1
|
Takebe K, Suzuki M, Hara Y, Katsutani T, Motoyoshi N, Itagaki T, Miyakawa S, Okamoto K, Fukuzawa K, Kobayashi H. New Catalytic Residues and Catalytic Mechanism of the RNase T1 Family. ACS BIO & MED CHEM AU 2024; 4:257-267. [PMID: 39431265 PMCID: PMC11487538 DOI: 10.1021/acsbiomedchemau.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
The ribonuclease T1 family, including RNase Po1 secreted by Pleurotus ostreatus, exhibits antitumor activity. Here, we resolved the Po1/guanosine-3'-monophosphate complex (3'GMP) structure at 1.75 Å. Structure comparison and fragment molecular orbital (FMO) calculation between the apo form and the Po1/3'GMP complex identified Phe38, Phe40, and Glu42 as the key binding residues. Two types of the RNase/3'GMP complex in RNasePo1 and RNase T1 were homologous to Po1, and FMO calculations elucidated that the biprotonated histidine on the β3 sheet (His36) on the β3 sheet and deprotonated Glu54 on the β4 sheet were advantageous to RNase activity. Moreover, tyrosine (Tyr34) on the β3 sheet was elucidated as a crucial catalytic residues. Mutation of Tyr34 with phenylalanine decreased RNase activity and diminished antitumor efficacy compared to that in the wild type. This suggests the importance of RNase activity in antitumor mechanisms.
Collapse
Affiliation(s)
- Katsuki Takebe
- Department
of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical
Sciences, Okayama University, Okayama 700-8525, Japan
| | - Mamoru Suzuki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumiko Hara
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Katsutani
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naomi Motoyoshi
- School
of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Tadashi Itagaki
- School
of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Shuhei Miyakawa
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Suita, Osaka 565-0871, Japan
| | - Kuniaki Okamoto
- Department
of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical
Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kaori Fukuzawa
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Suita, Osaka 565-0871, Japan
| | - Hiroko Kobayashi
- School
of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| |
Collapse
|
2
|
Kumakura N, Singkaravanit-Ogawa S, Gan P, Tsushima A, Ishihama N, Watanabe S, Seo M, Iwasaki S, Narusaka M, Narusaka Y, Takano Y, Shirasu K. Guanosine-specific single-stranded ribonuclease effectors of a phytopathogenic fungus potentiate host immune responses. THE NEW PHYTOLOGIST 2024; 242:170-191. [PMID: 38348532 DOI: 10.1111/nph.19582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/06/2024] [Indexed: 03/08/2024]
Abstract
Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity responses. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3'-end phosphate. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2, present in the apoplast, depends on ribonuclease catalytic residues. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.
Collapse
Affiliation(s)
- Naoyoshi Kumakura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Pamela Gan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Ayako Tsushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuaki Ishihama
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nakagami, Okinawa, 903-0213, Japan
| | - Shintaro Iwasaki
- RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mari Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Kaga, Okayama, 716-1241, Japan
| | - Yoshihiro Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Kaga, Okayama, 716-1241, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Takebe K, Suzuki M, Sangawa T, Motoyoshi N, Itagaki T, Kashima K, Uzawa N, Kobayashi H. Identification of the Acidification Mechanism of the Optimal pH for RNase He1. Biol Pharm Bull 2023; 46:1778-1786. [PMID: 38044096 DOI: 10.1248/bpb.b23-00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ribonuclease (RNase) He1 is a small ribonuclease belonging to the RNase T1 family. Most of the RNase T1 family members are active at neutral pH, except for RNase Ms, U2, and He1, which function at an acidic pH. We crystallized and analyzed the structure of RNase He1 and elucidated how the acidic amino residues of the α1β3- (He1:26-33) and β67-loops (He1:87-95) affect their optimal pH. In He1, Ms, and U2, the hydrogen bonding network formed by the acidic amino acids in the β67-loop suggested that the differences in the acidification mechanism of the optimum pH specified the function of these RNases. We found that the amino acid sequence of the β67-loop was not conserved and contributed to acidification of the optimum pH in different ways. Mutations in the acidic residues in He1 promoted anti-tumor growth activity, which clarified the role of these acidic amino residues in the binding pocket. These findings will enable the identification of additional targets for modifying pH-mediated enzymatic activities.
Collapse
Affiliation(s)
- Katsuki Takebe
- Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry
| | | | | | | | | | - Kana Kashima
- Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry
| | - Narikazu Uzawa
- Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry
| | | |
Collapse
|
4
|
Lu X, Lin S, De Mel N, Parupudi A, Delmar J, Pandey M, Wang X, Wang J. Deamidation in Moxetumomab Pasudotox Leading to Conformational Change and Immunotoxin Activity Loss. J Pharm Sci 2020; 109:2676-2683. [PMID: 32534028 DOI: 10.1016/j.xphs.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Asparagine (Asn) deamidation is a common posttranslational modification in which Asn is converted to aspartic acid or isoaspartic acid. By introducing a negative charge, deamidation could potentially impact the binding interface and biological activities of protein therapeutics. We identified a deamidation variant in moxetumomab pasudotox, an immunotoxin Fv fusion protein drug derived from a 38-kDa truncated Pseudomonas exotoxin A (PE38) for the treatment of hairy-cell leukemia. Although the deamidation site, Asn-358, was outside of the binding interface, the modification had a significant impact on the biological activity of moxetumomab pasudotox. Surprisingly, the variant eluted earlier than its unmodified form on anion exchange chromatography, which often leads to the conclusion that it has a higher positive charge. Here we describe the characterization of the deamidation variant with differential scanning calorimetry and hydrogen-deuterium exchange mass spectrometry, which revealed that the Asn-358 deamidation caused the conformational changes in the catalytic domain of the PE38 region. These results provide an explanation for why the deamidation affected the biological activity of moxetumomab pasudotox and suggest the approach that can be used for process control to ensure product quality and process consistency.
