1
|
Kim J, Woo J, Park JY, Kim KJ, Kim D. Deep learning for NAD/NADP cofactor prediction and engineering using transformer attention analysis in enzymes. Metab Eng 2025; 87:86-94. [PMID: 39571721 DOI: 10.1016/j.ymben.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/25/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Understanding and manipulating the cofactor preferences of NAD(P)-dependent oxidoreductases, the most widely distributed enzyme group in nature, is increasingly crucial in bioengineering. However, large-scale identification of the cofactor preferences and the design of mutants to switch cofactor specificity remain as complex tasks. Here, we introduce DISCODE (Deep learning-based Iterative pipeline to analyze Specificity of COfactors and to Design Enzyme), a novel transformer-based deep learning model to predict NAD(P) cofactor preferences. For model training, a total of 7,132 NAD(P)-dependent enzyme sequences were collected. Leveraging whole-length sequence information, DISCODE classifies the cofactor preferences of NAD(P)-dependent oxidoreductase protein sequences without structural or taxonomic limitation. The model showed 97.4% and 97.3% of accuracy and F1 score, respectively. A notable feature of DISCODE is the interpretability of its transformer layers. Analysis of attention layers in the model enables identification of several residues that showed significantly higher attention weights. They were well aligned with structurally important residues that closely interact with NAD(P), facilitating the identification of key residues for determining cofactor specificities. These key residues showed high consistency with verified cofactor switching mutants. Integrated into an enzyme design pipeline, DISCODE coupled with attention analysis, enables a fully automated approach to redesign cofactor specificity.
Collapse
Affiliation(s)
- Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihoon Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute of Microbiology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
2
|
Gao J, Yu W, Li Y, Jin M, Yao L, Zhou YJ. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose. Nat Chem Biol 2023; 19:1524-1531. [PMID: 37620399 DOI: 10.1038/s41589-023-01402-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Bio-refining lignocellulose could provide a sustainable supply of fuels and fine chemicals; however, the challenges associated with the co-utilization of xylose and glucose typically compromise the efficiency of lignocellulose conversion. Here we engineered the industrial yeast Ogataea polymorpha (Hansenula polymorpha) for lignocellulose biorefinery by facilitating the co-utilization of glucose and xylose to optimize the production of free fatty acids (FFAs) and 3-hydroxypropionic acid (3-HP) from lignocellulose. We rewired the central metabolism for the enhanced supply of acetyl-coenzyme A and nicotinamide adenine dinucleotide phosphate hydrogen, obtaining 30.0 g l-1 of FFAs from glucose, with productivity of up to 0.27 g l-1 h-1. Strengthening xylose uptake and catabolism promoted the synchronous utilization of glucose and xylose, which enabled the production of 38.2 g l-1 and 7.0 g l-1 FFAs from the glucose-xylose mixture and lignocellulosic hydrolysates, respectively. Finally, this efficient cell factory was metabolically transformed for 3-HP production with the highest titer of 79.6 g l-1 in fed-batch fermentation in mixed glucose and xylose.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
| |
Collapse
|
3
|
Gao J, Li Y, Yu W, Zhou YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab 2022; 4:932-943. [PMID: 35817856 DOI: 10.1038/s42255-022-00601-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Methanol is an ideal feedstock for biomanufacturing that can be beneficial for global carbon neutrality; however, the toxicity of methanol limits the efficiency of methanol metabolism toward biochemical production. We here show that engineering production of free fatty acids from sole methanol results in cell death with decreased cellular levels of phospholipids in the methylotrophic yeast Ogataea polymorpha, and cell growth is restored by adaptive laboratory evolution. Whole-genome sequencing of the adapted strains reveals that inactivation of LPL1 (encoding a putative lipase) and IZH3 (encoding a membrane protein related to zinc metabolism) preserve cell survival by restoring phospholipid metabolism. Engineering the pentose phosphate pathway and gluconeogenesis enables high-level production of free fatty acid (15.9 g l-1) from sole methanol. Preventing methanol-associated toxicity underscores the link between lipid metabolism and methanol tolerance, which should contribute to enhancing methanol-based biomanufacturing.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
| |
Collapse
|
4
|
Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:299-350. [DOI: 10.1007/10_2021_181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Kamiński K, Ludwiczak J, Jasiński M, Bukala A, Madaj R, Szczepaniak K, Dunin-Horkawicz S. Rossmann-toolbox: a deep learning-based protocol for the prediction and design of cofactor specificity in Rossmann fold proteins. Brief Bioinform 2021; 23:6375059. [PMID: 34571541 PMCID: PMC8769691 DOI: 10.1093/bib/bbab371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 11/15/2022] Open
Abstract
The Rossmann fold enzymes are involved in essential biochemical pathways such as nucleotide and amino acid metabolism. Their functioning relies on interaction with cofactors, small nucleoside-based compounds specifically recognized by a conserved βαβ motif shared by all Rossmann fold proteins. While Rossmann methyltransferases recognize only a single cofactor type, the S-adenosylmethionine, the oxidoreductases, depending on the family, bind nicotinamide (nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate) or flavin-based (flavin adenine dinucleotide) cofactors. In this study, we showed that despite its short length, the βαβ motif unambiguously defines the specificity towards the cofactor. Following this observation, we trained two complementary deep learning models for the prediction of the cofactor specificity based on the sequence and structural features of the βαβ motif. A benchmark on two independent test sets, one containing βαβ motifs bearing no resemblance to those of the training set, and the other comprising 38 experimentally confirmed cases of rational design of the cofactor specificity, revealed the nearly perfect performance of the two methods. The Rossmann-toolbox protocols can be accessed via the webserver at https://lbs.cent.uw.edu.pl/rossmann-toolbox and are available as a Python package at https://github.com/labstructbioinf/rossmann-toolbox.
Collapse
Affiliation(s)
- Kamil Kamiński
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.,Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland
| | - Maciej Jasiński
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Adriana Bukala
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Rafal Madaj
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Krzysztof Szczepaniak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain. mBio 2021; 12:e0032921. [PMID: 34399608 PMCID: PMC8406311 DOI: 10.1128/mbio.00329-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The nicotinamide cofactor specificity of enzymes plays a key role in regulating metabolic processes and attaining cellular homeostasis. Multiple studies have used enzyme engineering tools or a directed evolution approach to switch the cofactor preference of specific oxidoreductases. However, whole-cell adaptation toward the emergence of novel cofactor regeneration routes has not been previously explored. To address this challenge, we used an Escherichia coli NADPH-auxotrophic strain. We continuously cultivated this strain under selective conditions. After 500 to 1,100 generations of adaptive evolution using different carbon sources, we isolated several strains capable of growing without an external NADPH source. Most isolated strains were found to harbor a mutated NAD+-dependent malic enzyme (MaeA). A single mutation in MaeA was found to switch cofactor specificity while lowering enzyme activity. Most mutated MaeA variants also harbored a second mutation that restored the catalytic efficiency of the enzyme. Remarkably, the best MaeA variants identified this way displayed overall superior kinetics relative to the wild-type variant with NAD+. In other evolved strains, the dihydrolipoamide dehydrogenase (Lpd) was mutated to accept NADP+, thus enabling the pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase complexes to regenerate NADPH. Interestingly, no other central metabolism oxidoreductase seems to evolve toward reducing NADP+, which we attribute to several biochemical constraints, including unfavorable thermodynamics. This study demonstrates the potential and biochemical limits of evolving oxidoreductases within the cellular context toward changing cofactor specificity, further showing that long-term adaptive evolution can optimize enzyme activity beyond what is achievable via rational design or directed evolution using small libraries.
