1
|
Verma AK, Yadav V, Bhojiya AA, Upadhyay SK, Singh N, Pareek SS, Ashid M, Ahmed SF, Hossain MS. 'Synthesis, antiviral activity, molecular docking, and molecular dynamics studies of ethoxy phthalimide pyrazole derivatives against Cytomegalovirus and Varicella-Zoster virus: potential consequences and strategies for developing new antiviral treatments'. J Biomol Struct Dyn 2023; 42:13903-13922. [PMID: 37965748 DOI: 10.1080/07391102.2023.2279278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Substituted ethoxy phthalimide pyrazole derivatives (6a-e) have been produced using a one-pot synthesis technique. Spectral analysis was used to establish the molecular structure of the synthesized compounds, and they were examined in silico and in vitro for their ability to bind to and inhibit replication of the AD-169 strain, the Davis strain of CMV, the OKA strain and the 07/1 strain of Varicella-Zoster virus (VZV). Molecular Docking was used to estimate the binding mechanism and energy of compounds 4, 6a-e to their respective target proteins, thymidine kinase (TK), Varicella-Zoster protease (VZP) of VZV and tegument protein pp71 (TPpp71) of Cytomegalovirus (CMV). The MIC50 and EC50 were utilized to evaluate the antiviral and cytotoxic activities of test compounds in human embryonic lung (HEL) cells against the two reference medicines, Ganciclovir and Acyclovir. The chemicals studied showed a high affinity for binding sites and near binding sites of target proteins by generating H-bonds, carbon-hydrogen bonds, π-anion, π-sulfur, π-sigma, alkyl and π-alkyl interactions. All of the test compounds (6a-e) had higher binding energy than the standard medications. The ADME/T data suggests that these potential inhibitors are less toxic. Drug-protein complexes are structurally compact and demonstrate minimal conformational change in molecular dynamics (MDs) simulations, indicating stability and stiffness. MM-PBSA and post-simulation analysis can predict lead compound active cavity binding stability. By inhibiting multitargeted proteins, these synthetic compounds may improve antiviral therapy. Our research suggests that these unique synthesized chemicals may be useful and accessible adjuvant antiviral therapy for Varicella Zoster and CMV. HighlightsTwo components synthesis of substituted ethoxy phthalimide pyrazole derivatives (6a-e).Tested compounds (6a-e) have antiviral and cytotoxicity activity against CMV and Varicella-Zoster virus (VZV) in HEL cells.Compounds bind to TK, Varicella-Zoster protease (VZP) of VZV, and modeled TPpp71 of Cytomegalovirus (CMV).In comparison to reference drugs, compounds have strong binding free energy and interactions with VZV and CMV protein complexes.The RMSD, RMSF, Rg, residual correlative motion (RCM), No. of hydrogen bonds, protein secondary structure content, per-residue protein secondary structure and MM/PBSA energy calculated for the selected compound with thymidine kinase (TK), VZP of VZV, and modeled tegument protein pp71 (TPpp71) of CMV through MD simulation studies for 50 ns.In comparison to the two reference drugs, ligands/compounds were found to meet the Lipinski rule of five and to have strong biological activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Department of Life Sciences, Faculty of Science and Technology, Mewar University, Chittorgarh, Rajasthan, India
| | - Vipin Yadav
- ECH-Incubation Centre, University of Rajasthan, Jaipur, India
| | | | - Sudhir K Upadhyay
- Department of Environmental Sciences, V.B.S. Purvanchal University, Jaunpur, India
| | - Nripendra Singh
- Department of Pharmacy, VBS Purvanchal University, Jaunpur, India
| | | | - Mohammad Ashid
- Department of Chemistry, Faculty of Science and Technology, Mewar University, Chittorgarh, India
| | - Sk Faisal Ahmed
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
- Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
- Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
2
|