Collapse
Affiliation(s)
- Xiaojun Lu
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Shihua Lin
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Niluka De Mel
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Arun Parupudi
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Jared Delmar
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Madhu Pandey
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Xiangyang Wang
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Jihong Wang
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, One MedImmune Way, Gaithersburg, Maryland 20878.
| |
Collapse
|
5
|
Age-related isomerization of Asp in human immunoglobulin G kappa chain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140410. [PMID: 32169581 DOI: 10.1016/j.bbapap.2020.140410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
Abstract
Isomerization of aspartate (Asp) is a common non-enzymatic posttranslational modification. Isomerized residues accumulate in proteins associated with age-related human disorders such as cataract and are well known to affect protein structure and function. We previously detected d-Asp-containing peptides in human serum. In this study, we investigated whether isomerized Asp residues are present in human immunoglobulin G (IgG) kappa chain by a qualitative d-amino acid analysis based on diastereomer formation and liquid chromatography tandem mass spectrometry (LC-MS/MS). We also investigated the d/l ratio of Asp residues in the IgG kappa chain in serum from donors aged 25, 37, 41, 54 and 67 years. As a result, two isomerized Asp residues, Asp151 and Asp170, were detected in the IgG kappa chain, and the d/l ratio of these residues was found to increase with aging. To assess the effects of this isomerization, we synthesized four isomeric peptides of IgG kappa chain containing lα-, lβ-, dα-, or dβ-Asp at position 170, and compared their secondary structures by CD spectroscopy. Peptide containing normal lα-Asp170 showed type II β-turn structure, while the other isomeric peptides showed random structure, clearly indicating that substitution of a single Asp isomer alters the secondary structure of the peptide. Because IgG is a main component of humoral immunity, Asp isomerization in IgG may reflect changes of structure and decrease in immune function. Proteome research on serum from the standpoint of racemization might enable us to develop new kinds of biomarker and new directions to study the aging process.
Collapse
|
6
|
Yokoyama H, Mizutani R, Noguchi S, Hayashida N. Structural and biochemical basis of the formation of isoaspartate in the complementarity-determining region of antibody 64M-5 Fab. Sci Rep 2019; 9:18494. [PMID: 31811216 PMCID: PMC6898713 DOI: 10.1038/s41598-019-54918-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
The formation of the isoaspartate (isoAsp) is one of spontaneous degradation processes of proteins, affecting their stability and activity. Here, we report for the first time the crystal structures of an antibody Fab that contains isoAsp in the complementarity-determining region (CDR), along with biochemical studies to detect isoAsp. By comparing the elution profiles of cation-exchange chromatography, it was clarified that the antibody 64M-5 Fab is converted from the normal form to isoAsp form spontaneously and time-dependently under physiological conditions. The isoAsp residue was identified with tryptic peptide mapping, N-terminal sequencing, and the protein isoaspartyl methyltransferase assay. Based on the fluorescence quenching method, the isoAsp form of 64M-5 Fab shows a one order of magnitude lower binding constant for its dinucleotide ligand dT(6-4)T than the normal form. According to the structure of the isoAsp form, the conformation of CDR L1 is changed from the normal form to isoAsp form; the loss of hydrogen bonds involving the Asn28L side-chain, and structural conversion of the β-turn from type I to type II'. The formation of isoAsp leads to a large displacement of the side chain of His27dL, and decreased electrostatic interactions with the phosphate group of dT(6-4)T. Such structural changes should be responsible for the lower affinity of the isoAsp form for dT(6-4)T than the normal form. These findings may provide insight into neurodegenerative diseases (NDDs) and related diseases caused by misfolded proteins.
Collapse
Affiliation(s)
- Hideshi Yokoyama
- 0000 0001 0660 6861grid.143643.7Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510 Japan
| | - Ryuta Mizutani
- 0000 0001 1516 6626grid.265061.6Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan
| | - Shuji Noguchi
- 0000 0000 9290 9879grid.265050.4Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Naoki Hayashida
- 0000 0001 0660 7960grid.268397.1Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| |
Collapse
|
7
|
Solivio B, Yu N, Addepalli B, Limbach PA. Improving RNA modification mapping sequence coverage by LC-MS through a nonspecific RNase U2-E49A mutant. Anal Chim Acta 2018; 1036:73-79. [PMID: 30253839 PMCID: PMC6214470 DOI: 10.1016/j.aca.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022]
Abstract
We report the identification and use of a mutant of the purine selective ribonuclease RNase U2 that randomly cleaves RNA in a manner that is directly compatible with RNA modification mapping by mass spectrometry. A number of RNase U2 mutants were generated using site-saturation mutagenesis. The enzyme activity and specificity were tested using oligonucleotide substrates, which revealed an RNase U2 E49A mutant with limited specificity and a tendency to undercut RNA. Using this mutant, RNA digestion conditions were optimized to yield long, overlapping digestion products, which improve sequence coverage in RNA modification mapping experiments. The analytical utility of this mutant was demonstrated by liquid chromatography tandem mass spectrometry (LC-MS/MS) mapping of several modified RNAs where 100% sequence coverage could be obtained using only a single enzymatic digestion. This new mutant facilitates more accurate and efficient RNA modification mapping than traditional highly base-specific RNases that are currently used.
Collapse
Affiliation(s)
- Beulah Solivio
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, United States
| | - Ningxi Yu
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, United States
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, United States.
| |
Collapse
|
8
|
Giles AR, Sims JJ, Turner KB, Govindasamy L, Alvira MR, Lock M, Wilson JM. Deamidation of Amino Acids on the Surface of Adeno-Associated Virus Capsids Leads to Charge Heterogeneity and Altered Vector Function. Mol Ther 2018; 26:2848-2862. [PMID: 30343890 DOI: 10.1016/j.ymthe.2018.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Post-translational modification of the adeno-associated virus capsids is a poorly understood factor in the development of these viral vectors into pharmaceutical products. Here we report the extensive capsid deamidation of adeno-associated virus serotype 8 and seven other diverse adeno-associated virus serotypes, with supporting evidence from structural, biochemical, and mass spectrometry approaches. The extent of deamidation at each site depended on the vector's age and multiple primary-sequence and three-dimensional structural factors. However, the extent of deamidation was largely independent of the vector recovery and purification conditions. We demonstrate the potential for deamidation to impact transduction activity and, moreover, correlate an early time point loss in vector activity to rapidly progressing spontaneous deamidation at several adeno-associated virus 8 asparagines. We explore mutational strategies that stabilize side-chain amides, improving vector transduction and reducing the lot-to-lot molecular variability that presents a key concern in biologics manufacturing. This study illuminates a previously unknown aspect of adeno-associated virus capsid heterogeneity and highlights its importance in the development of these vectors for gene therapy.
Collapse
Affiliation(s)
- April R Giles
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua J Sims
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin B Turner
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lakshmanan Govindasamy
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mauricio R Alvira
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin Lock
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Minimized natural versions of fungal ribotoxins show improved active site plasticity. Arch Biochem Biophys 2017; 619:45-53. [DOI: 10.1016/j.abb.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 01/29/2023]
|
10
|
Schureck MA, Repack A, Miles SJ, Marquez J, Dunham CM. Mechanism of endonuclease cleavage by the HigB toxin. Nucleic Acids Res 2016; 44:7944-53. [PMID: 27378776 PMCID: PMC5027501 DOI: 10.1093/nar/gkw598] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 01/11/2023] Open
Abstract
Bacteria encode multiple type II toxin-antitoxin modules that cleave ribosome-bound mRNAs in response to stress. All ribosome-dependent toxin family members structurally characterized to date adopt similar microbial RNase architectures despite possessing low sequence identities. Therefore, determining which residues are catalytically important in this specialized RNase family has been a challenge in the field. Structural studies of RelE and YoeB toxins bound to the ribosome provided significant insights but biochemical experiments with RelE were required to clearly demonstrate which residues are critical for acid-base catalysis of mRNA cleavage. Here, we solved an X-ray crystal structure of the wild-type, ribosome-dependent toxin HigB bound to the ribosome revealing potential catalytic residues proximal to the mRNA substrate. Using cell-based and biochemical assays, we further determined that HigB residues His54, Asp90, Tyr91 and His92 are critical for activity in vivo, while HigB H54A and Y91A variants have the largest effect on mRNA cleavage in vitro Comparison of X-ray crystal structures of two catalytically inactive HigB variants with 70S-HigB bound structures reveal that HigB active site residues undergo conformational rearrangements likely required for recognition of its mRNA substrate. These data support the emerging concept that ribosome-dependent toxins have diverse modes of mRNA recognition.