Collapse
|
7
|
Zhang Y, Li Z, Liu Y, Cen X, Liu D, Chen Z. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol. Metab Eng 2021; 65:52-65. [PMID: 33722653 DOI: 10.1016/j.ymben.2021.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
The economic viability of current bio-production systems is often limited by its low productivity due to slow cell growth and low substrate uptake rate. The fastest-growing bacterium Vibrio natriegens is a highly promising next-generation workhorse of the biotechnology industry which can utilize various industrially relevant carbon sources with high substrate uptake rates. Here, we demonstrate the first systematic engineering example of V. natriegens for the heterologous production of 1,3-propanediol (1,3-PDO) from glycerol. Systems metabolic engineering strategies have been applied in this study to develop a superior 1,3-PDO producer, including: (1) heterologous pathway construction and optimization; (2) engineering cellular transcriptional regulators and global transcriptomic analysis; (3) enhancing intracellular reducing power by cofactor engineering; (4) reducing the accumulation of toxic intermediate by pathway engineering; (5) systematic engineering of glycerol oxidation pathway to eliminate byproduct formation. A final engineered strain can efficiently produce 1,3-PDO with a titer of 56.2 g/L, a yield of 0.61 mol/mol, and an average productivity of 2.36 g/L/h. The strategies described in this study would be useful for engineering V. natriegens as a potential chassis for the production of other useful chemicals and biofuels.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zihua Li
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuecong Cen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan, 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan, 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Zhang Y, Su M, Qin N, Nielsen J, Liu Z. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:226. [PMID: 33302960 PMCID: PMC7730738 DOI: 10.1186/s12934-020-01493-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. RESULTS Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). CONCLUSIONS We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Mo Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Choi GS, Choo HJ, Kim BG, Ahn JH. Synthesis of acridone derivatives via heterologous expression of a plant type III polyketide synthase in Escherichia coli. Microb Cell Fact 2020; 19:73. [PMID: 32197639 PMCID: PMC7085191 DOI: 10.1186/s12934-020-01331-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acridone alkaloids are heterocyclic compounds that exhibit a broad-range of pharmaceutical and chemotherapeutic activities, including anticancer, antiviral, anti-inflammatory, antimalarial, and antimicrobial effects. Certain plant species such as Citrus microcarpa, Ruta graveolens, and Toddaliopsis bremekampii synthesize acridone alkaloids from anthranilate and malonyl-CoA. RESULTS We synthesized two acridones in Escherichia coli. Acridone synthase (ACS) and anthraniloyl-CoA ligase genes were transformed into E. coli, and the synthesis of acridone was examined. To increase the levels of endogenous anthranilate, we tested several constructs expressing proteins involved in the shikimate pathway and selected the best construct. To boost the supply of malonyl-CoA, genes coding for acetyl-coenzyme A carboxylase (ACC) from Photorhabdus luminescens were overexpressed in E. coli. For the synthesis of 1,3-dihydroxy-10-methylacridone, we utilized an N-methyltransferase gene (NMT) to supply N-methylanthranilate and a new N-methylanthraniloyl-CoA ligase. After selecting the best combination of genes, approximately 17.3 mg/L of 1,3-dihydroxy-9(10H)-acridone (DHA) and 26.0 mg/L of 1,3-dihydroxy-10-methylacridone (NMA) were synthesized. CONCLUSIONS Two bioactive acridone derivatives were synthesized by expressing type III plant polyketide synthases and other genes in E. coli, which increased the supplement of substrates. This study showed that is possible to synthesize diverse polyketides in E. coli using plant polyketide synthases.
Collapse
Affiliation(s)
- Gyu-Sik Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye Jeong Choo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bong-Gyu Kim
- Department of Forest Resources, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju-si, Gyeongsangman-do, 52725, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SW, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv 2019; 37:107407. [DOI: 10.1016/j.biotechadv.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|
11
|
Wei L, Wang Q, Xu N, Cheng J, Zhou W, Han G, Jiang H, Liu J, Ma Y. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli. ACS Synth Biol 2019; 8:1153-1167. [PMID: 30973696 DOI: 10.1021/acssynbio.9b00042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O-acetylhomoserine (OAH) is a promising platform chemical for the production of l-methionine and other valuable compounds. However, the relative low titer and yield of OAH greatly limit its industrial production and cost-effective application. In this study, we successfully constructed an efficient OAH-producing strain with high titer and yield by combining protein and metabolic engineering strategies in E. coli. Initially, an OAH-producing strain was created by reconstruction of biosynthetic pathway and deletion of degradation and competitive pathways, which accumulated 1.68 g/L of OAH. Subsequently, several metabolic engineering strategies were implemented to improve the production of OAH. The pathway flux of OAH was enhanced by eliminating byproduct accumulation, increasing oxaloacetate supply and promoting the biosynthesis of precursor homoserine, resulting in a 1.79-fold increase in OAH production. Moreover, protein engineering was applied to improve the properties of the rate-limiting enzyme homoserine acetyltransferase (MetXlm) based on evolutionary conservation analysis and structure-guided engineering. The resulting triple F147L-M182I-M240A mutant of MetXlm exhibited a 12.15-fold increase in specific activity, and the optimized expression of the MetXlm mutant led to a 57.14% improvement in OAH production. Furthermore, the precursor acetyl-CoA supply and NADPH generation were also enhanced to facilitate the biosynthesis of OAH by promoting CoA biosynthesis, overexpressing heterogeneous acetyl-CoA synthetase (ACS), and introducing NADP-dependent pyruvate dehydrogenase (PDH). Finally, the engineered strain OAH-7 produced 62.7 g/L of OAH with yield and productivity values of 0.45 g/g glucose and 1.08 g/L/h, respectively, in a 7.5 L fed-batch fermenter, which was the highest OAH production ever reported.
Collapse
Affiliation(s)
- Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guoqiang Han
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Huifeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
12
|
Liu H, Fan J, Wang C, Li C, Zhou X. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3723-3732. [PMID: 30808164 DOI: 10.1021/acs.jafc.9b00653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
β-Amyrin is a plant-derived triterpenoid skeleton with wide applications in food and medical industry. β-Amyrin biosynthesis in Saccharomyces cerevisiae is derived from the mevalonate pathway with cytosolic acetyl-CoA as a precursor. In this work, endogenous and several heterologous acetyl-CoA synthesis pathways were coupled to β-amyrin production and a combinational acetyl-CoA supply route was demonstrated to be optimal due to more balanced redox cofactors, much lower energy consumption, and glucose utilization as well as significantly enhanced β-amyrin production (a 200% increase compared to the original β-amyrin-producing strain). Further disruption of an acetyl-CoA competing pathway led to a 330% increase in β-amyrin production as compared to the original strain. Finally, the engineered strain harboring the optimal pathway configuration achieved a final β-amyrin production of 279.0 ± 13.0 mg/L in glucose fed-batch fermentation, which is the highest as ever reported. This work provides an efficient platform for triterpenoid biosynthesis in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hu Liu
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jingjing Fan
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Chen Wang
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Chun Li
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin , 300072 , China
| | - Xiaohong Zhou
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
13
|
Lindner SN, Ramirez LC, Krüsemann JL, Yishai O, Belkhelfa S, He H, Bouzon M, Döring V, Bar-Even A. NADPH-Auxotrophic E. coli: A Sensor Strain for Testing in Vivo Regeneration of NADPH. ACS Synth Biol 2018; 7:2742-2749. [PMID: 30475588 DOI: 10.1021/acssynbio.8b00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insufficient rate of NADPH regeneration often limits the activity of biosynthetic pathways. Expression of NADPH-regenerating enzymes is commonly used to address this problem and increase cofactor availability. Here, we construct an Escherichia coli NADPH-auxotroph strain, which is deleted in all reactions that produce NADPH with the exception of 6-phosphogluconate dehydrogenase. This strain grows on a minimal medium only if gluconate is added as NADPH source. When gluconate is omitted, the strain serves as a "biosensor" for the capability of enzymes to regenerate NADPH in vivo. We show that the NADPH-auxotroph strain can be used to quantitatively assess different NADPH-regenerating enzymes and provide essential information on expression levels and concentrations of reduced substrates required to support optimal NADPH production rate. The NADPH-auxotroph strain thus serves as an effective metabolic platform for evaluating NADPH regeneration within the cellular context.
