HsHR despite a packing arrangement that hardly restrains helices E and F that presumably move during ion transport.
Collapse
Affiliation(s)
- Madeleine Schreiner
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
25
|
Chan SK, Kawaguchi H, Kubo H, Murakami M, Ihara K, Maki K, Kouyama T. Crystal Structure of the 11-cis Isomer of Pharaonis Halorhodopsin: Structural Constraints on Interconversions among Different Isomeric States. Biochemistry 2016; 55:4092-104. [DOI: 10.1021/acs.biochem.6b00277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siu Kit Chan
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Haruki Kawaguchi
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroki Kubo
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Midori Murakami
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kunio Ihara
- Center
for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Kosuke Maki
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tsutomu Kouyama
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- RIKEN Harima Branch, 1-1-1, Kouto, Sayo, Hyogo, Japan
| |
Collapse
|
26
|
Kouyama T, Kawaguchi H, Nakanishi T, Kubo H, Murakami M. Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin. Biophys J 2016; 108:2680-90. [PMID: 26039169 PMCID: PMC4457492 DOI: 10.1016/j.bpj.2015.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/15/2023] Open
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR) functions as a light-driven halide ion pump. In the presence of halide ions, the photochemical reaction of pHR is described by the scheme: K→ L1 → L2 → N → O → pHR′ → pHR. Here, we report light-induced structural changes of the pHR-bromide complex observed in the C2 crystal. In the L1-to-L2 transition, the bromide ion that initially exists in the extracellular vicinity of retinal moves across the retinal Schiff base. Upon the formation of the N state with a bromide ion bound to the cytoplasmic vicinity of the retinal Schiff base, the cytoplasmic half of helix F moves outward to create a water channel in the cytoplasmic interhelical space, whereas the extracellular half of helix C moves inward. During the transition from N to an N-like reaction state with retinal assuming the 13-cis/15-syn configuration, the translocated bromide ion is released into the cytoplasmic medium. Subsequently, helix F relaxes into its original conformation, generating the O state. Anion uptake from the extracellular side occurs when helix C relaxes into its original conformation. These structural data provide insight into the structural basis of unidirectional anion transport.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan; RIKEN Harima Branch, 1-1-1, Kouto, Sayo, Hyogo, Japan.
| | - Haruki Kawaguchi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taichi Nakanishi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hiroki Kubo
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
27
|
Koua FHM, Kandori H. Light-induced structural changes during early photo-intermediates of the eubacterial Cl−pump Fulvimarina rhodopsin observed by FTIR difference spectroscopy. RSC Adv 2016. [DOI: 10.1039/c5ra19363j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fulvimarina pelagirhodopsin (FR) is a member of inward eubacterial light-activated Cl−translocating rhodopsins (ClR) that were found recently in marine bacteria.
Collapse
Affiliation(s)
| | - Hideki Kandori
- OptoBioTechnology Research Center
- Nagoya Institute of Technology
- 466-8555 Nagoya
- Japan
- Department of Frontier Materials
| |
Collapse
|
28
|
Hasemi T, Kikukawa T, Kamo N, Demura M. Characterization of a Cyanobacterial Chloride-pumping Rhodopsin and Its Conversion into a Proton Pump. J Biol Chem 2015; 291:355-62. [PMID: 26578511 DOI: 10.1074/jbc.m115.688614] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
Light-driven ion-pumping rhodopsins are widely distributed in microorganisms and are now classified into the categories of outward H(+) and Na(+) pumps and an inward Cl(-) pump. These different types share a common protein architecture and utilize the photoisomerization of the same chromophore, retinal, to evoke photoreactions. Despite these similarities, successful pump-to-pump conversion had been confined to only the H(+) pump bacteriorhodopsin, which was converted to a Cl(-) pump in 1995 by a single amino acid replacement. In this study we report the first success of the reverse conversion from a Cl(-) pump to a H(+) pump. A novel microbial rhodopsin (MrHR) from the cyanobacterium Mastigocladopsis repens functions as a Cl(-) pump and belongs to a cluster that is far distant from the known Cl(-) pumps. With a single amino acid replacement, MrHR is converted to a H(+) pump in which dissociable residues function almost completely in the H(+) relay reactions. MrHR most likely evolved from a H(+) pump, but it has not yet been highly optimized into a mature Cl(-) pump.