Collapse
Affiliation(s)
- Marc A Schureck
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Adrienne Repack
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Stacey J Miles
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Jhomar Marquez
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Christine M Dunham
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Noguchi S. Structural changes induced by the deamidation and isomerization of asparagine revealed by the crystal structure of Ustilago sphaerogena ribonuclease U2B. Biopolymers 2010; 93:1003-10. [PMID: 20623666 DOI: 10.1002/bip.21514] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Under physiological conditions, the deamidation and isomerization of asparagine to isoaspartate (isoAsp) proceeds nonenzymatically via succinimide. Although a large number of proteins have been reported to contain isoAsp, information concerning the three-dimensional structure of proteins containing isoaspartate is still limited. We have crystallized isoAsp containing Ustilago sphaerogena ribonuclease U2B, and determined the crystal structure at 1.32 Å resolution. The structure revealed that the formation of isoAsp32 induces a single turn unfolding of the α-helix from Asp29 to Asp34, and the region from Asp29 to Arg35 forms a U-shaped loop structure. The electron density map shows that isoAsp32 retained the L-configuration at the C(α) atom. IsoAsp32 is in gauche conformation about a C(α)--C(β) bond, and the polypeptide chain bends by ∼90° at isoAsp32. IsoAsp32 protrudes from the surface of the protein, and the abnormal β-peptide bond in the main-chain and α-carboxylate in the side-chain is fully exposed. The structure suggests that the deamidation of the Asn and the isoAsp formation in proteins could confer immunogenicity.
Collapse
Affiliation(s)
- Shuji Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Noguchi S. Isomerization mechanism of aspartate to isoaspartate implied by structures of Ustilago sphaerogena ribonuclease U2 complexed with adenosine 3'-monophosphate. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:843-9. [PMID: 20606265 DOI: 10.1107/s0907444910019621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/25/2010] [Indexed: 11/11/2022]
Abstract
Aspartates in proteins are isomerized non-enzymatically to isoaspartate via succinimide in vitro and in vivo. In order to elucidate the mechanism of isoaspartate formation within the Asp45-Glu46 sequence of Ustilago sphaerogena ribonuclease U2 based on three-dimensional structure, crystal structures of ribonuclease U2 complexed with adenosine 3'-monophosphate have been solved at 0.96 and 0.99 A resolution. The crystal structures revealed that the C(gamma) atom of Asp45 is located just beside the main-chain N atom of Glu46 and that the conformation which is suitable for succinimide formation is stabilized by a hydrogen-bond network mediated by water molecules 190, 219 and 220. These water molecules are suggested to promote the formation of isoaspartate via succinimide: in the succinimide-formation reaction water 219 receives a proton from the N atom of Glu46 as a general base and waters 190 and 220 stabilize the tetrahedral intermediate, and in the succinimide-hydrolysis reaction water 219 provides a proton for the N atom of Glu46 as a general acid. The purine-base recognition scheme of ribonuclease U2 is also discussed.
Collapse
Affiliation(s)
- Shuji Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
13
|
Abstract
The broadly prescribed antitumor drug cisplatin coordinates to DNA, altering the activity of cellular proteins whose functions rely upon sensing DNA structure. Cisplatin is also known to coordinate to RNA, but the effects of RNA-Pt adducts on the large number of proteins that process the transcriptome are currently unknown. In an effort to address how platination of an RNA alters the function of RNA processing enzymes, we have determined the influence of [Pt(NH(3))(2)](2+)-RNA adducts on the activities of 3'-->5' and 5'-->3' phosphodiesterases, a purine-specific endoribonuclease, and a reverse transcriptase. Single Pt(II) adducts on RNA oligonucleotides of the form (5'-U(6)-XY-U(5)-3': XY = GG, GA, AG, GU) are found to block exonucleolytic digestion. Similar disruption of endonucleolytic cleavage is observed, except for the platinated XY = GA RNA where RNase U2 uniquely tolerates platinum modification. Platinum adducts formed with a more complex RNA prevent reverse transcription, providing evidence that platination is capable of interfering with RNA's role in relaying sequence information. The observed disruptions in enzymatic activity point to the possibility that cellular RNA processing may be similarly affected, which could contribute to the cell-wide effects of platinum antitumor drugs. Additionally, we show that thiourea reverses cisplatin-RNA adducts, providing a chemical tool for use in future studies regarding cisplatin targeting of cellular RNAs.
Collapse
Affiliation(s)
- Erich G Chapman
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
14
|
Alvarez-García E, García-Ortega L, De los Ríos V, Gavilanes JG, Martínez-del-Pozo A. Influence of key residues on the heterologous extracellular production of fungal ribonuclease U2 in the yeast Pichia pastoris. Protein Expr Purif 2009; 65:223-9. [PMID: 19297697 DOI: 10.1016/j.pep.2009.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ribonuclease U2, secreted by the smut fungus Ustilago sphaerogena, is a cyclizing ribonuclease that displays a rather unusual specificity within the group of microbial extracellular RNases, best represented by RNase T1. Superposition of the three-dimensional structures of RNases T1 and U2 suggests that the RNase U2 His 101 would be the residue equivalent to the RNase T1 catalytically essential His 92. RNase U2 contains three disulfide bridges but only two of them are conserved among the family of fungal extracellular RNases. The non-conserved disulfide bond is established between Cys residues 1 and 54. Mispairing of the disulfide network due to the presence of two consecutive Cys residues (54 and 55) has been invoked to explain the presence of wrongly folded RNase U2 species when produced in Pichia pastoris. In order to study both hypotheses, the RNase U2 H101Q and C1/54S variants have been produced, purified, and characterized. The results obtained support the major conclusion that His 101 is required for proper protein folding when secreted by the yeast P. pastoris. On the other hand, substitution of the first Cys residue for Ser results in a mutant version which is more efficiently processed in terms of a more complete removal of the yeast alpha-factor signal peptide. In addition, it has been shown that elimination of the Cys 1-Cys 54 disulfide bridge does not interfere with RNase U2 proper folding, generating a natively folded but much less stable protein.