Jacobson KA, Salmaso V, Suresh RR, Tosh DK. Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Med Chem 2021; 12:1808-1825. [PMID: 34825182 PMCID: PMC8597424 DOI: 10.1039/d1md00167a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenosine (ribo)kinase, have been extensively studied. A general modification, i.e. a constrained, bicyclic ring system (bicyclo[3.1.0]hexane, also called methanocarba) substituted in place of a furanose ring, can increase nucleoside/nucleotide potency and/or selectivity at purinergic and antiviral targets and in interactions at diverse and unconventional targets. Compared to other common drug discovery scaffolds containing planar rings, methanocarba nucleosides display greater sp3 character (i.e. more favorable as drug-like molecules) and can manifest as sterically-constrained North (N) or South (S) conformations. Initially weak, off-target interactions of (N)-methanocarba adenosine derivatives were detected as leads that were structurally optimized to enhance activity and selectivity toward target proteins that normally do not recognize nucleosides. By this approach, novel modulators for 5HT2 serotonin and κ-opioid receptors, dopamine (DAT) and ATP-binding cassette (ABC) transporters were found, and previously undetected antiviral activities were revealed. Thus, through methanocarba nucleoside synthesis, structure-activity relationships, and multi-target pharmacology, a robust purinergic receptor scaffold has been repurposed to satisfy the pharmacophoric requirements of various GPCRs, enzymes and transporters.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| |
Collapse
|
3
|
Hao E, Zhang Q, Zhang Q, Qu G, Yang X, Guo H. Efficient Synthesis of Spirocyclic Nucleosides via Michael Addition-Initiated Intermolecular Cyclopropanation Reaction. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201904074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Thymidine kinase and protein kinase in drug-resistant herpesviruses: Heads of a Lernaean Hydra. Drug Resist Updat 2018; 37:1-16. [PMID: 29548479 DOI: 10.1016/j.drup.2018.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herpesviruses thymidine kinase (TK) and protein kinase (PK) allow the activation of nucleoside analogues used in anti-herpesvirus treatments. Mutations emerging in these two genes often lead to emergence of drug-resistant strains responsible for life-threatening diseases in immunocompromised populations. In this review, we analyze the binding of different nucleoside analogues to the TK active site of the three α-herpesviruses [Herpes Simplex Virus 1 and 2 (HSV-1 and HSV-2) and Varicella-Zoster Virus (VZV)] and present the impact of known mutations on the structure of the viral TKs. Furthermore, models of β-herpesviruses [Human cytomegalovirus (HCMV) and human herpesvirus-6 (HHV-6)] PKs allow to link amino acid changes with resistance to ganciclovir and/or maribavir, an investigational chemotherapeutic used in patients with multidrug-resistant HCMV. Finally, we set the basis for the understanding of drug-resistance in γ-herpesviruses [Epstein-Barr virus (EBV) and Kaposi's sarcoma associated herpesvirus (KSHV)] TK and PK through the use of animal surrogate models.
Collapse
Affiliation(s)
- Dimitri Topalis
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Sarah Gillemot
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Rungta P, Mangla P, Maikhuri VK, Singh SK, Prasad AK. Microwave-Assisted Synthesis of C-4′-(1,5-disubstituted)-triazole -spiro- α-L-arabinofuranosyl Nucleosides. ChemistrySelect 2017. [DOI: 10.1002/slct.201701111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pallavi Rungta
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
| | - Priyanka Mangla
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
| | - Vipin K. Maikhuri
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
| | - Sunil K. Singh
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
- Department Of Chemistry; KM College; University Of Delhi; Delhi- 110 007 India
| | - Ashok K. Prasad
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
| |
Collapse
|
6
|
Sjuvarsson E, Marquez VE, Eriksson S. Selective Phosphorylation of South and North-Cytidine and Adenosine Methanocarba-Nucleosides by Human Nucleoside and Nucleotide Kinases Correlates with Their Growth Inhibitory Effects on Cultured Cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:544-64. [PMID: 26167664 DOI: 10.1080/15257770.2015.1031248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase. dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK. dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed. List of abbreviations: ddC, 2', 3'-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2',3'-dideoxy-3'-thiacytidine, Lamivudine; CdA, 2-cloro-2'-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1-3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1-4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.