Collapse
Affiliation(s)
- Takatoshi Hasemi
- From the Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- From the Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- From the Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- From the Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
29
|
Dai G, Kikukawa T, Ihara K, Iwasa T. Microbial rhodopsins of Halorubrum species isolated from Ejinoor salt lake in Inner Mongolia of China. Photochem Photobiol Sci 2015; 14:1974-82. [PMID: 26328780 DOI: 10.1039/c5pp00161g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are photoactive proteins that use a retinal molecule as the photoactive center. Because of structural simplicity and functional diversity, microbial rhodopsins have been an excellent model system for structural biology. In this study, a halophilic archaea that has three microbial rhodopsin-type genes in its genome was isolated from Ejinoor salt lake in Inner Mongolia of China. A sequence of 16S rRNA showed that the strain belongs to Halorubrum genus and named Halorubrum sp. ejinoor (He). The translated amino acid sequences of its microbial rhodopsin-type genes suggest that they are homologs of archaerhodopsin (HeAR), halorhodopsin (HeHR) and sensory rhodopsin II (HeSRII). The mRNAs of three types of genes were detected by RT-PCR and their amounts were investigated by Real-Time RT-PCR. The amount of mRNA of HeSRII was the smallest and the amounts of of HeAR and HeHR were 30 times and 10 times greater than that of HeSRII. The results of light-induced pH changes suggested the presence of a light-driven proton pump and a light-driven chloride ion pump in the membrane vesicles of He. Flash induced absorbance changes of the He membrane fraction indicated that HeAR and HeHR are photoactive and undergo their own photocycles. This study revealed that three microbial rhodopsin-type genes are all expressed in the strain and at least two of them, HeAR and HeHR, are photochemically and physiologically active like BR and HR of Halobacterium salinarum, respectively. To our knowledge, this is the first report of physiological activity of HR-homolog of Halorubrum species.
Collapse
|
30
|
Kikukawa T, Kusakabe C, Kokubo A, Tsukamoto T, Kamiya M, Aizawa T, Ihara K, Kamo N, Demura M. Probing the Cl − -pumping photocycle of pharaonis halorhodopsin: Examinations with bacterioruberin, an intrinsic dye, and membrane potential-induced modulation of the photocycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:748-58. [DOI: 10.1016/j.bbabio.2015.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
31
|
Affiliation(s)
- Sansa Dutta
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lev Weiner
- Department
of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
Inoue K, Koua FHM, Kato Y, Abe-Yoshizumi R, Kandori H. Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J Phys Chem B 2014; 118:11190-9. [PMID: 25166488 DOI: 10.1021/jp507219q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thousands of light-driven proton-pumping rhodopsins have been found in marine microbes, and a light-driven sodium-ion pumping rhodopsin was recently discovered, which utilizes sunlight for the energy source of the cell. Similarly, a light-driven chloride-ion pump has been found from marine bacteria, and three eubacterial light-driven pumps possess the DTE (proton pump), NDQ (sodium-ion pump), and NTQ (chloride-ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR). The corresponding motif of the known haloarchaeal chloride-ion pump, halorhodopsin (HR), is TSA, which is entirely different from the NTQ motif of a eubacterial chloride-ion pump. It is thus intriguing to compare the molecular mechanism of these two chloride-ion pumps. Here we report the spectroscopic study of Fulvimarina rhodopsin (FR), a eubacterial light-driven chloride-ion pump from marine bacterium. FR binds a chloride-ion near the retinal chromophore and chloride-ion binding causes a spectral blue-shift. FR predominantly possesses an all-trans retinal, which is responsible for the light-driven chloride-ion pump. Upon light absorption, the red-shifted K intermediate is formed, followed by the appearance of the L and O intermediates. When the M intermediate does not form, this indicates that the Schiff base remains in the protonated state during the photocycle. These molecular mechanisms are common in HR, and a common mechanism for chloride-ion pumping by evolutionarily distant proteins suggests the importance of the electric quadrupole in the Schiff base region and their changes through hydrogen-bonding alterations. One noticeable difference between FR and HR is the uptake of chloride-ion from the extracellular surface. While the uptake occurs upon decay of the O intermediate in HR, chloride-ion uptake accompanies the rise of the O intermediate in FR. This suggests the presence of a second chloride-ion binding site near the extracellular surface of FR, which is unique to the NTQ rhodopsin.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