Collapse
Affiliation(s)
- Elisa Alvarez-García
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Avenida Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Lacadena J, Alvarez-García E, Carreras-Sangrà N, Herrero-Galán E, Alegre-Cebollada J, García-Ortega L, Oñaderra M, Gavilanes JG, Martínez del Pozo A. Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol Rev 2007; 31:212-37. [PMID: 17253975 DOI: 10.1111/j.1574-6976.2006.00063.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RNase T1 is the best known representative of a large family of ribonucleolytic proteins secreted by fungi, mostly Aspergillus and Penicillium species. Ribotoxins stand out among them by their cytotoxic character. They exert their toxic action by first entering the cells and then cleaving a single phosphodiester bond located within a universally conserved sequence of the large rRNA gene, known as the sarcin-ricin loop. This cleavage leads to inhibition of protein biosynthesis, followed by cellular death by apoptosis. Although no protein receptor has been found for ribotoxins, they preferentially kill cells showing altered membrane permeability, such as those that are infected with virus or transformed. Many steps of the cytotoxic process have been elucidated at the molecular level by means of a variety of methodological approaches and the construction and purification of different mutant versions of these ribotoxins. Ribotoxins have been used for the construction of immunotoxins, because of their cytotoxicity. Besides this activity, Aspf1, a ribotoxin produced by Aspergillus fumigatus, has been shown to be one of the major allergens involved in allergic aspergillosis-related pathologies. Protein engineering and peptide synthesis have been used in order to understand the basis of these pathogenic mechanisms as well as to produce hypoallergenic proteins with potential diagnostic and immunotherapeutic applications.
Collapse
Affiliation(s)
- Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
García-Ortega L, De los Ríos V, Martínez-Ruiz A, Oñaderra M, Lacadena J, Martínez del Pozo A, Gavilanes JG. Anomalous electrophoretic behavior of a very acidic protein: ribonuclease U2. Electrophoresis 2005; 26:3407-13. [PMID: 16110465 DOI: 10.1002/elps.200500261] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ribonuclease U2 is a low-molecular-weight acidic protein with three disulfide bridges. This protein displays an anomalous electrophoretic behavior on standard SDS-PAGE. The electrophoretic mobility of the nonreduced protein roughly corresponds to its molecular mass while the migration of the reduced protein would be in accordance with the expected molecular mass of the protein dimer. This study reveals that the protein does not bind SDS under the SDS-PAGE conditions, its electrophoretic mobility being only determined by its electrostatic charge and hydrodynamic properties. In addition, the nonreduced protein cannot be blotted to a membrane. Unfolding of the protein upon reduction of its disulfide bridges enables electrotransference to membranes due to a restricted diffusion along the electrophoresis gel.
Collapse
Affiliation(s)
- Lucía García-Ortega
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Zhang W, Czupryn JMJ, Boyle PT, Amari J. Characterization of asparagine deamidation and aspartate isomerization in recombinant human interleukin-11. Pharm Res 2003; 19:1223-31. [PMID: 12240950 DOI: 10.1023/a:1019814713428] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED PURPOSE; The aim of this study was to investigate asparagine (Asn) deamidation and aspartate (Asp) isomerization and to measure the content of isoaspartate (isoAsp) in recombinant human interleukin-11 (rhIL-11). METHODS The rhIL-11 control and heat stressed samples were characterized with trypsin and endoproteinase Asp-N peptide mapping, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), reversed-phase high performance liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry (ESI MS) and capillary electrophoresis (CE). The total isoAsp content and bioactivity were also assessed. RESULTS Stress of rhIL11 at 30 degrees C for 6 weeks in liquid resulted in significant isomerization of Asp45 and Asp47. Isomerization of Asp51 and deamidation of Asn49 were also detected at low levels. The stressed rhIL-11 molecule contained 0.3 mol of isoAsp per mol of protein, compared to only 0.007 mol/mol of protein in the control. CONCLUSIONS Asp and Asn residues, located in a loop structure of rhIL-11, undergo isoAsp formation under stressed conditions.
Collapse
Affiliation(s)
- Wei Zhang
- Wyeth BioPharma, Genetics Institute Campus, Andover, Massachusetts 01810, USA.
| | | | | | | |
Collapse
|
19
|
Pérez-Cañadilllas JM, García-Mayoral MF, Laurents DV, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M. Tautomeric state of alpha-sarcin histidines. Ndelta tautomers are a common feature in the active site of extracellular microbial ribonucleases. FEBS Lett 2003; 534:197-201. [PMID: 12527386 DOI: 10.1016/s0014-5793(02)03844-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular fungal RNases, including ribotoxins such as alpha-sarcin, constitute a family of structurally related proteins represented by RNase T1. The tautomeric preferences of the alpha-sarcin imidazole side chains have been determined by nuclear magnetic resonance and electrostatic calculations. Histidine residues at the active site, H50 and H137, adopt the Ndelta tautomer, which is less common in short peptides, as has been found for RNase T1. Comparison with tautomers predicted from crystal structures of other ribonucleases suggests that two active site histidine residues with the Ndelta tautomer are a conserved feature of microbial ribonucleases and that this is related to their ribonucleolytic function.
Collapse
Affiliation(s)
- José Manuel Pérez-Cañadilllas
- Departamento de Espectroscopía y Estructura Molecular, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Isomerization of aspartate to isoaspartate occurs spontaneously in proteins, causes changes in protein structures, and correlates positively with the aging processes of many organisms, including Alzheimer disease in humans. Aspartate isomerization proceeds through an unstable cyclic succinimide intermediate. There are few protein structure determinations that have characterized the intermediates and products of this isomerization reaction. Here we report the discovery of an unusually stabilized succinimide ring in the 1.1A structure of the Escherichia coli CheY protein, as determined from a crystal eight years old. The ring is formed by the side-chain of aspartate 75 and the backbone nitrogen of glycine 76 in an exposed loop of the molecule. Stabilization of the succinimide is through interaction of a sulfate ion oxygen atom with the imide nitrogen atom. Formation of the ring caused conformational changes in the loop, but did not alter the overall structure of the protein.