Collapse
Affiliation(s)
- Elena Sjuvarsson
- a Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences , VHC , Uppsala , Sweden
| | | | | |
Collapse
|
7
|
Bernstein DI, Bravo FJ, Clark JR, Earwood JD, Rahman A, Glazer R, Cardin RD. N-Methanocarbathymidine is more effective than acyclovir for treating neonatal herpes simplex virus infection in guinea pigs. Antiviral Res 2011; 92:386-8. [PMID: 21924293 DOI: 10.1016/j.antiviral.2011.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/25/2022]
Abstract
The outcome of neonatal herpes simplex (HSV) infection, even after therapy with high dose acyclovir (ACV), is not optimum. We therefore evaluated N-Methanocarbathymidine ((N)-MCT) using the guinea pig model of neonatal herpes. Treatment with ACV (60 mg/kg/day) was compared to doses of 1, 5, and 25 mg/kg/day of (N)-MCT initiated 1, 2, or 3 days postinoculation (dpi). Both ACV and (N)-MCT significantly improved survival, but only (N)-MCT significantly reduced the number of animals with symptoms when begun at 1 dpi. When therapy was begun at 2 dpi, only (N)-MCT (1, 5, or 25 mg/kg/day) significantly increased survival. In fact, (N)-MCT improved survival up to 3 dpi, the last time point evaluated. (N)-MCT was highly effective and superior to high dose ACV therapy for the treatment of neonatal herpes in the guinea pig model.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States.
| | | | | | | | | | | | | |
Collapse
|
8
|
Antiviral Activity of 4'-thioIDU and Thymidine Analogs against Orthopoxviruses. Viruses 2010; 2:1968-1983. [PMID: 21994716 PMCID: PMC3185742 DOI: 10.3390/v2091968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022] Open
Abstract
The search for effective therapies for orthopoxvirus infections has identified diverse classes of molecules with antiviral activity. Pyrimidine analogs, such as 5-iodo-2'-deoxyuridine (idoxuridine, IDU) were among the first compounds identified with antiviral activity against a number of orthopoxviruses and have been reported to be active both in vitro and in animal models of infection. More recently, additional analogs have been reported to have improved antiviral activity against orthopoxviruses including several derivatives of deoxyuridine with large substituents in the 5 position, as well as analogs with modifications in the deoxyribose moiety including (north)-methanocarbathymidine, and 5-iodo-4'-thio-2'-deoxyuridine (4'-thioIDU). The latter molecule has proven to have good antiviral activity against the orthopoxviruses both in vitro and in vivo and has the potential to be an effective therapy in humans.
Collapse
|
9
|
Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Acta Pharmacol Sin 2009; 30:1694-708. [PMID: 19935678 DOI: 10.1038/aps.2009.159] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM This study was conducted to compare the efficiencies of two virtual screening approaches, pharmacophore-based virtual screening (PBVS) and docking-based virtual screening (DBVS) methods. METHODS All virtual screens were performed on two data sets of small molecules with both actives and decoys against eight structurally diverse protein targets, namely angiotensin converting enzyme (ACE), acetylcholinesterase (AChE), androgen receptor (AR), D-alanyl-D-alanine carboxypeptidase (DacA), dihydrofolate reductase (DHFR), estrogen receptors alpha (ERalpha), HIV-1 protease (HIV-pr), and thymidine kinase (TK). Each pharmacophore model was constructed based on several X-ray structures of protein-ligand complexes. Virtual screens were performed using four screening standards, the program Catalyst for PBVS and three docking programs (DOCK, GOLD and Glide) for DBVS. RESULTS Of the sixteen sets of virtual screens (one target versus two testing databases), the enrichment factors of fourteen cases using the PBVS method were higher than those using DBVS methods. The average hit rates over the eight targets at 2% and 5% of the highest ranks of the entire databases for PBVS are much higher than those for DBVS. CONCLUSION The PBVS method outperformed DBVS methods in retrieving actives from the databases in our tested targets, and is a powerful method in drug discovery.