33
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 808] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
34
|
Shibasaki K, Shigemura H, Kikukawa T, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Role of Thr218 in the light-driven anion pump halorhodopsin from Natronomonas pharaonis. Biochemistry 2013; 52:9257-68. [PMID: 24298916 DOI: 10.1021/bi401295e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Halorhodopsin (HR) is an inward-directed light-driven halogen ion pump, and NpHR is a HR from Natronomonas pharaonis. Unphotolyzed NpHR binds halogen ion in the vicinity of the Schiff base, which links retinal to Lys256. This halogen ion is transported during the photocycle. We made various mutants of Thr218, which is located one half-turn up from the Schiff base to the cytoplasm (CP) channel, and analyzed the photocycle using a sequential irreversible model. Four photochemically defined intermediates (P(i), i = 1-4) were adequate to describe the photocycle. The third component, P₃, was a quasi-equilibrium complex between the N and O intermediates, where a N ↔ O + Cl⁻ equilibrium was attained. The K(d,N↔O) values of this equilibrium for various mutants were determined, and the value of Thr (wild type) was the highest. The partial molar volume differences between N and O, ΔV(N→O), were estimated from the pressure dependence of K(d,N↔O). A comparison between K(d,N↔O) and ΔV(N→O) led to the conclusion that water entry by the F-helix opening at O may occur, which may increase K(d,N↔O). For some mutants, however, large ΔV(N→O) values were found, whereas the K(d,N↔O) values were small. This suggests that the special coordination of a water molecule with the OH group of Thr is necessary for the increase in K(d,N↔O). Mutants with a small K(d,N↔O) showed low pumping activities in the presence of inside negative membrane potential, while the mutant activities were not different in the absence of membrane potential. The effect of the mutation on the pumping activities is discussed.
Collapse
Affiliation(s)
- Kousuke Shibasaki
- Faculty of Advanced Life Science, Hokkaido University , Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Furutani Y, Kandori H. Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:598-605. [PMID: 24041645 DOI: 10.1016/j.bbabio.2013.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022]
Abstract
Microbial rhodopsins are classified into type-I rhodopsins, which utilize light energy to perform wide varieties of function, such as proton pumping, ion pumping, light sensing, cation channels, and so on. The crystal structures of several type-I rhodopsins were solved and the molecular mechanisms have been investigated based on the atomic structures. However, the crystal structures of proteins of interest are not always available and the basic architectures are sometimes quite similar, which obscures how the proteins achieve different functions. Stimulus-induced difference FTIR spectroscopy is a powerful tool to detect minute structural changes providing a clue for elucidating the molecular mechanisms. In this review, the studies on type-I rhodopsins from fungi and marine bacteria, whose crystal structures have not been solved yet, were summarized. Neurospora rhodopsin and Leptosphaeria rhodopsin found from Fungi have sequence similarity. The former has no proton pumping function, while the latter has. Proteorhodopsin is another example, whose proton pumping machinery is altered at alkaline and acidic conditions. We described how the structural changes of protein were different and how water molecules were involved in them. We reviewed the results on dynamics of the internal water molecules in pharaonis halorhodopsin as well. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