Collapse
Affiliation(s)
- Miljan Simonovic
- Department of Biochemistry and Molecular Biology, University of Illinois College of Medicine, Chicago 60612-3796, USA
| | | |
Collapse
|
21
|
Escaffre M, Favre A, Chottard JC, Bombard S. Determination of platinated purines in oligoribonucleotides by limited digestion with ribonucleases T1 and U2. Anal Biochem 2002; 310:42-9. [PMID: 12413471 DOI: 10.1016/s0003-2697(02)00279-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Platinum complexes which are known to react preferentially with guanine (G) and adenine (A) bases of oligonucleotides can be used as tools to analyze their tertiary structures and eventually to cross-link them. However, this requires efficient methods to allow the identification and quantification of the corresponding adducts which have so far been developed only for oligodeoxyribonucleotides. Maxam-Gilbert type digestions cannot be used for RNAs and HPLC techniques would require too large amounts of expensive material for separation and further characterization. We report a method to determine platination sites on oligoribonucleotides based on the cleavage activity of ribonucleases T1 and U2. To test the method, these enzymes were first used under conditions of limited digestion on 5-mer oligoribonucleotides platinated at a single defined purine. The phosphodiester bond on the 3' side of platinated G or A appeared fully resistant to cleavage by ribonuclease T1 or U2, respectively. An inhibitory effect was also observed due to neighboring platinated purines, which decreases with their distance (-2, -1, +1, +2) from the cleavage site and with the enzyme concentration. The method allowed the identification and quantification of the platination sites of a 17-mer oligoribonucleotide, based on the analysis of the mixture of monoplatinated adducts.
Collapse
Affiliation(s)
- Marine Escaffre
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
22
|
Garcia-Ortega L, Masip M, Mancheño JM, Oñaderra M, Lizarbe MA, García-Mayoral MF, Bruix M, Martínez del Pozo A, Gavilanes JG. Deletion of the NH2-terminal beta-hairpin of the ribotoxin alpha-sarcin produces a nontoxic but active ribonuclease. J Biol Chem 2002; 277:18632-9. [PMID: 11897788 DOI: 10.1074/jbc.m200922200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribotoxins are a family of highly specific fungal ribonucleases that inactivate the ribosomes by hydrolysis of a single phosphodiester bond of the 28 S rRNA. alpha-Sarcin, the best characterized member of this family, is a potent cytotoxin that promotes apoptosis of human tumor cells after internalization via endocytosis. This latter ability is related to its interaction with phospholipid bilayers. These proteins share a common structural core with nontoxic ribonucleases of the RNase T1 family. However, significant structural differences between these two groups of proteins are related to the presence of a long amino-terminal beta-hairpin in ribotoxins and to the different length of their unstructured loops. The amino-terminal deletion mutant Delta(7-22) of alpha-sarcin has been produced in Escherichia coli and purified to homogeneity. It retains the same conformation as the wild-type protein as ascertained by complete spectroscopic characterization based on circular dichroism, fluorescence, and NMR techniques. This mutant exhibits ribonuclease activity against naked rRNA and synthetic substrates but lacks the specific ability of the wild-type protein to degrade rRNA in intact ribosomes. The results indicate that alpha-sarcin interacts with the ribosome at two regions, i.e. the well known sarcin-ricin loop of the rRNA and a different region recognized by the beta-hairpin of the protein. In addition, this latter protein portion is involved in interaction with cell membranes. The mutant displays decreased interaction with lipid vesicles and shows behavior compatible with the absence of one vesicle-interacting region. In agreement with this conclusion, the deletion mutant exhibits a very low cytotoxicity on human rhabdomyosarcoma cells.
Collapse
Affiliation(s)
- Lucia Garcia-Ortega
- Departamento de Bioquimica y Biologia Molecular I, Universidad Complutense, Madrid 28040, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- H Yoshida
- Department of Chemistry, Shimane Medical University, Izumo 693-8501, Japan
| |
Collapse
|
24
|
Martínez-Ruiz A, García-Ortega L, Kao R, Lacadena J, Oñaderra M, Mancheño JM, Davies J, Martínez del Pozo A, Gavilanes JG. RNase U2 and alpha-sarcin: a study of relationships. Methods Enzymol 2002; 341:335-51. [PMID: 11582789 DOI: 10.1016/s0076-6879(01)41162-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A Martínez-Ruiz
- Centro de Investigaciones Biologicas-CSIC, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Smith CD, Carson M, Friedman AM, Skinner MM, Delucas L, Chantalat L, Weise L, Shirasawa T, Chattopadhyay D. Crystal structure of human L-isoaspartyl-O-methyl-transferase with S-adenosyl homocysteine at 1.6-A resolution and modeling of an isoaspartyl-containing peptide at the active site. Protein Sci 2002; 11:625-35. [PMID: 11847284 PMCID: PMC2373461 DOI: 10.1110/ps.37802] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 11/21/2001] [Accepted: 11/26/2001] [Indexed: 01/07/2023]
Abstract
Spontaneous formation of isoaspartyl residues (isoAsp) disrupts the structure and function of many normal proteins. Protein isoaspartyl methyltransferase (PIMT) reverts many isoAsp residues to aspartate as a protein repair process. We have determined the crystal structure of human protein isoaspartyl methyltransferase (HPIMT) complexed with adenosyl homocysteine (AdoHcy) to 1.6-A resolution. The core structure has a nucleotide binding domain motif, which is structurally homologous with the N-terminal domain of the bacterial Thermotoga maritima PIMT. Highly conserved residues in PIMTs among different phyla are placed at positions critical to AdoHcy binding and orienting the isoAsp residue substrate for methylation. The AdoHcy is completely enclosed within the HPIMT and a conformational change must occur to allow exchange with adenosyl methionine (AdoMet). An ordered sequential enzyme mechanism is supported because C-terminal residues involved with AdoHcy binding also form the isoAsp peptide binding site, and a change of conformation to allow AdoHcy to escape would preclude peptide binding. Modeling experiments indicated isoAsp groups observed in some known protein crystal structures could bind to the HPIMT active site.
Collapse
Affiliation(s)
- Craig D Smith
- Center for Biophysical Sciences and Technology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0044, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
García-Ortega L, Lacadena J, Mancheño JM, Oñaderra M, Kao R, Davies J, Olmo N, Gavilanes JG. Involvement of the amino-terminal beta-hairpin of the Aspergillus ribotoxins on the interaction with membranes and nonspecific ribonuclease activity. Protein Sci 2001; 10:1658-68. [PMID: 11468362 PMCID: PMC2374091 DOI: 10.1110/ps.9601] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Ribotoxins are a family of potent cytotoxic proteins from Aspergillus whose members display a high sequence identity (85% for about 150 amino acid residues). The three-dimensional structures of two of these proteins, alpha-sarcin and restrictocin, are known. They interact with phospholipid bilayers, according to their ability to enter cells, and cleave a specific phosphodiester bond in the large subunit of ribosome thus inhibiting protein biosynthesis. Two nonconservative sequence changes between these proteins are located at the amino-terminal beta-hairpin of alpha-sarcin, a characteristic structure that is absent in other nontoxic structurally related microbial RNases. These two residues of alpha-sarcin, Lys 11 and Thr 20, have been substituted with the equivalent amino acids in restrictocin. The single mutants (K11L and T20D) and the corresponding K11L/T20D double mutant have been produced in Escherichia coli and purified to homogeneity. The spectroscopic characterization of the purified proteins reveals that the overall native structure is preserved. The ribonuclease and lipid-perturbing activities of the three mutants and restrictocin have been evaluated and compared with those of alpha-sarcin. These proteins exhibit the same ability to specifically inactivate ribosomes, although they show different activity against nonspecific substrate analogs such as poly(A). The mutant variant K11L and restrictocin display a lower phospholipid-interacting ability correlated with a decreased cytotoxicity. The results obtained are interpreted in terms of the involvement of the amino-terminal beta-hairpin in the interaction with both membranes and polyadenylic acid.