Collapse
Affiliation(s)
- Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | | | - Jan L. Krüsemann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Oren Yishai
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Sophia Belkhelfa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
14
|
Dann M, Leister D. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0380. [PMID: 28808099 DOI: 10.1098/rstb.2016.0380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 12/22/2022] Open
Abstract
Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Chánique AM, Parra LP. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges. Front Microbiol 2018; 9:194. [PMID: 29491854 PMCID: PMC5817062 DOI: 10.3389/fmicb.2018.00194] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 01/10/2023] Open
Abstract
Oxidoreductases are ubiquitous enzymes that catalyze an extensive range of chemical reactions with great specificity, efficiency, and selectivity. Most oxidoreductases are nicotinamide cofactor-dependent enzymes with a strong preference for NADP or NAD. Because these coenzymes differ in stability, bioavailability and costs, the enzyme preference for a specific coenzyme is an important issue for practical applications. Different approaches for the manipulation of coenzyme specificity have been reported, with different degrees of success. Here we present various attempts for the switching of nicotinamide coenzyme preference in oxidoreductases by protein engineering. This review covers 103 enzyme engineering studies from 82 articles and evaluates the accomplishments in terms of coenzyme specificity and catalytic efficiency compared to wild type enzymes of different classes. We analyzed different protein engineering strategies and related them with the degree of success in inverting the cofactor specificity. In general, catalytic activity is compromised when coenzyme specificity is reversed, however when switching from NAD to NADP, better results are obtained. In most of the cases, rational strategies were used, predominantly with loop exchange generating the best results. In general, the tendency of removing acidic residues and incorporating basic residues is the strategy of choice when trying to change specificity from NAD to NADP, and vice versa. Computational strategies and algorithms are also covered as helpful tools to guide protein engineering strategies. This mini review aims to give a general introduction to the topic, giving an overview of tools and information to work in protein engineering for the reversal of coenzyme specificity.
Collapse
Affiliation(s)
- Andrea M Chánique
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto P Parra
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Hudson DA, Caplan JL, Thorpe C. Designing Flavoprotein-GFP Fusion Probes for Analyte-Specific Ratiometric Fluorescence Imaging. Biochemistry 2018; 57:1178-1189. [PMID: 29341594 DOI: 10.1021/acs.biochem.7b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of genetically encoded fluorescent probes for analyte-specific imaging has revolutionized our understanding of intracellular processes. Current classes of intracellular probes depend on the selection of binding domains that either undergo conformational changes on analyte binding or can be linked to thiol redox chemistry. Here we have designed novel probes by fusing a flavoenzyme, whose fluorescence is quenched on reduction by the analyte of interest, with a GFP domain to allow for rapid and specific ratiometric sensing. Two flavoproteins, Escherichia coli thioredoxin reductase and Saccharomyces cerevisiae lipoamide dehydrogenase, were successfully developed into thioredoxin and NAD+/NADH specific probes, respectively, and their performance was evaluated in vitro and in vivo. A flow cell format, which allowed dynamic measurements, was utilized in both bacterial and mammalian systems. In E. coli the first reported intracellular steady-state of the cytoplasmic thioredoxin pool was measured. In HEK293T mammalian cells, the steady-state cytosolic ratio of NAD+/NADH induced by glucose was determined. These genetically encoded fluorescent constructs represent a modular approach to intracellular probe design that should extend the range of metabolites that can be quantitated in live cells.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Jeffrey L Caplan
- Bioimaging Center, Delaware Biotechnology Institute , Newark, Delaware 19716, United States
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
17
|
Cardenas J, Da Silva NA. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab Eng 2016; 36:80-89. [PMID: 26969250 DOI: 10.1016/j.ymben.2016.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 02/04/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023]
Abstract
Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP(+) for acetyl-CoA production. After 24h of cultivation, a 3.7-fold increase in NADPH/NADP(+) ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2-3-fold over the base strain (up to 0.8g/L), and in combination to 1.4g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds.
Collapse
Affiliation(s)
- Javier Cardenas
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | - Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.
| |
Collapse
|
18
|
Cui D, Zhang L, Jiang S, Yao Z, Gao B, Lin J, Yuan YA, Wei D. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). FEBS J 2015; 282:2339-51. [PMID: 25817922 DOI: 10.1111/febs.13282] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 01/19/2023]
Abstract
Coenzyme engineering, especially for altered coenzyme specificity, has been a research hotspot for more than a decade. In the present study, a novel computational strategy that enhances the hydrogen-bond interaction between an enzyme and a coenzyme was developed and utilized to alter the coenzyme preference. This novel computational strategy only required the structure of the target enzyme. No other homologous enzymes were needed to achieve alteration in the coenzyme preference of a certain enzyme. Using our novel strategy, Gox2181 was reconstructed from exhibiting complete NADPH preference to exhibiting dual cofactor specificity for NADH and NADPH. Structure-guided Gox2181 mutants were designed in silico and molecular dynamics simulations were performed to evaluate the strength of hydrogen-bond interactions between the enzyme and the coenzyme NADPH. Three Gox2181 mutants displaying high structure stability and structural compatibility to NADH/NADPH were chosen for experimental confirmation. Among the three Gox2181 mutants, Gox2181-Q20R&D43S showed the highest enzymatic activity by utilizing NADPH as its coenzyme, which was even better than the wild-type enzyme. In addition, isothermal titration calorimetry analysis further verified that Gox2181-Q20R&D43S was able to interact with NADPH but the wild-type enzyme could not. This novel computational strategy represents an insightful approach for altering the cofactor preference of target enzymes.
Collapse
Affiliation(s)
- Dongbing Cui
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lujia Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Shuiqin Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhiqiang Yao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Y Adam Yuan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Chou HH, Marx CJ, Sauer U. Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production. PLoS Genet 2015; 11:e1005007. [PMID: 25715029 PMCID: PMC4340650 DOI: 10.1371/journal.pgen.1005007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022] Open
Abstract
Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1) modulating the expression of membrane-bound transhydrogenase (mTH) in every population; (2) simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities.
Collapse
Affiliation(s)
- Hsin-Hung Chou
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Islam K. Allele-specific chemical genetics: concept, strategies, and applications. ACS Chem Biol 2015; 10:343-63. [PMID: 25436868 DOI: 10.1021/cb500651d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed.
Collapse
Affiliation(s)
- Kabirul Islam
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Complete pyridine-nucleotide-specific conversion of an NADH-dependent ferredoxin reductase. Biochem J 2014; 462:257-65. [PMID: 24902961 DOI: 10.1042/bj20140384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The coenzyme specificity of enzymes is one of the critical parameters for the engineered production of biological compounds using bacteria. Since NADPH is produced abundantly in photosynthetic organisms, conversion of an NADH-specific enzyme into an NADPH-specific one is a useful approach for the efficient carbon-neutral production of biological compounds in photosynthetic organisms. In the present study, an NADH-specific ferredoxin reductase component, BphA4 of biphenyl dioxygenase BphA from Acidovorax sp. strain KKS102, was changed to an NADPH-dependent form using a method combining structure-based systematic mutations and site-directed random mutagenesis. The resultant CRG mutant, in which Glu175-Thr176-Gln177 of an NADH-recognition loop in the wild-type BphA4 was replaced with Cys175-Arg176-Gly177, was highly specific and active for NADPH, and its biochemical and structural properties for NADPH were nearly the same as those of the wild-type BphA4 for NADH. In addition, this mutation project was assessed by a semi-empirical prediction method of mutation effects, and the results suggested that the CRG mutant was one of the best NADPH-specific mutants.