Collapse
|
10
|
Egeblad-Welin L, Sonntag Y, Eklund H, Munch-Petersen B. Functional studies of active-site mutants from Drosophila melanogaster deoxyribonucleoside kinase. Investigations of the putative catalytic glutamate-arginine pair and of residues responsible for substrate specificity. FEBS J 2007; 274:1542-51. [PMID: 17302737 DOI: 10.1111/j.1742-4658.2007.05701.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The catalytic reaction mechanism and binding of substrates was investigated for the multisubstrate Drosophila melanogaster deoxyribonucleoside kinase. Mutation of E52 to D, Q and H plus mutations of R105 to K and H were performed to investigate the proposed catalytic reaction mechanism, in which E52 acts as an initiating base and R105 is thought to stabilize the transition state of the reaction. Mutant enzymes (E52D, E52H and R105H) showed a markedly decreased k(cat), while the catalytic activity of E52Q and R105K was abolished. The E52D mutant was crystallized with its feedback inhibitor dTTP. The backbone conformation remained unchanged, and coordination between D52 and the dTTP-Mg complex was observed. The observed decrease in k(cat) for E52D was most likely due to an increased distance between the catalytic carboxyl group and 5'-OH of deoxythymidine (dThd) or deoxycytidine (dCyd). Mutation of Q81 to N and Y70 to W was carried out to investigate substrate binding. The mutations primarily affected the K(m) values, whereas the k(cat) values were of the same magnitude as for the wild-type. The Y70W mutation made the enzyme lose activity towards purines and negative cooperativity towards dThd and dCyd was observed. The Q81N mutation showed a 200- and 100-fold increase in K(m), whereas k(cat) was decreased five- and twofold for dThd and dCyd, respectively, supporting a role in substrate binding. These observations give insight into the mechanisms of substrate binding and catalysis, which is important for developing novel suicide genes and drugs for use in gene therapy.
Collapse
Affiliation(s)
- Louise Egeblad-Welin
- Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
11
|
Iqbal J, Scapozza L, Folkers G, Müller CE. Development and validation of a capillary electrophoresis method for the characterization of herpes simplex virus type 1 (HSV-1) thymidine kinase substrates and inhibitors. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 846:281-90. [PMID: 17023224 DOI: 10.1016/j.jchromb.2006.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/31/2006] [Accepted: 09/08/2006] [Indexed: 11/16/2022]
Abstract
A fast, convenient capillary electrophoresis (CE) method was developed for monitoring the enzymatic reaction of herpes simplex virus type 1 thymidine kinase (HSV-1 TK). The reaction was performed in a test tube followed by quantitative analysis of the products. The optimized CE conditions were as follows: polyacrylamide-coated capillary (20 cm effective length x 50 microm), electrokinetic injection for 30s, 50 mM phosphate buffer at pH 6.5, constant current of -60 microA, UV detection at 210 nm, UMP or cAMP were used as internal standards. Phosphorylated products eluted within less than 7 min. The limits of detection were 0.36 microM for dTMP and 0.86 microM for GMP. The method was used to study enzyme kinetics, and to investigate alternative substrates and inhibitors.
Collapse
Affiliation(s)
- Jamshed Iqbal
- Pharmaceutical Institute, Department of Pharmaceutical Chemistry Poppelsdorf, University of Bonn, Kreuzbergweg 26, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
12
|
Marquez VE, Hughes SH, Sei S, Agbaria R. The history of N-methanocarbathymidine: The investigation of a conformational concept leads to the discovery of a potent and selective nucleoside antiviral agent. Antiviral Res 2006; 71:268-75. [PMID: 16730077 DOI: 10.1016/j.antiviral.2006.04.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
Conformationally locked (North)-methanocarbathymidine (N-MCT) and (South)-methanocarbathymidine (S-MCT) have been used to investigate the conformational preferences of kinases and polymerases. The herpes kinases show a distinct bias for S-MCT, while DNA polymerases almost exclusively incorporate the North 5'-triphosphate (N-MCT-TP). Only N-MCT demonstrated potent antiviral activity against herpes simplex viruses (HSV-1 and 2) and Kaposi's sarcoma-associated herpesvirus (KSHV). The activity of N-MCT depends on its metabolic transformation to N-MCT-TP by the herpes kinases (HSV-tk or KSHV-tk), which catalyze the mono and diphosphorylation steps; cellular kinases generate the triphosphate. N-MCT at a dose of 5.6 mg/kg was totally protective for mice inoculated intranasally with HSV-1. Tumor cells that are not responsive to antiviral therapy became sensitive to N-MCT if the cells expressed HSV-tk. N-MCT given twice daily (100 mg/kg) for 7 days completely inhibited the growth of MC38 tumors derived from cells that express HSV-tk in mice while exhibiting no effect on tumors derived from non-transduced cells. After i.p. administration, N-MCT was rapidly absorbed and distributed in all organs examined with slow penetration into brain and testes. N-MCT-TP was also a potent inhibitor of HIV replication in human osteosarcoma (HOS) cells expressing HSV-tk.