Collapse
Affiliation(s)
- L García-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Robinson NE, Robinson AB. Prediction of protein deamidation rates from primary and three-dimensional structure. Proc Natl Acad Sci U S A 2001; 98:4367-72. [PMID: 11296285 PMCID: PMC31841 DOI: 10.1073/pnas.071066498] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2001] [Accepted: 02/08/2001] [Indexed: 11/18/2022] Open
Abstract
A method for the quantitative estimation of instability with respect to deamidation of the asparaginyl (Asn) residues in proteins is described. The procedure involves the observation of several simple aspects of the three-dimensional environment of each Asn residue in the protein and a calculation that includes these observations, the primary amino acid residue sequence, and the previously reported complete set of sequence-dependent rates of deamidation for Asn pentapeptides. This method is demonstrated and evaluated for 23 proteins in which 31 unstable and 167 stable Asn residues have been reported and for 7 unstable and 63 stable Asn residues that have been reported in 61 human hemoglobin variants. The relative importance of primary structure and three-dimensional structure in Asn deamidation is estimated.
Collapse
Affiliation(s)
- N E Robinson
- Division of Chemistry, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
28
|
Metzler DE, Metzler CM, Sauke DJ. Transferring Groups by Displacement Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Skinner MM, Puvathingal JM, Walter RL, Friedman AM. Crystal structure of protein isoaspartyl methyltransferase: a catalyst for protein repair. Structure 2000; 8:1189-201. [PMID: 11080641 DOI: 10.1016/s0969-2126(00)00522-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Formation of isoaspartyl residues is one of several processes that damage proteins as they age. Protein L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) is a conserved and nearly ubiquitous enzyme that catalyzes the repair of proteins damaged by isoaspartyl formation. RESULTS We have determined the first structure of a PIMT from crystals of the T. maritima enzyme complexed to S-adenosyl-L-homocysteine (AdoHcy) and refined it to 1.8 A resolution. Although PIMT forms one structural unit, the protein can be divided functionally into three subdomains. The central subdomain closely resembles other S-adenosyl-L-methionine-dependent methyltransferases but bears a striking alteration of topological connectivity, which is not shared by any other member of this family. Rather than arranged as a mixed beta sheet with topology 6 upward arrow7 downward arrow5 upward arrow4 upward arrow1 upward arrow2 upward arrow3 upward arrow, the central sheet of PIMT is reorganized to 7 upward arrow6 downward arrow5 upward arrow4 upward arrow1 upward arrow2 upward arrow3 upward arrow. AdoHcy is largely buried between the N-terminal and central subdomains by a conserved and largely hydrophobic loop on one rim of the binding cleft, and a conserved Ser/Thr-rich beta strand on the other. The Ser/Thr-rich strand may provide hydrogen bonds for specific interactions with isoaspartyl substrates. The side chain of Ile-206, a conserved residue, crosses the cleft, restricting access to the donor methyl group to a deep well, the putative isoaspartyl methyl acceptor site. CONCLUSIONS The structure of PIMT reveals a unique modification of the methyltransferase fold along with a site for specific recognition of isoaspartyl substrates. The sequence conservation among PIMTs suggests that the current structure should prove a reliable model for understanding the repair of isoaspartyl damage in all organisms.
Collapse
Affiliation(s)
- M M Skinner
- Department of Biological Sciences, Purdue University , West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
30
|
Martínez-Ruiz A, García-Ortega L, Kao R, Oñaderra M, Mancheño JM, Davies J, Martínez del Pozo A, Gavilanes JG. Ribonuclease U2: cloning, production in Pichia pastoris and affinity chromatography purification of the active recombinant protein. FEMS Microbiol Lett 2000; 189:165-9. [PMID: 10930732 DOI: 10.1111/j.1574-6968.2000.tb09224.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RNase U2 is an endoribonuclease secreted by the fungus Ustilago sphaerogena. Its genomic DNA (rnu2), containing an intron of 116 bp, has been isolated and cloned. The corresponding cDNA has also been synthesized. The recombinant RNase U2 was successfully produced in Pichia pastoris, fused to the yeast alkaline phosphatase signal peptide. The recombinant RNase U2, purified by affinity chromatography, contains three extra amino acids at its amino-terminal end and retains the enzymatic and spectroscopic properties of the natural fungal protein.
Collapse
Affiliation(s)
- A Martínez-Ruiz
- Departmento de Bioquimica y Biologia Molecular I, Facultad de Quimica, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
MurA, an essential enzyme for the synthesis of the bacterial cell wall, follows an induced-fit mechanism. Upon substrate binding, the active site forms in the interdomain cleft, involving movements of the two domains of the protein and a reorientation of the loop Pro112-Pro121. We compare two structures of un-liganded MurA from Enterobacter cloacae: a new orthorhombic form, solved to 1.80 A resolution, and a monoclinic form, redetermined to 1.55 A resolution. In the monoclinic form, the loop Pro112-Pro121 stretches into solvent, while in the new form it adopts a winded conformation, thereby reducing solvent accessibility of the critical residue Cys115. In the interdomain cleft a network of 27 common water molecules has been identified, which partially shields negative charges in the cleft and stabilizes the orientation of catalytically crucial residues. This could support substrate binding and ease domain movements. Near the hinge region an isoaspartyl residue has been recognized, which is the product of post-translational modification of the genetically encoded Asn67-Gly68. The homogeneous population with L-isoaspartate in both structures suggests that the modification in Enterobacter cloacae MurA is not a mere aging defect but rather the result of a specific in vivo process.