Collapse
|
22
|
Opgenorth PH, Korman TP, Bowie JU. A synthetic biochemistry molecular purge valve module that maintains redox balance. Nat Commun 2014; 5:4113. [PMID: 24936528 DOI: 10.1038/ncomms5113] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/14/2014] [Indexed: 12/19/2022] Open
Abstract
The greatest potential environmental benefit of metabolic engineering would be the production of high-volume commodity chemicals, such as biofuels. Yet, the high yields required for the economic viability of low-value chemicals is particularly hard to achieve in microbes owing to the myriad competing biochemical pathways. An alternative approach, which we call synthetic biochemistry, is to eliminate the organism by constructing biochemical pathways in vitro. Viable synthetic biochemistry, however, will require simple methods to replace the cellular circuitry that maintains cofactor balance. Here we design a simple purge valve module for maintaining NADP(+)/NADPH balance. We test the purge valve in the production of polyhydroxybutyryl bioplastic and isoprene--pathways where cofactor generation and utilization are unbalanced. We find that the regulatory system is highly robust to variations in cofactor levels and readily transportable. The molecular purge valve provides a step towards developing continuously operating, sustainable synthetic biochemistry systems.
Collapse
Affiliation(s)
- Paul H Opgenorth
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - Tyler P Korman
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - James U Bowie
- 1] Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA [2] Boyer Hall, UCLA, 611 Charles E Young Drive East, Los Angeles, California 90095-1570, USA
| |
Collapse
|
23
|
Petschacher B, Staunig N, Müller M, Schürmann M, Mink D, De Wildeman S, Gruber K, Glieder A. Cofactor Specificity Engineering of Streptococcus mutans NADH Oxidase 2 for NAD(P)(+) Regeneration in Biocatalytic Oxidations. Comput Struct Biotechnol J 2014; 9:e201402005. [PMID: 24757503 PMCID: PMC3995211 DOI: 10.5936/csbj.201402005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 11/22/2022] Open
Abstract
Soluble water-forming NAD(P)H oxidases constitute a promising NAD(P)(+) regeneration method as they only need oxygen as cosubstrate and produce water as sole byproduct. Moreover, the thermodynamic equilibrium of O2 reduction is a valuable driving force for mostly energetically unfavorable biocatalytic oxidations. Here, we present the generation of an NAD(P)H oxidase with high activity for both cofactors, NADH and NADPH. Starting from the strictly NADH specific water-forming Streptococcus mutans NADH oxidase 2 several rationally designed cofactor binding site mutants were created and kinetic values for NADH and NADPH conversion were determined. Double mutant 193R194H showed comparable high rates and low K m values for NADPH (k cat 20 s(-1), K m 6 µM) and NADH (k cat 25 s(-1), K m 9 µM) with retention of 70% of wild type activity towards NADH. Moreover, by screening of a SeSaM library S. mutans NADH oxidase 2 variants showing predominantly NADPH activity were found, giving further insight into cofactor binding site architecture. Applicability for cofactor regeneration is shown for coupling with alcohol dehydrogenase from Sphyngobium yanoikuyae for 2-heptanone production.
Collapse
Affiliation(s)
- Barbara Petschacher
- Austrian Centre of Industrial Biotechnology GmbH, c/o Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Nicole Staunig
- Austrian Centre of Industrial Biotechnology GmbH, c/o Institute of Molecular Biosciences, University Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Monika Müller
- DSM Innovative Synthesis B.V., P.O. Box 18, 6160 MD Geleen, Netherlands
| | - Martin Schürmann
- DSM Innovative Synthesis B.V., P.O. Box 18, 6160 MD Geleen, Netherlands
| | - Daniel Mink
- DSM Innovative Synthesis B.V., P.O. Box 18, 6160 MD Geleen, Netherlands
| | | | - Karl Gruber
- Austrian Centre of Industrial Biotechnology GmbH, c/o Institute of Molecular Biosciences, University Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology GmbH, c/o Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
24
|
k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol 2014; 10:e1003487. [PMID: 24586136 PMCID: PMC3930495 DOI: 10.1371/journal.pcbi.1003487] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/10/2014] [Indexed: 11/19/2022] Open
Abstract
Computational strain design protocols aim at the system-wide identification of intervention strategies for the enhanced production of biochemicals in microorganisms. Existing approaches relying solely on stoichiometry and rudimentary constraint-based regulation overlook the effects of metabolite concentrations and substrate-level enzyme regulation while identifying metabolic interventions. In this paper, we introduce k-OptForce, which integrates the available kinetic descriptions of metabolic steps with stoichiometric models to sharpen the prediction of intervention strategies for improving the bio-production of a chemical of interest. It enables identification of a minimal set of interventions comprised of both enzymatic parameter changes (for reactions with available kinetics) and reaction flux changes (for reactions with only stoichiometric information). Application of k-OptForce to the overproduction of L-serine in E. coli and triacetic acid lactone (TAL) in S. cerevisiae revealed that the identified interventions tend to cause less dramatic rearrangements of the flux distribution so as not to violate concentration bounds. In some cases the incorporation of kinetic information leads to the need for additional interventions as kinetic expressions render stoichiometry-only derived interventions infeasible by violating concentration bounds, whereas in other cases the kinetic expressions impart flux changes that favor the overproduction of the target product thereby requiring fewer direct interventions. A sensitivity analysis on metabolite concentrations shows that the required number of interventions can be significantly affected by changing the imposed bounds on metabolite concentrations. Furthermore, k-OptForce was capable of finding non-intuitive interventions aiming at alleviating the substrate-level inhibition of key enzymes in order to enhance the flux towards the product of interest, which cannot be captured by stoichiometry-alone analysis. This study paves the way for the integrated analysis of kinetic and stoichiometric models and enables elucidating system-wide metabolic interventions while capturing regulatory and kinetic effects.
Collapse
|
25
|
Yuzbashev TV, Vybornaya TV, Larina AS, Gvilava IT, Voyushina NE, Mokrova SS, Yuzbasheva EY, Manukhov IV, Sineoky SP, Debabov VG. Directed modification of Escherichia coli metabolism for the design of threonine-producing strains. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813090056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Enantioselective synthesis of (S)-phenylephrine by recombinant Escherichia coli cells expressing the short-chain dehydrogenase/reductase gene from Serratia quinivorans BCRC 14811. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
King ZA, Feist AM. Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zachary A. King
- Department of Bioengineering, University of California, San Diego, CA
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, CA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
28
|
Engel PC. Glutamate dehydrogenases: the why and how of coenzyme specificity. Neurochem Res 2013; 39:426-32. [PMID: 23761034 DOI: 10.1007/s11064-013-1089-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 05/23/2013] [Accepted: 05/25/2013] [Indexed: 11/28/2022]
Abstract
NAD(+) and NADP(+), chemically similar and with almost identical standard oxidation-reduction potentials, nevertheless have distinct roles, NAD(+) serving catabolism and ATP generation whereas NADPH is the biosynthetic reductant. Separating these roles requires strict specificity for one or the other coenzyme for most dehydrogenases. In many organisms this holds also for glutamate dehydrogenases (GDH), NAD(+)-dependent for glutamate oxidation, NADP(+)-dependent for fixing ammonia. In higher animals, however, GDH has dual specificity. It has been suggested that GDH in mitochondria reacts only with NADP(H), the NAD(+) reaction being an in vitro artefact. However, contrary evidence suggests mitochondrial GDH not only reacts with NAD(+) but maintains equilibrium using the same pool as accessed by β-hydroxybutyrate dehydrogenase. Another complication is the presence of an energy-linked dehydrogenase driving NADP(+) reduction by NADH, maintaining the coenzyme pools at different oxidation-reduction potentials. Its coexistence with GDH makes possible a futile cycle, control of which is not yet properly explained. Structural studies show NAD(+)-dependent, NADP(+)-dependent and dual-specificity GDHs are closely related and a few site-directed mutations can reverse specificity. Specificity for NAD(+) or for NADP(+) has probably emerged repeatedly during evolution, using different structural solutions on different occasions. In various GDHs the P7 position in the coenzyme-binding domain plays a key role. However, whereas in other dehydrogenases an acidic P7 residue usually hydrogen bonds to the 2'- and 3'-hydroxyls, dictating NAD(+) specificity, among GDHs, depending on detailed conformation of surrounding residues, an acidic P7 may permit binding of NAD(+) only, NADP(+) only, or in higher animals both.