Collapse
Affiliation(s)
- Victor E Marquez
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, P.O. Box B, Building 539, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
13
|
Prichard MN, Keith KA, Quenelle DC, Kern ER. Activity and mechanism of action of N-methanocarbathymidine against herpesvirus and orthopoxvirus infections. Antimicrob Agents Chemother 2006; 50:1336-41. [PMID: 16569849 PMCID: PMC1426929 DOI: 10.1128/aac.50.4.1336-1341.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Methanocarbathymidine [(N)-MCT] is a conformationally locked nucleoside analog that is active against some herpesviruses and orthopoxviruses in vitro. The antiviral activity of this molecule is dependent on the type I thymidine kinase (TK) in herpes simplex virus and also appears to be dependent on the type II TK expressed by cowpox and vaccinia viruses, suggesting that it is a substrate for both of these divergent forms of the enzyme. The drug is also a good inhibitor of viral DNA synthesis in both viruses and is consistent with inhibition of the viral DNA polymerase once it is activated by the viral TK homologs. This mechanism of action explains the rather unusual spectrum of activity, which is limited to orthopoxviruses, alphaherpesviruses, and Epstein-Barr virus, since these viruses express molecules with TK activity that can phosphorylate and thus activate the drug. The compound is also effective in vivo and reduces the mortality of mice infected with orthopoxviruses, as well as those infected with herpes simplex virus type 1 when treatment is initiated 24 h after infection. These results indicate that (N)-MCT is active in vitro and in vivo, and its mechanism of action suggests that the molecule may be an effective therapeutic for orthopoxvirus and herpesvirus infections, thus warranting further development.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA.
| | | | | | | |
Collapse
|
14
|
Huleihel M, Talishanisky M, Ford H, Marquez VE, Kelley JA, Johns DG, Agbaria R. Dynamics of the antiviral activity of N-methanocarbathymidine against herpes simplex virus type 1 in cell culture. Int J Antimicrob Agents 2005; 25:427-32. [PMID: 15848299 DOI: 10.1016/j.ijantimicag.2005.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
N-Methanocarbathymidine [(N)-MCT], a thymidine analogue, exhibits potent activity in cell culture against herpes simplex virus1 (HSV-1). (N)-MCT showed higher antiviral activity than ganciclovir (GCV). Continuous treatment of Vero cells with (N)-MCT immediately or 10 h post-infection (p.i.) fully prevented the development of viral infection. However, when infected cells were treated with (N)-MCT at 12 h p.i., there was only a partial inhibition (ca. 50%). Additionally, continuous treatment of infected cells with (N)-MCT for about 48 h was sufficient to achieve full prevention of viral infection without further treatment. These findings suggest the complete loss of herpes simplex thymidine kinase (HSV-tk) activity occurs after 48 h of treatment with (N)-MCT. This study helps to understand the mechanism and dynamics of antiHSV activity of (N)-MCT, which is necessary for its future development as an antiviral drug.