Collapse
Affiliation(s)
- S Eschenburg
- Max-Planck-Institute for Medical Research, Department of Biophysics, Heidelberg, Germany.
| | | |
Collapse
|
32
|
Meguro T, Kashiwagi T, Satow Y. Crystal structure of the low-humidity form of aspartame sweetener. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 56:97-104. [PMID: 10961544 DOI: 10.1034/j.1399-3011.2000.00732.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The low-humidity IB crystal form of aspartame (L-alphaaspartyl-L-phenylalanine methyl ester) is prepared via humidity-induced transition from the highly hydrated IA crystal form and is used widely as a sweetener. The crystal structure of the low-humidity IB form is determined at 1.05 A resolution (0.476 A(-1) in maximum sintheta/lambda) from an extremely fine fibrous crystal using synchrotron radiation. There are three aspartame molecules and two water molecules in the asymmetric unit of the monoclinic space group P2(1). Each aspartame molecule adopts an almost identical extended conformation which is commonly observed in other crystal forms of aspartame. Three aspartame molecules are assembled into a triangular trimer, and trimer units are stacked along the b-axis via hydrogen-bonding and electrostatic interactions in the main chains and also via hydrophobic contacts in the phenyl side-chains. Six trimer units are related by pseudo 6(1)-screw axis symmetry and form a hydrophilic channel at their center. The hydrophilic channel in the IB form contains only four water molecules in the unit cell, compared with 16 in the IA form. Although the IB form exhibits a trimer structure similar to that of the IA form, one aspartame molecule is rotated by approximately equals 20 degrees from the orientation in the IA form. This arrangement of the molecule implies that the humidity-induced transition is accompanied by a flapping motion of its methyl ester group. These structural differences may imply the stepwise transition from the IA to the IB forms.
Collapse
Affiliation(s)
- T Meguro
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
33
|
Pérez-Cañadillas JM, Santoro J, Campos-Olivas R, Lacadena J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M. The highly refined solution structure of the cytotoxic ribonuclease alpha-sarcin reveals the structural requirements for substrate recognition and ribonucleolytic activity. J Mol Biol 2000; 299:1061-73. [PMID: 10843858 DOI: 10.1006/jmbi.2000.3813] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-Sarcin selectively cleaves a single phosphodiester bond in a universally conserved sequence of the major rRNA, that inactivates the ribosome. The elucidation of the three-dimensional solution structure of this 150 residue enzyme is a crucial step towards understanding alpha-sarcin's conformational stability, ribonucleolytic activity, and its exceptionally high level of specificity. Here, the solution structure has been determined on the basis of 2658 conformationally relevant distances restraints (including stereoespecific assignments) and 119 torsional angular restraints, by nuclear magnetic resonance spectroscopy methods. A total of 60 converged structures have been computed using the program DYANA. The 47 best DYANA structures, following restrained energy minimization by GROMOS, represent the solution structure of alpha-sarcin. The resulting average pairwise root-mean-square-deviation is 0.86 A for backbone atoms and 1.47 A for all heavy atoms. When the more variable regions are excluded from the analysis, the pairwise root-mean-square deviation drops to 0.50 A and 1.00 A, for backbone and heavy atoms, respectively. The alpha-sarcin structure is similar to that reported for restrictocin, although some differences are clearly evident, especially in the loop regions. The average rmsd between the structurally aligned backbones of the 47 final alpha-sarcin structures and the crystal structure of restrictocin is 1.46 A. On the basis of a docking model constructed with alpha-sarcin solution structure and the crystal structure of a 29-nt RNA containing the sarcin/ricin domain, the regions in the protein that could interact specifically with the substrate have been identified. The structural elements that account for the specificity of RNA recognition are located in two separate regions of the protein. One is composed by residues 51 to 55 and loop 5, and the other region, located more than 11 A away in the structure, is the positively charged segment formed by residues 110 to 114.
Collapse
Affiliation(s)
- J M Pérez-Cañadillas
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid, 28006, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Esposito L, Vitagliano L, Sica F, Sorrentino G, Zagari A, Mazzarella L. The ultrahigh resolution crystal structure of ribonuclease A containing an isoaspartyl residue: hydration and sterochemical analysis. J Mol Biol 2000; 297:713-32. [PMID: 10731423 DOI: 10.1006/jmbi.2000.3597] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystals of the deamidated form of bovine pancreatic ribonuclease which contains an isoaspartyl residue in position 67 diffract to 0. 87 A at 100 K. We have refined the crystallographic model using anisotropic displacement parameters for all atoms to a conventional crystallographic residual R=0.101 for all observed reflections in the resolution range 61.0-0.87 A. The ratio observations/parameters is 7.2 for the final model. This structure represents one of the highest resolution protein structures to date and interestingly, it is the only example containing more than one molecule in the asymmetric unit with a resolution better than 1.0 A. The non-crystallographic symmetry has been used as a validation check of the geometrical parameters and it has allowed an estimate for an upper limit of errors associated with this high resolution model. In the present structure it was possible to obtain a more accurate picture of the active site whose electron density was not clearly interpretable in the previous 1.9 A resolution structure. In particular, the P1 site is alternatively occupied either by a sulphate anion or by a water molecule network. Most of hydrogen atoms were visible in the electron density maps, including those involved in C(alpha)-H(alpha).O interactions. Analysis of protein-solvent interactions has revealed the occurrence of an extensive cluster of water molecules, predominantly arranged in pentagonal fused rings and surrounding hydrophobic moiety of side-chains. Finally, in spite of the limited sample of residues, we have detected a clear dependence of backbone N-C(alpha)-C angle on residue conformation. This correlation can be fruitfully used as a valuable tool in protein structure validation.
Collapse
Affiliation(s)
- L Esposito
- Centro di Studio di Biocristallografia, CNR and Dipartimento di Chimica Università di Napoli "Federico II", Via Mezzocannone 4 I-80134, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Lacadena J, Martínez del Pozo A, Martínez-Ruiz A, Pérez-Cañadillas JM, Bruix M, Mancheño JM, Oñaderra M, Gavilanes JG. Role of histidine-50, glutamic acid-96, and histidine-137 in the ribonucleolytic mechanism of the ribotoxin alpha-sarcin. Proteins 1999; 37:474-84. [PMID: 10591106 DOI: 10.1002/(sici)1097-0134(19991115)37:3<474::aid-prot14>3.0.co;2-n] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
alpha-Sarcin is a ribotoxin secreted by the mold Aspergillus giganteus that degrades the ribosomal RNA by acting as a cyclizing ribonuclease. Three residues potentially involved in the mechanism of catalysis--histidine-50, glutamic acid-96, and histidine-137--were changed to glutamine. Three different single mutation variants (H50Q, E96Q, H137Q) as well as a double variant (H50/137Q) and a triple variant (H50/137Q/E96Q) were prepared and isolated to homogeneity. These variants were spectroscopically (circular dichroism, fluorescence emission, and proton nuclear magnetic resonance) characterized. According to these results, the three-dimensional structure of these variants of alpha-sarcin was preserved; only very minor local changes were detected. All the variants were inactive when assayed against either intact ribosomes or poly(A). The effect of pH on the ribonucleolytic activity of alpha-sarcin was evaluated against the ApA dinucleotide. This assay revealed that only the H50Q variant still retained its ability to cleave a phosphodiester bond, but it did so to a lesser extent than did wild-type alpha-sarcin. The results obtained are interpreted in terms of His137 and Glu96 as essential residues for the catalytic activity of alpha-sarcin (His137 as the general acid and Glu96 as the general base) and His50 stabilizing the transition state of the reaction catalyzed by alpha-sarcin.