Collapse
Affiliation(s)
- Paul C Engel
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland,
| |
Collapse
|
29
|
Cell-free Biosystems in the Production of Electricity and Bioenergy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:125-52. [PMID: 23748347 DOI: 10.1007/10_2013_201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
: Increasing needs of green energy and concerns of climate change are motivating intensive R&D efforts toward the low-cost production of electricity and bioenergy, such as hydrogen, alcohols, and jet fuel, from renewable sugars. Cell-free biosystems for biomanufacturing (CFB2) have been suggested as an emerging platform to replace mainstream microbial fermentation for the cost-effective production of some biocommodities. As compared to whole-cell factories, cell-free biosystems comprised of synthetic enzymatic pathways have numerous advantages, such as high product yield, fast reaction rate, broad reaction condition, easy process control and regulation, tolerance of toxic compound/product, and an unmatched capability of performing unnatural reactions. However, issues pertaining to high costs and low stabilities of enzymes and cofactors as well as compromised optimal conditions for different source enzymes need to be solved before cell-free biosystems are scaled up for biomanufacturing. Here, we review the current status of cell-free technology, update recent advances, and focus on its applications in the production of electricity and bioenergy.
Collapse
|
30
|
Bond-Watts BB, Weeks AM, Chang MCY. Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola. Biochemistry 2012; 51:6827-37. [PMID: 22906002 DOI: 10.1021/bi300879n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The production of fatty acids is an important cellular pathway for both cellular function and the development of engineered pathways for the synthesis of advanced biofuels. Despite the conserved reaction chemistry of various fatty acid synthase systems, the individual isozymes that catalyze these steps are quite diverse in their structural and biochemical features and are important for controlling differences at the cellular level. One of the key steps in the fatty acid elongation cycle is the enoyl-ACP (CoA) reductase function that drives the equilibrium forward toward chain extension. In this work, we report the structural and biochemical characterization of the trans-enoyl-CoA reductase from Treponema denticola (tdTer), which has been utilized for the engineering of synthetic biofuel pathways with an order of magnitude increase in product titers compared to those of pathways constructed with other enoyl-CoA reductase components. The crystal structure of tdTer was determined to 2.00 Å resolution and shows that the Ter enzymes are distinct from members of the FabI, FabK, and FabL families but are highly similar to members of the FabV family. Further biochemical studies show that tdTer uses an ordered bi-bi mechanism initiated by binding of the NADH redox cofactor, which is consistent with the behavior of other enoyl-ACP (CoA) reductases. Mutagenesis of the substrate binding loop, characterization of enzyme activity with respect to crotonyl-CoA, hexenoyl-CoA, and dodecenoyl-CoA substrates, and product inhibition by lauroyl-CoA suggest that this region is important for controlling chain length specificity, with the major portal playing a more important role for longer chain length substrates.
Collapse
Affiliation(s)
- Brooks B Bond-Watts
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
| | | | | |
Collapse
|
31
|
Sharkey MA, Gori A, Capone M, Engel PC. Reversal of the extreme coenzyme selectivity of Clostridium symbiosum glutamate dehydrogenase. FEBS J 2012; 279:3003-9. [PMID: 22747945 DOI: 10.1111/j.1742-4658.2012.08681.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Active-site mutants of glutamate dehydrogenase from Clostridium symbiosum have been designed and constructed and the effects on coenzyme preference evaluated by detailed kinetic measurements. The triple mutant F238S/P262S/D263K shows complete reversal in coenzyme selectivity from NAD(H) to NADP(H) with retention of high levels of catalytic activity for the new coenzyme. For oxidized coenzymes, k(cat) /K(m) ratios of the wild-type and triple mutant enzyme indicate a shift in preference of approximately 1.6 × 10(7) -fold, from ∼ 80,000-fold in favour of NAD(+) to ∼ 200-fold in favour of NADP(+). For reduced coenzymes the corresponding figure is 1.7 × 10(4) -fold, from ∼ 1000-fold in favour of NADH to ∼ 17-fold in favour of NADPH. A fourth mutation (N290G), previously identified as having a potential bearing on coenzyme specificity, did not engender any further shift in preference when incorporated into the triple mutant, despite having a significant effect when expressed as a single mutant.
Collapse
Affiliation(s)
- Michael A Sharkey
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Ireland
| | | | | | | |
Collapse
|
32
|
Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase. Appl Environ Microbiol 2012; 78:3079-86. [PMID: 22344653 DOI: 10.1128/aem.07751-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 10.9, where K(m)(,NAD) is the K(m) for NAD(+) and K(m)(,NADP) is the K(m) for NADP(+)). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP(+) as the cofactor (S156H, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.
Collapse
|
33
|
You C, Zhang YHP. Cell-free biosystems for biomanufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 131:89-119. [PMID: 23111502 DOI: 10.1007/10_2012_159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although cell-free biosystems have been used as a tool for investigating fundamental aspects of biological systems for more than 100 years, they are becoming an emerging biomanufacturing platform in the production of low-value biocommodities (e.g., H(2), ethanol, and isobutanol), fine chemicals, and high-value protein and carbohydrate drugs and their precursors. Here we would like to define the cell-free biosystems containing more than three catalytic components in a single reaction vessel, which although different from one-, two-, or three-enzyme biocatalysis can be regarded as a straightforward extension of multienzymatic biocatalysis. In this chapter, we compare the advantages and disadvantages of cell-free biosystems versus living organisms, briefly review the history of cell-free biosystems, highlight a few examples, analyze any remaining obstacles to the scale-up of cell-free biosystems, and suggest potential solutions. Cell-free biosystems could become a disruptive technology to microbial fermentation, especially in the production of high-impact low-value biocommodities mainly due to the very high product yields and potentially low production costs.
Collapse
Affiliation(s)
- Chun You
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA, 24061, USA
| | | |
Collapse
|
34
|
YAO YUAN, HAN WEIWEI, ZHOU YIHAN, LUO QUAN, LI ZESHENG. CATALYTIC REACTION MECHANISM OF HUMAN PHOTORECEPTOR RETINOL DEHYDROGENASE: A THEORETICAL STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608003964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human photoreceptor retinol dehydrogenase (hRDH8) catalyzes the reduction of all-trans-retinal to all-trans-retinol with NADPH as a rate-limiting step in the visual cycle. Based on the docking results of the substrate to the 3D structure of hRDH8 which is generated by homology modeling method, three quantum chemical calculation models with different sizes were used to investigate the catalytic reaction mechanism of hRDH8 with the aid of density functional theory. The calculations indicate that hRDH8 employs a general acid/base mechanism that a proton is transferred to the keto oxygen of the substrate after the pro-S hydride of NADPH transfer to keto carbon of the substrate. The H-transfer order is converse to that in the proposed mechanism of 17ß-hydroxysteroid dehydrogenase 1, which is highly related to the hRDH8 sequence. Tyr155 always provides the proton to the keto oxygen of the substrate whether unprotonated Lys159 is considered or not in the calculation models. However, protonated Lys159 changes the initial mechanism and replaces Tyr155 to provide the proton to the keto oxygen of the substrate. Moreover, protonated Lys159 can also decrease very effectively the Gibbs free energy barrier to make the reaction indeed energetically feasible. The role of Lys159 in hRDH8 is different from that in 17ß-hydroxysteroid dehydrogenase 1. The solvent effect calculations indicate that the reaction is more feasible energetically in the protein electrostatic environment than in the gas phase.