36
|
Furutani Y, Kimura T, Okamoto K. Development of a rapid Buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode. Biophysics (Nagoya-shi) 2013; 9:123-9. [PMID: 27493550 PMCID: PMC4629687 DOI: 10.2142/biophysics.9.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022] Open
Abstract
Attenuated total reflectance (ATR)-FTIR spectroscopy has been widely used to probe protein structural changes under various stimuli, such as light absorption, voltage change, and ligand binding, in aqueous conditions. Time-resolved measurements require a trigger, which can be controlled electronically; therefore, light and voltage changes are suitable. Here we developed a novel, rapid buffer-exchange system for time-resolved ATR-FTIR spectroscopy to monitor the ligand- or ion-binding re-action of a protein. By using the step-scan mode (time resolution; 2.5 ms), we confirmed the completion of the buffer-exchange reaction within ∼25 ms; the process was monitored by the infrared absorption change of a nitrate band at 1,350 cm(-1). We also demonstrated the anion-binding reaction of a membrane protein, Natronomonas pharaonis halorhodopsin (pHR), which binds a chloride ion in the initial anion-binding site near the retinal chromophore. The formation of chloride- or nitrate-bound pHR was confirmed by an increase of the retinal absorption band at 1,528 cm(-1). It also should be noted that low sample consumption (∼1 µg of protein) makes this new method a powerful technique to understand ligand-protein and ion-protein interactions, particularly for membrane proteins.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Tetsunari Kimura
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Kido Okamoto
- UNISOKU Co., Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131, Japan
| |
Collapse
|
37
|
Inoue K, Tsukamoto T, Sudo Y. Molecular and evolutionary aspects of microbial sensory rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:562-77. [PMID: 23732219 DOI: 10.1016/j.bbabio.2013.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 02/03/2023]
Abstract
Retinal proteins (~rhodopsins) are photochemically reactive membrane-embedded proteins, with seven transmembrane α-helices which bind the chromophore retinal (vitamin A aldehyde). They are widely distributed through all three biological kingdoms, eukarya, bacteria and archaea, indicating the biological significance of the retinal proteins. Light absorption by the retinal proteins triggers a photoisomerization of the chromophore, leading to the biological function, light-energy conversion or light-signal transduction. This article reviews molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors and their related proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Japan.
| |
Collapse
|
38
|
Thermodynamic parameters of anion binding to halorhodopsin from Natronomonas pharaonis by isothermal titration calorimetry. Biophys Chem 2013; 172:61-7. [DOI: 10.1016/j.bpc.2013.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 11/21/2022]
|
39
|
Furutani Y, Fujiwara K, Kimura T, Kikukawa T, Demura M, Kandori H. Dynamics of Dangling Bonds of Water Molecules in pharaonis Halorhodopsin during Chloride Ion Transportation. J Phys Chem Lett 2012; 3:2964-2969. [PMID: 26292234 DOI: 10.1021/jz301287n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ion transportation via the chloride ion pump protein pharaonis halorhodopsin (pHR) occurs through the sequential formation of several intermediates during a photocyclic reaction. Although the structural details of each intermediate state have been studied, the role of water molecules in the translocation of chloride ions inside of the protein at physiological temperatures remains unclear. To analyze the structural dynamics of water inside of the protein, we performed time-resolved Fourier transform infrared (FTIR) spectroscopy under H2O or H2(18)O hydration and successfully assigned water O-H stretching bands. We found that a dangling water band at 3626 cm(-1) in pHR disappears in the L1 and L2 states. On the other hand, relatively intense positive bands at 3605 and 3608 cm(-1) emerged upon the formation of the X(N) and O states, respectively, suggesting that the chloride transportation is accompanied by dynamic rearrangement of the hydrogen-bonding network of the internal water molecules in pHR.