Collapse
Affiliation(s)
- J Lacadena
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Orpiszewski J, Benson MD. Induction of beta-sheet structure in amyloidogenic peptides by neutralization of aspartate: a model for amyloid nucleation. J Mol Biol 1999; 289:413-28. [PMID: 10366514 DOI: 10.1006/jmbi.1999.2768] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid fibril formation is widely accepted as a critical step in all types of amyloidosis. Amyloid fibrils derived from different amyloidogenic proteins share structural elements including beta-sheet secondary structure and similar tertiary structure. While some amyloidogenic proteins are rich in beta-sheet in their soluble form, others, like Alzheimer beta-amyloid peptide (Abeta) or serum amyloid A, must undergo significant structural transition to acquire a high beta-sheet content. We postulate that Abeta and other amyloidogenic proteins undergo a transition to beta-sheet as a result of aging-related chemical modifications of aspartyl residues to the form of succinimide or isoaspartyl methyl ester. We hypothesize that spontaneous cyclization of aspartate residues in amyloidogenic proteins can serve as a nucleation event in amyloidogenesis. To test this hypothesis, we synthesized a series of designed peptides having the sequence VTVKVXAVKVTV, where X represents aspartic acid or its derivatives. Studies using circular dichroism showed that neutralization of the aspartate residue through the formation of a methyl ester or an amide, or replacement of aspartate with glutamate led to an increased beta-sheet content at neutral and basic pH. A higher content of beta-sheet structure correlated with increased propensity for fibril formation and decreased solubility at neutral pH.
Collapse
Affiliation(s)
- J Orpiszewski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
37
|
Fetrow JS, Skolnick J. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. J Mol Biol 1998; 281:949-68. [PMID: 9719646 DOI: 10.1006/jmbi.1998.1993] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The practical exploitation of the vast numbers of sequences in the genome sequence databases is crucially dependent on the ability to identify the function of each sequence. Unfortunately, current methods, including global sequence alignment and local sequence motif identification, are limited by the extent of sequence similarity between sequences of unknown and known function; these methods increasingly fail as the sequence identity diverges into and beyond the twilight zone of sequence identity. To address this problem, a novel method for identification of protein function based directly on the sequence-to-structure-to-function paradigm is described. Descriptors of protein active sites, termed "fuzzy functional forms" or FFFs, are created based on the geometry and conformation of the active site. By way of illustration, the active sites responsible for the disulfide oxidoreductase activity of the glutaredoxin/thioredoxin family and the RNA hydrolytic activity of the T1 ribonuclease family are presented. First, the FFFs are shown to correctly identify their corresponding active sites in a library of exact protein models produced by crystallography or NMR spectroscopy, most of which lack the specified activity. Next, these FFFs are used to screen for active sites in low-to-moderate resolution models produced by ab initio folding or threading prediction algorithms. Again, the FFFs can specifically identify the functional sites of these proteins from their predicted structures. The results demonstrate that low-to-moderate resolution models as produced by state-of-the-art tertiary structure prediction algorithms are sufficient to identify protein active sites. Prediction of a novel function for the gamma subunit of a yeast glycosyl transferase and prediction of the function of two hypothetical yeast proteins whose models were produced via threading are presented. This work suggests a means for the large-scale functional screening of genomic sequence databases based on the prediction of structure from sequence, then on the identification of functional active sites in the predicted structure.
Collapse
Affiliation(s)
- J S Fetrow
- Center for Biochemistry and Biophysics, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | | |
Collapse
|
38
|
Noguchi S, Miyawaki K, Satow Y. Succinimide and isoaspartate residues in the crystal structures of hen egg-white lysozyme complexed with tri-N-acetylchitotriose. J Mol Biol 1998; 278:231-8. [PMID: 9571046 DOI: 10.1006/jmbi.1998.1674] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The isomerization of Asp101 to isoaspartate autocatalytically proceeds via a succinimide intermediate in hen egg-white lysozyme at a mildly acidic condition. The crystal structures of succinimide and isoaspartate forms of the lysozyme proteins, each complexed with a tri-N-acetylchitotriose ligand, have been determined at 1.8 A resolution, and distinctively elucidate coplanar cyclic aminosuccinyl and beta-linked isoaspartyl residues. Compared with the liganded native protein with normal Asp101, succinimide 101 protrudes toward the ligand, and isoaspartate 101 extends away from the ligand. The formations of these residues caused the loss of three hydrogen-bonds between the ligand and the side-chains of Asp101 and Asn103 along with 0.5 A displacement of the ligand location.
Collapse
Affiliation(s)
- S Noguchi
- Graduate School of Pharmaceutical Sciences, University of Tokyo Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
39
|
Wentworth P, Wiemann T, Janda KD. A New Class of Pentacoordinate Ribonuclease Inhibitors: Synthesis, Characterization, and Inhibition Studies of Ribonucleoside and Anhydropentofuranose Oxorhenium(V) Complexes. J Am Chem Soc 1996. [DOI: 10.1021/ja9611248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Wentworth
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Torsten Wiemann
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Kim D. Janda
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
40
|
Yang X, Moffat K. Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specific Aspergillus ribotoxin, restrictocin. Structure 1996; 4:837-52. [PMID: 8805570 DOI: 10.1016/s0969-2126(96)00090-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Restriction, a highly specific ribotoxin made by the fungus Aspergillus restrictus, cleaves a single phosphodiester bond in the 28S RNA of eukaryotic ribosomes, inhibiting protein synthesis. The sequence around this cleavage site is a binding site for elongation factors, and is conserved in all cytoplasmic ribosomes. The catalytic mechanism of restrictocin and the reasons for its high substrate specificity are unknown. No structure has been determined for any other member of the Aspergillus ribotoxin family. RESULTS The crystal structure of restrictocin was determined at 2.1 A resolution by single isomorphous replacement and anomalous scattering techniques, and refined to 1.7 A resolution using synchrotron Laue data. The structural core of the protein, in which a three-turn alpha helix is packed against a five-stranded antiparallel beta sheet, can be well aligned with that of ribonuclease T1. Large positively charged peripheral loops near the active site construct a platform with a concave surface for RNA binding. CONCLUSIONS Restriction appears to combine the catalytic components of T1 ribonucleases with the base recognition components of Sa ribonucleases. Modeling studies using an NMR structure of an RNA substrate analog suggest that the tertiary structure of the substrate RNA is important in protein-RNA recognition, fitting closely into the concavity of the presumed binding site. We speculate that the large 39-residue loop L3, which has similarities to loops found in lectin sugar-binding domains, may be responsible for restrictocin's ability to cross cell membranes.
Collapse
Affiliation(s)
- X Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|