Collapse
Affiliation(s)
- YUAN YAO
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| | - WEI-WEI HAN
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| | - YI-HAN ZHOU
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| | - QUAN LUO
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| | - ZE-SHENG LI
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
35
|
Griffin J, Engel PC. An Examination by Site-Directed Mutagenesis of Putative Key Residues in the Determination of Coenzyme Specificity in Clostridial NAD-Dependent Glutamate Dehydrogenase. Enzyme Res 2011; 2011:595793. [PMID: 21876794 PMCID: PMC3157743 DOI: 10.4061/2011/595793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/28/2011] [Accepted: 05/04/2011] [Indexed: 12/04/2022] Open
Abstract
Sequence and structure comparisons of various glutamate dehydrogenases (GDH) and other nicotinamide nucleotide-dependent dehydrogenases have potentially implicated certain residues in coenzyme binding and discrimination. We have mutated key residues in Clostridium symbiosum NAD+-specific GDH to investigate their contribution to specificity and to enhance acceptance of NADPH. Comparisons with E. coli NADPH-dependent GDH prompted design of mutants F238S, P262S, and F238S/P262S, which were purified and assessed at pH 6.0, 7.0, and 8.0. They showed markedly increased catalytic efficiency with NADPH, especially at pH 8.0 (∼170-fold for P262S and F238S/P262S with relatively small changes for NADH). A positive charge introduced through the D263K mutation also greatly increased catalytic efficiency with NADPH (over 100-fold at pH 8) and slightly decreased activity with NADH. At position 242, “P6” of the “core fingerprint,” where NAD+- and NADP+-dependent enzymes normally have Gly or Ala, respectively, clostridial GDH already has Ala. Replacement with Gly produced negligible shift in coenzyme specificity.
Collapse
Affiliation(s)
- Joanna Griffin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
36
|
Capone M, Scanlon D, Griffin J, Engel PC. Re-engineering the discrimination between the oxidized coenzymes NAD+ and NADP+ in clostridial glutamate dehydrogenase and a thorough reappraisal of the coenzyme specificity of the wild-type enzyme. FEBS J 2011; 278:2460-8. [PMID: 21564547 DOI: 10.1111/j.1742-4658.2011.08172.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clostridial glutamate dehydrogenase mutants, designed to accommodate the 2'-phosphate of disfavoured NADPH, showed the expected large specificity shifts with NAD(P)H. Puzzlingly, similar assays with oxidized cofactors initially revealed little improvement with NADP(+) , although rates with NAD(+) were markedly diminished. This article reveals that the enzyme's discrimination in favour of NAD(+) and against NADP(+) had been greatly underestimated and has indeed been abated by a factor of > 16,000 by the mutagenesis. Initially, stopped-flow studies of the wild-type enzyme showed a burst increase of A(340) with NADP(+) but not NAD(+), with amplitude depending on the concentration of the coenzyme, rather than enzyme. Amplitude also varied with the commercial source of the NADP(+). FPLC, HPLC and mass spectrometry identified NAD(+) contamination ranging from 0.04 to 0.37% in different commercial samples. It is now clear that apparent rates of NADP(+) utilization mainly reflected the reduction of contaminating NAD(+), creating an entirely false view of the initial coenzyme specificity and also of the effects of mutagenesis. Purification of the NADP(+) eliminated the burst. With freshly purified NADP(+), the NAD(+) : NADP(+) activity ratio under standard conditions, previously estimated as 300 : 1, is 11,000. The catalytic efficiency ratio is even higher at 80,000. Retested with pure cofactor, mutants showed marked specificity shifts in the expected direction, for example, 16 200 fold change in catalytic efficiency ratio for the mutant F238S/P262S, confirming that the key structural determinants of specificity have been successfully identified. Of wider significance, these results underline that, without purification, even the best commercial coenzyme preparations are inadequate for such studies.
Collapse
Affiliation(s)
- Marina Capone
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
37
|
Ser67Asp and His68Asp substitutions in candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction. Appl Environ Microbiol 2009; 75:2176-83. [PMID: 19201968 DOI: 10.1128/aem.02519-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A short-chain carbonyl reductase (SCR) from Candida parapsilosis catalyzes an anti-Prelog reduction of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol (PED) and exhibits coenzyme specificity for NADPH over NADH. By using site-directed mutagenesis, the mutants were designed with different combinations of Ser67Asp, His68Asp, and Pro69Asp substitutions inside or adjacent to the coenzyme binding pocket. All mutations caused a significant shift of enantioselectivity toward the (R)-configuration during 2-hydroxyacetophenone reduction. The S67D/H68D mutant produced (R)-PED with high optical purity and yield in the NADH-linked reaction. By kinetic analysis, the S67D/H68D mutant resulted in a nearly 10-fold increase and a 20-fold decrease in the k(cat)/K(m) value when NADH and NADPH were used as the cofactors, respectively, but maintaining a k(cat) value essentially the same with respect to wild-type SCR. The ratio of K(d) (dissociation constant) values between NADH and NADPH for the S67D/H68D mutant and SCR were 0.28 and 1.9 respectively, which indicates that the S67D/H68D mutant has a stronger preference for NADH and weaker binding for NADPH. Moreover, the S67D/H68D enzyme exhibited a secondary structure and melting temperature similar to the wild-type form. It was also found that NADH provided maximal protection against thermal and urea denaturation for S67D/H68D, in contrast to the effective protection by NADP(H) for the wild-type enzyme. Thus, the double point mutation S67D/H68D successfully converted the coenzyme specificity of SCR from NADP(H) to NAD(H) as well as the product enantioselectivity without disturbing enzyme stability. This work provides a protein engineering approach to modify the coenzyme specificity and enantioselectivity of ketone reduction for short-chain reductases.
Collapse
|
38
|
Andreadeli A, Platis D, Tishkov V, Popov V, Labrou NE. Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+. FEBS J 2008; 275:3859-69. [PMID: 18616465 DOI: 10.1111/j.1742-4658.2008.06533.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formate dehydrogenase from Candida boidinii (CboFDH) catalyses the oxidation of formate anion to carbon dioxide with concomitant reduction of NAD(+) to NADH. CboFDH is highly specific to NAD(+) and virtually fails to catalyze the reaction with NADP(+). Based on structural information for CboFDH, the loop region between beta-sheet 7 and alpha-helix 10 in the dinucleotide-binding fold was predicted as a principal determinant of coenzyme specificity. Sequence alignment with other formate dehydrogenases revealed two residues (Asp195 and Tyr196) that could account for the observed coenzyme specificity. Positions 195 and 196 were subjected to two rounds of site-saturation mutagenesis and screening and enabled the identification of a double mutant Asp195Gln/Tyr196His, which showed a more than 2 x 10(7)-fold improvement in overall catalytic efficiency with NADP(+) and a more than 900-fold decrease in the efficiency with NAD(+) as cofactors. The results demonstrate that the combined polar interactions and steric factors comprise the main structural determinants responsible for coenzyme specificity. The double mutant Asp195Gln/Tyr196His was tested for practical applicability in a cofactor recycling system composed of cytochrome P450 monooxygenase from Bacillus subtilis, (CYP102A2), NADP(+), formic acid and omega-(p-nitrophenyl)dodecanoic acid (12-pNCA). Using a 1250-fold excess of 12-pNCA over NADP(+) the first order rate constant was determined to be equal to k(obs) = 0.059 +/- 0.004 min(-1).
Collapse
Affiliation(s)
- Aggeliki Andreadeli
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece
| | | | | | | | | |
Collapse
|
39
|
Bubner P, Klimacek M, Nidetzky B. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). FEBS Lett 2007; 582:233-7. [PMID: 18082142 DOI: 10.1016/j.febslet.2007.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 11/30/2022]
Abstract
The structure of Pseudomonas fluorescens mannitol 2-dehydrogenase with bound NAD+ leads to the suggestion that the carboxylate group of Asp(69) forms a bifurcated hydrogen bond with the 2' and 3' hydroxyl groups of the adenosine of NAD+ and contributes to the 400-fold preference of the enzyme for NAD+ as compared to NADP+. Accordingly, the enzyme with the Asp(69)-->Ala substitution was found to use NADP(H) almost as well as wild-type enzyme uses NAD(H). The Glu(68)-->Lys substitution was expected to enhance the electrostatic interaction of the enzyme with the 2'-phosphate of NADP+. The Glu(68)-->Lys:Asp(69)-->Ala doubly mutated enzyme showed about a 10-fold preference for NADP(H) over NAD(H), accompanied by a small decrease in catalytic efficiency for NAD(H)-dependent reactions as compared to wild-type enzyme.