Collapse
Affiliation(s)
- Yuji Furutani
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Kuniyo Fujiwara
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Tetsunari Kimura
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takashi Kikukawa
- ¶Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- ¶Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideki Kandori
- #Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
40
|
Chow BY, Han X, Boyden ES. Genetically encoded molecular tools for light-driven silencing of targeted neurons. PROGRESS IN BRAIN RESEARCH 2012; 196:49-61. [PMID: 22341320 PMCID: PMC3553588 DOI: 10.1016/b978-0-444-59426-6.00003-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to silence, in a temporally precise fashion, the electrical activity of specific neurons embedded within intact brain tissue, is important for understanding the role that those neurons play in behaviors, brain disorders, and neural computations. "Optogenetic" silencers, genetically encoded molecules that, when expressed in targeted cells within neural networks, enable their electrical activity to be quieted in response to pulses of light, are enabling these kinds of causal circuit analyses studies. Two major classes of optogenetic silencer are in broad use in species ranging from worm to monkey: light-driven inward chloride pumps, or halorhodopsins, and light-driven outward proton pumps, such as archaerhodopsins and fungal light-driven proton pumps. Both classes of molecule, when expressed in neurons via viral or other transgenic means, enable the targeted neurons to be hyperpolarized by light. We here review the current status of these sets of molecules, and discuss how they are being discovered and engineered. We also discuss their expression properties, ionic properties, spectral characteristics, and kinetics. Such tools may not only find many uses in the quieting of electrical activity for basic science studies but may also, in the future, find clinical uses for their ability to safely and transiently shut down cellular electrical activity in a precise fashion.
Collapse
Affiliation(s)
- Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
41
|
Yamashita Y, Kikukawa T, Tsukamoto T, Kamiya M, Aizawa T, Kawano K, Miyauchi S, Kamo N, Demura M. Expression of salinarum halorhodopsin in Escherichia coli cells: solubilization in the presence of retinal yields the natural state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2905-12. [PMID: 21925140 DOI: 10.1016/j.bbamem.2011.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
Salinarum halorhodopsin (HsHR), a light-driven chloride ion pump of haloarchaeon Halobacterium salinarum, was heterologously expressed in Escherichia coli. The expressed HsHR had no color in the E. coli membrane, but turned purple after solubilization in the presence of all-trans retinal. This colored HsHR was purified by Ni-chelate chromatography in a yield of 3-4 mg per liter culture. The purified HsHR showed a distinct chloride pumping activity by incorporation into the liposomes, and showed even in the detergent-solubilized state, its typical behaviors in both the unphotolyzed and photolyzed states. Upon solubilization, HsHR expressed in the E. coli membrane attains the proper folding and a trimeric assembly comparable to those in the native membranes.
Collapse
Affiliation(s)
- Yasutaka Yamashita
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kanada S, Takeguchi Y, Murakami M, Ihara K, Kouyama T. Crystal structures of an O-like blue form and an anion-free yellow form of pharaonis halorhodopsin. J Mol Biol 2011; 413:162-76. [PMID: 21871461 DOI: 10.1016/j.jmb.2011.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR) was previously crystallized into a monoclinic space group C2, and the structure of the chloride-bound purple form was determined. Here, we report the crystal structures of two chloride-free forms of pHR, that is, an O-like blue form and an M-like yellow form. When the C2 crystal was soaked in a chloride-free alkaline solution, the protein packing was largely altered and the yellow form containing all-trans retinal was generated. Upon neutralization, this yellow form was converted into the blue form. From structural comparison of the different forms of pHR, it was shown that the removal of a chloride ion from the primary binding site (site I), which is located between the retinal Schiff base and Thr126, is accompanied by such a deformation of helix C that the side chain of Thr126 moves toward helix G, leading to a significant shrinkage of site I. A large structural change is also induced in the chloride uptake pathway, where a flip motion of the side chain of Glu234 is accompanied by large movements of the surrounding aromatic residues. Irrespective of different charge distributions at the active site, there was no large difference in the structures of the yellow form and the blue form. It is shown that the yellow-to-purple transition is initiated by the entrance of one water and one HCl to the active site, where the proton and the chloride ion in HCl are transferred to the Schiff base and site I, respectively.
Collapse
Affiliation(s)
- Soun Kanada
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
43
|
Nakao Y, Kikukawa T, Shimono K, Tamogami J, Kimitsuki N, Nara T, Unno M, Ihara K, Kamo N. Photochemistry of a putative new class of sensory rhodopsin (SRIII) coded by xop2 of Haloarcular marismortui. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:45-54. [DOI: 10.1016/j.jphotobiol.2010.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 11/30/2022]
|
44
|
Tamogami J, Kikukawa T, Ikeda Y, Takemura A, Demura M, Kamo N. The photochemical reaction cycle and photoinduced proton transfer of sensory rhodopsin II (Phoborhodopsin) from Halobacterium salinarum. Biophys J 2010; 98:1353-63. [PMID: 20371336 DOI: 10.1016/j.bpj.2009.12.4288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022] Open
Abstract
Sensory rhodopsin II (HsSRII, also called phoborhodopsin) is a negative phototaxis receptor of Halobacterium salinarum, a bacterium that avoids blue-green light. In this study, we expressed the protein in Escherichia coli cells, and reconstituted the purified protein with phosphatidylcholine. The reconstituted HsSRII was stable. We examined the photocycle by flash-photolysis spectroscopy in the time range of milliseconds to seconds, and measured proton uptake/release using a transparent indium-tin oxide electrode. The pKa of the counterion of the Schiff base, Asp(73), was 3.0. Below pH 3, the depleted band was observed on flash illumination, but the positive band in the difference spectra was not found. Above pH 3, the basic photocycle was HsSRII (490) --> M (350) --> O (520) --> Y (490) --> HsSRII, where the numbers in parentheses are the maximum wavelengths. The decay rate of O-intermediate and Y-intermediate were pH-independent, whereas the M-intermediate decay was pH-dependent. For 3 < pH < 4.5, the M-decay was one phase, and the rate decreased with an increase in pH. For 4.5 < pH < 6.5, the decay was one phase with pH-independent rates, and azide markedly accelerated the M-decay. These findings suggest the existence of a protonated amino acid residue (X-H) that may serve as a proton relay to reprotonate the Schiff base. Above pH 6.5, the M-decay showed two phases. The fast M-decay was pH-independent and originated from the molecule having a protonated X-H, and the slow M-decay originated from the molecule having a deprotonated X, in which the proton came directly from the outside. The analysis yielded a value of 7.5 for the pKa of X-H. The proton uptake and release occurred during M-decay and O-decay, respectively.
Collapse
Affiliation(s)
- Jun Tamogami
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Bismuth O, Komm P, Friedman N, Eliash T, Sheves M, Ruhman S. Deciphering Excited State Evolution in Halorhodopsin with Stimulated Emission Pumping. J Phys Chem B 2010; 114:3046-51. [DOI: 10.1021/jp910853n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oshrat Bismuth
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pavel Komm
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noga Friedman
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
Maiti TK, Engelhard M, Sheves M. Retinal-protein interactions in halorhodopsin from Natronomonas pharaonis: binding and retinal thermal isomerization catalysis. J Mol Biol 2009; 394:472-84. [PMID: 19766652 DOI: 10.1016/j.jmb.2009.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 09/07/2009] [Accepted: 09/14/2009] [Indexed: 11/29/2022]
Abstract
Halorhodopsin from Natronomonas pharaonis (NpHR) is a member of the retinal protein group and serves as a light-driven chloride pump in which chloride ions are transported through the membrane following light absorption by the retinal chromophore. In this study, we examined two main issues: (1) factors controlling the binding of the retinal chromophore to the NpHR opsin and (2) the ability of the NpHR opsin to catalyze the thermal isomerization of retinal isomers. We have revealed that the reconstitution process of pharaonis HR (NpHR) pigment from its apoprotein and all-trans retinal depends on the pH, and the process has a pK(a) of 5.8+/-0.1. It was proposed that this pK(a) is associated with the pK(a) of the lysine residue that binds the retinal chromophore (Lys256). The