Collapse
Affiliation(s)
- Patricia Bubner
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, Austria
| | | | | |
Collapse
|
40
|
Vicente JB, Scandurra FM, Rodrigues JV, Brunori M, Sarti P, Teixeira M, Giuffrè A. Kinetics of electron transfer from NADH to the Escherichia coli nitric oxide reductase flavorubredoxin. FEBS J 2006; 274:677-86. [PMID: 17181540 DOI: 10.1111/j.1742-4658.2006.05612.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Escherichia coli flavorubredoxin (FlRd) belongs to the family of flavodiiron proteins (FDPs), microbial enzymes that are expressed to scavenge nitric oxide (NO) under anaerobic conditions. To degrade NO, FlRd has to be reduced by NADH via the FAD-binding protein flavorubredoxin reductase, thus the kinetics of electron transfer along this pathway was investigated by stopped-flow absorption spectroscopy. We found that NADH, but not NADPH, quickly reduces the FlRd-reductase (k = 5.5 +/- 2.2 x 10(6) M(-1).s(-1) at 5 degrees C), with a limiting rate of 255 +/- 17 s(-1). The reductase in turn quickly reduces the rubredoxin (Rd) center of FlRd, as assessed at 5 degrees C working with the native FlRd enzyme (k = 2.4 +/- 0.1 x 10(6) m(-1).s(-1)) and with its isolated Rd-domain (k approximately 1 x 10(7) M(-1).s(-1)); in both cases the reaction was found to be dependent on pH and ionic strength. In FlRd the fast reduction of the Rd center occurs synchronously with the formation of flavin mononucleotide semiquinone. Our data provide evidence that (a) FlRd-reductase rapidly shuttles electrons between NADH and FlRd, a prerequisite for NO reduction in this detoxification pathway, and (b) the electron accepting site in FlRd, the Rd center, is in very fast redox equilibrium with the flavin mononucleotide.
Collapse
Affiliation(s)
- João B Vicente
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
41
|
Rodríguez-Arnedo A, Camacho M, Llorca F, Bonete MJ. Complete reversal of coenzyme specificity of isocitrate dehydrogenase from Haloferax volcanii. Protein J 2006; 24:259-66. [PMID: 16284723 DOI: 10.1007/s10930-005-6746-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Indexed: 10/25/2022]
Abstract
Haloferax volcanii Ds-threo-isocitrate dehydrogenase (ICDH) was highly expressed in bacteria as inclusion bodies. The recombinant enzyme was refolded, purified and characterized, and was found to be NADP-dependent like the wild-type protein. Sequence alignment of several isocitrate dehydrogenases from evolutionarily divergent organisms including H. volcanii revealed that the amino acid residues involved in coenzyme specificity are highly conserved. Our objective was to switch the coenzyme specificity of halophilic ICDH by altering these conserved amino acids. We were able to switch coenzyme specificity from NADP+ to NAD+ by changing five amino acids by site-directed mutagenesis (Arg291, Lys343, Tyr344, Val350 and Tyr390). The five mutants of ICDH were overexpressed in Escherichia coli as inclusion bodies and each recombinant ICDH protein was refolded and purified, and its kinetic parameters were determined. Coenzyme specificity did not switch until all five amino acids were substituted.
Collapse
Affiliation(s)
- Adoración Rodríguez-Arnedo
- División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | | | | | | |
Collapse
|
42
|
Woodyer R, Zhao H, van der Donk WA. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. FEBS J 2005; 272:3816-27. [PMID: 16045753 DOI: 10.1111/j.1742-4658.2005.04788.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NAD(P)H regeneration is important for biocatalytic reactions that require these costly cofactors. A mutant phosphite dehydrogenase (PTDH-E175A/A176R) that utilizes both NAD and NADP efficiently is a very promising system for NAD(P)H regeneration. In this work, both the kinetic mechanism and practical application of PTDH-E175A/A176R were investigated for better understanding of the enzyme and to provide a basis for future optimization. Kinetic isotope effect studies with PTDH-E175A/A176R showed that the hydride transfer step is (partially) rate determining with both NAD and NADP giving (D)V values of 2.2 and 1.7, respectively, and (D)V/K(m,phosphite) values of 1.9 and 1.7, respectively. To better comprehend the relaxed cofactor specificity, the cofactor dissociation constants were determined utilizing tryptophan intrinsic fluorescence quenching. The dissociation constants of NAD and NADP with PTDH-E175A/A176R were 53 and 1.9 microm, respectively, while those of the products NADH and NADPH were 17.4 and 1.22 microm, respectively. Using sulfite as a substrate mimic, the binding order was established, with the cofactor binding first and sulfite binding second. The low dissociation constant for the cofactor product NADPH combined with the reduced values for (D)V and k(cat) implies that product release may become partially rate determining. However, product inhibition does not prevent efficient in situ NADPH regeneration by PTDH-E175A/A176R in a model system in which xylose was converted into xylitol by NADP-dependent xylose reductase. The in situ regeneration proceeded at a rate approximately fourfold faster with PTDH-E175A/A176R than with either WT PTDH or a NADP-specific Pseudomonas sp.101 formate dehydrogenase mutant with a total turnover number for NADPH of 2500.
Collapse
Affiliation(s)
- Ryan Woodyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
43
|
Pletnev VZ, Weeks CM, Duax WL. Rational proteomics II: electrostatic nature of cofactor preference in the short-chain oxidoreductase (SCOR) enzyme family. Proteins 2005; 57:294-301. [PMID: 15340916 PMCID: PMC1476702 DOI: 10.1002/prot.20205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dominant role of long-range electrostatic interatomic interactions in nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD/NADP) cofactor recognition has been shown for enzymes of the short-chain oxidoreductase (SCOR) family. An estimation of cofactor preference based only on the contribution of the electrostatic energy term to the total energy of enzyme-cofactor interaction has been tested for approximately 40 known three-dimensional (3D) crystal complexes and approximately 330 SCOR enzymes, with cofactor preference predicted by the presence of Asp or Arg recognition residues at specific 3D positions in the beta2alpha3 loop (Duax et al., Proteins 2003;53:931-943). The results obtained were found to be consistent with approximately 90% reliable cofactor assignments for those subsets. The procedure was then applied to approximately 170 SCOR enzymes with completely uncertain NAD/NADP dependence, due to the lack of Asp and Arg marker residues. The proposed 3D electrostatic approach for cofactor assignment ("3D_DeltaE(el)") has been implemented in an automatic screening procedure, and together with the use of marker residues proposed earlier (Duax et al., Proteins 2003;53:931-943), increases the level of reliable predictions for the putative SCORs from approximately 70% to approximately 90%. It is expected to be applicable for any NAD/NADP-dependent enzyme subset having at least 25-30% sequence identity, with at least one enzyme of known 3D crystal structure.
Collapse
Affiliation(s)
- Vladimir Z Pletnev
- Hauptman-Woodward Medical Research Institute and Department of Structural Biology, SUNY at Buffalo, Buffalo, New York 14203, USA
| | | | | |
Collapse
|
44
|
Watanabe S, Kodaki T, Makino K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 2004; 280:10340-9. [PMID: 15623532 DOI: 10.1074/jbc.m409443200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).
Collapse
Affiliation(s)
- Seiya Watanabe
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
45
|
McMillan PJ, Stimmler LM, Foth BJ, McFadden GI, Müller S. The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases. Mol Microbiol 2004; 55:27-38. [PMID: 15612914 DOI: 10.1111/j.1365-2958.2004.04398.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Plasmodium falciparum genome contains genes encoding three alpha-ketoacid dehydrogenase multienzyme complexes (KADHs) that have central metabolic functions. The parasites possess two distinct genes encoding dihydrolipoamide dehydrogenases (LipDH), which are indispensable subunits of KADHs. This situation is reminiscent of that in plants, where two distinct LipDHs are found in mitochondria and chloroplasts, respectively, that are part of the organelle-specific KADHs. In this study, we show by reverse transcription polymerase chain reaction (RT-PCR) that the genes encoding subunits of all three KADHs, including both LipDHs, are transcribed during the erythrocytic development of P. falciparum. Protein expression of mitochondrial LipDH and mitochondrial branched chain alpha-ketoacid dihydrolipoamide transacylase in these parasite stages was confirmed by Western blotting. The localization of the two LipDHs to the parasite's apicoplast and mitochondrion, respectively, was shown by expressing the LipDH N-terminal presequences fused to green fluorescent protein in erythrocytic stages of P. falciparum and by immunofluorescent colocalization with organelle-specific markers. Biochemical characterization of recombinantly expressed mitochondrial LipDH revealed that the protein has kinetic and physicochemical characteristics typical of these flavo disulphide oxidoreductases. We propose that the mitochondrial LipDH is part of the mitochondrial alpha-ketoglutarate dehydrogenase and branched chain alpha-ketoacid dehydrogenase complexes and that the apicoplast LipDH is an integral part of the pyruvate dehydrogenase complex which occurs only in the apicoplast in P. falciparum.