pigment formation is regulated by the concentration of sodium chloride, and the maximum yield was observed at 3.7 M NaCl. The low yield of pigment in a lower concentration of NaCl (<3 M) may be due to an altered conformation adopted by the apomembrane, which is not capable of forming the pigment. Unexpectedly and unlike the apomembrane of bacteriorhodopsin, NpHR opsin produces pigments with 11-cis retinal and 9-cis retinal owing to the thermal isomerization of these retinal isomers to all-trans retinal. The isomerization rate depends on the pH, and it is faster at a higher pH. The pK(a) value of the isomerization process is similar to the pK(a) of the binding process of these retinals, which suggests that Lys256 is also involved in the isomerization process. The isomerization is independent of the sodium chloride concentration. However, in the absence of sodium chloride, the apoprotein adopts such a conformation, which does not prevent the isomerization of retinal, but it prevents a covalent bond formation with the lysine residue. The rate and the thermodynamic parameter analysis of the retinal isomerization by NpHR apoprotein led to the conclusion that the apomembrane catalyzes the isomerization via a triplet mechanism.
Collapse
Affiliation(s)
- Tushar Kanti Maiti
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
47
|
Sasaki T, Aizawa T, Kamiya M, Kikukawa T, Kawano K, Kamo N, Demura M. Effect of Chloride Binding on the Thermal Trimer−Monomer Conversion of Halorhodopsin in the Solubilized System. Biochemistry 2009; 48:12089-95. [DOI: 10.1021/bi901380c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Sasaki
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Tomoyasu Aizawa
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakatsu Kamiya
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiichi Kawano
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Makoto Demura
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
48
|
Inoue K, Kubo M, Demura M, Kamo N, Terazima M. Reaction dynamics of halorhodopsin studied by time-resolved diffusion. Biophys J 2009; 96:3724-34. [PMID: 19413978 DOI: 10.1016/j.bpj.2008.12.3932] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/24/2008] [Accepted: 12/31/2008] [Indexed: 11/26/2022] Open
Abstract
Reaction dynamics of a chloride ion pump protein, halorhodopsin (HR), from Natronomonas pharaonis (N. pharaonis) (NpHR) was studied by the pulsed-laser-induced transient grating (TG) method. A detailed investigation of the TG signal revealed that there is a spectrally silent diffusion process besides the absorption-observable reaction dynamics. We interpreted these dynamics in terms of release, diffusion, and uptake of the Cl(-) ion. From a quantitative global analysis of the signals at various grating wavenumbers, it was concluded that the release of the Cl(-) ion is associated with the L2 --> (L2 (or N) <==> O) process, and uptake of Cl(-) occurs with the (L2 (or N) <==> O) -->NpHR' process. The diffusion coefficient of NpHR solubilized in a detergent did not change during the cyclic reaction. This result contrasts the behavior of many photosensor proteins and implies that the change in the H-bond network from intra- to intermolecular is not significant for the activity of this protein pump.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
49
|
Kubo M, Kikukawa T, Miyauchi S, Seki A, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Role of Arg123 in Light-driven Anion Pump Mechanisms ofpharaonisHalorhodopsin. Photochem Photobiol 2009; 85:547-55. [DOI: 10.1111/j.1751-1097.2009.00538.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Nakamura T, Takeuchi S, Shibata M, Demura M, Kandori H, Tahara T. Ultrafast Pump−Probe Study of the Primary Photoreaction Process in pharaonis Halorhodopsin: Halide Ion Dependence and Isomerization Dynamics. J Phys Chem B 2008; 112:12795-800. [DOI: 10.1021/jp803282s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Takumi Nakamura
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Mikihiro Shibata
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Makoto Demura
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideki Kandori
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|