Collapse
Affiliation(s)
- Paul J McMillan
- Institute of Biomedical and Life Sciences, Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
46
|
Tishkov VI, Popov VO. Catalytic mechanism and application of formate dehydrogenase. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Tishkov VI, Popov VO. Catalytic mechanism and application of formate dehydrogenase. BIOCHEMISTRY (MOSCOW) 2004; 69:1252-67. [PMID: 15627379 DOI: 10.1007/s10541-005-0071-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NAD+-dependent formate dehydrogenase (FDH) is an abundant enzyme that plays an important role in energy supply of methylotrophic microorganisms and in response to stress in plants. FDH belongs to the superfamily of D-specific 2-hydroxy acid dehydrogenases. FDH is widely accepted as a model enzyme to study the mechanism of hydride ion transfer in the active center of dehydrogenases because the reaction catalyzed by the enzyme is devoid of proton transfer steps and implies a substrate with relatively simple structure. FDH is also widely used in enzymatic syntheses of optically active compounds as a versatile biocatalyst for NAD(P)H regeneration consumed in the main reaction. This review covers the late developments in cloning genes of FDH from various sources, studies of its catalytic mechanism and physiological role, and its application for new chiral syntheses.
Collapse
Affiliation(s)
- V I Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
48
|
Basran J, Harris RJ, Sutcliffe MJ, Scrutton NS. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase. J Biol Chem 2003; 278:43973-82. [PMID: 12941965 DOI: 10.1074/jbc.m305983200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of flavin reduction in morphinone reductase (MR) and pentaerythritol tetranitrate (PETN) reductase, and flavin oxidation in MR, has been studied by stopped-flow and steady-state kinetic methods. The temperature dependence of the primary kinetic isotope effect for flavin reduction in MR and PETN reductase by nicotinamide coenzyme indicates that quantum mechanical tunneling plays a major role in hydride transfer. In PETN reductase, the kinetic isotope effect (KIE) is essentially independent of temperature in the experimentally accessible range, contrasting with strongly temperature-dependent reaction rates, consistent with a tunneling mechanism from the vibrational ground state of the reactive C-H/D bond. In MR, both the reaction rates and the KIE are dependent on temperature, and analysis using the Eyring equation suggests that hydride transfer has a major tunneling component, which, unlike PETN reductase, is gated by thermally induced vibrations in the protein. The oxidative half-reaction of MR is fully rate-limiting in steady-state turnover with the substrate 2-cyclohexenone and NADH at saturating concentrations. The KIE for hydride transfer from reduced flavin to the alpha/beta unsaturated bond of 2-cyclohexenone is independent of temperature, contrasting with strongly temperature-dependent reaction rates, again consistent with ground-state tunneling. A large solvent isotope effect (SIE) accompanies the oxidative half-reaction, which is also independent of temperature in the experimentally accessible range. Double isotope effects indicate that hydride transfer from the flavin N5 atom to 2-cyclohexenone, and the protonation of 2-cyclohexenone, are concerted and both the temperature-independent KIE and SIE suggest that this reaction also proceeds by ground-state quantum tunneling. Our results demonstrate the importance of quantum tunneling in the reduction of flavins by nicotinamide coenzymes. This is the first observation of (i) three H-nuclei in an enzymic reaction being transferred by tunneling and (ii) the utilization of both passive and active dynamics within the same native enzyme.
Collapse
Affiliation(s)
- Jaswir Basran
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | |
Collapse
|
49
|
Rosell A, Valencia E, Ochoa WF, Fita I, Parés X, Farrés J. Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase. J Biol Chem 2003; 278:40573-80. [PMID: 12902331 DOI: 10.1074/jbc.m307384200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gastric tissues from amphibian Rana perezi express the only vertebrate alcohol dehydrogenase (ADH8) that is specific for NADP(H) instead of NAD(H). In the crystallographic ADH8-NADP+ complex, a binding pocket for the extra phosphate group of coenzyme is formed by ADH8-specific residues Gly223-Thr224-His225, and the highly conserved Leu200 and Lys228. To investigate the minimal structural determinants for coenzyme specificity, several ADH8 mutants involving residues 223 to 225 were engineered and kinetically characterized. Computer-assisted modeling of the docked coenzymes was also performed with the mutant enzymes and compared with the wild-type crystallographic binary complex. The G223D mutant, having a negative charge in the phosphate-binding site, still preferred NADP(H) over NAD(H), as did the T224I and H225N mutants. Catalytic efficiency with NADP(H) dropped dramatically in the double mutants, G223D/T224I and T224I/H225N, and in the triple mutant, G223D/T224I/H225N (kcat/KmNADPH = 760 mm-1 min-1), as compared with the wild-type enzyme (kcat/KmNADPH = 133330 mm-1 min-1). This was associated with a lower binding affinity for NADP+ and a change in the rate-limiting step. Conversely, in the triple mutant, catalytic efficiency with NAD(H) increased, reaching values (kcat/KmNADH = 155000 mm-1 min-1) similar to those of the wild-type enzyme with NADP(H). The complete reversal of ADH8 coenzyme specificity was therefore attained by the substitution of only three consecutive residues in the phosphate-binding site, an unprecedented achievement within the ADH family.
Collapse
Affiliation(s)
- Albert Rosell
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | | | | | | | | | | |
Collapse
|
50
|
Elmore CL, Porter TD. Modification of the nucleotide cofactor-binding site of cytochrome P-450 reductase to enhance turnover with NADH in Vivo. J Biol Chem 2002; 277:48960-4. [PMID: 12381719 DOI: 10.1074/jbc.m210173200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P-450 reductase is the electron transfer partner for the cytochromes P-450, heme oxygenase, and squalene monooxygenase and is a component of the nitric-oxide synthases and methionine-synthase reductase. P-450 reductase shows very high selectivity for NADPH and uses NADH only poorly. Substitution of tryptophan 677 with alanine has been shown to yield a 3-fold increase in turnover with NADH, but profound inhibition by NADP(+) makes the enzyme unsuitable for in vivo applications. In the present study site-directed mutagenesis of amino acids in the 2'-phosphate-binding site of the NADPH domain, coupled with the W677A substitution, was used to generate a reductase that was able to use NADH efficiently without inhibition by NADP(+). Of 11 single, double, and triple mutant proteins, two (R597M/W677A and R597M/K602W/W677A) showed up to a 500-fold increase in catalytic efficiency (k(cat)/K(m)) with NADH. Inhibition by NADP(+) was reduced by up to 4 orders of magnitude relative to the W677A protein and was equal to or less than that of the wild-type reductase. Both proteins were 2-3-fold more active than wild-type reductase with NADH in reconstitution assays with cytochrome P-450 1A2 and with squalene monooxygenase. In a recombinant cytochrome P-450 2E1 Ames bacterial mutagenicity assay, the R597M/W677A protein increased the sensitivity to dimethylnitrosamine by approximately 2-fold, suggesting that the ability to use NADH afforded a significant advantage in this in vivo assay.
Collapse
Affiliation(s)
- C Lee Elmore
- Graduate Center for Toxicology, University of Kentucky, Lexington 40536-0305, USA
| | | |
Collapse
|