Collapse
Affiliation(s)
- Mahmoud Huleihel
- The Institute for Applied Biosciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.
| | | | | | | | | | | | | |
Collapse
|
15
|
Marquez VE, Choi Y, Comin MJ, Russ P, George C, Huleihel M, Ben-Kasus T, Agbaria R. Understanding How the Herpes Thymidine Kinase Orchestrates Optimal Sugar and Nucleobase Conformations To Accommodate Its Substrate at the Active Site: A Chemical Approach. J Am Chem Soc 2005; 127:15145-50. [PMID: 16248655 DOI: 10.1021/ja053789s] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The herpes virus thymidine kinase (HSV-tk) is a critical enzyme for the activation of anti-HSV nucleosides. However, a successful therapeutic outcome depends not only on the activity of this enzyme but also on the ability of the compound(s) to interact effectively with cellular kinases and with the target viral or cellular DNA polymerases. Herein, we describe the synthesis and study of two nucleoside analogues built on a conformationally locked bicyclo[3.1.0]hexane template designed to investigate the conformational preferences of HSV-tk for the 2'-deoxyribose ring. Intimately associated with the conformation of the 2'-deoxyribose ring is the value of the C-N torsion angle chi, which positions the nucleobase into two different domains (syn or anti). The often-conflicting sugar and nucleobase conformational parameters were studied using North and South methanocarbadeoxythymidine analogues (6 and 7), which forced HSV-tk to make a clear choice in the conformation of the substrate. The results provide new insights into the mechanism of action of this enzyme, which cannot be gleaned from a static X-ray crystal structure.
Collapse
Affiliation(s)
- Victor E Marquez
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Barral K, Courcambeck J, Pèpe G, Balzarini J, Neyts J, De Clercq E, Camplo M. Synthesis and Antiviral Evaluation of Cis-Substituted Cyclohexenyl and Cyclohexanyl Nucleosides. J Med Chem 2005; 48:450-6. [PMID: 15658858 DOI: 10.1021/jm0493966] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Starting from commercially available (rac)-3-cyclohexene-1-carboxylic acid, a series of purine and pyrimidine cis-substituted cyclohexenyl and cyclohexanyl nucleosides were synthesized through a key Mitsunobu reaction. Antiviral evaluations were performed on HIV, coxsackie B3, and herpes viruses (HSV-1, HSV-2, VZV, HCMV). Three compounds showed moderate activity against HSV-1 and coxsackie viruses. Specific computer modeling studies were performed on HSV-1 thymidine kinase in order to understand the enzyme activation of an analogue showing moderate antiviral activity.
Collapse
Affiliation(s)
- Karine Barral
- Laboratoire des Matériaux Moléculaires et des Biomatériaux, GCOM2, UMR CNRS 6114, Université de la Méditerranée, case 901, 163 av. de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Schelling P, Claus MT, Johner R, Marquez VE, Schulz GE, Scapozza L. Biochemical and Structural Characterization of (South)-Methanocarbathymidine That Specifically Inhibits Growth of Herpes Simplex Virus Type 1 Thymidine Kinase-transduced Osteosarcoma Cells. J Biol Chem 2004; 279:32832-8. [PMID: 15163659 DOI: 10.1074/jbc.m313343200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two analogs of the natural nucleoside dT featuring a pseudosugar with fixed conformation in place of the deoxyribosyl residue (carbathymidine analogs) were biochemically and structurally characterized for their acceptance by both human cytosolic thymidine kinase isoenzyme 1 (hTK1) and herpes simplex virus type 1 thymidine kinase (HSV1 TK) and subsequently tested in cell proliferation assays. 3'-exo-Methanocarbathymidine ((South)-methanocarbathymidine (S)-MCT), which is a substrate for HSV1 TK, specifically inhibited growth of HSV1 TK-transduced human osteosarcoma cells with an IC(50) value in the range of 15 microM without significant toxicity toward both hTK1-negative (TK(-)) and non-transduced cells. 2'-exo-Methanocarbathymidine ((North)-methanocarbathymidine (N)-MCT), which is a weak substrate for hTK1 and a substantial one for HSV1 TK, induced a specific growth inhibition in HSV1 TK-transfected cells comparable to that of (S)-MCT and ganciclovir. A growth inhibition activity was also observed with (N)-MCT and ganciclovir in non-transduced cells in a cell line-dependent manner, whereas TK(-) cells were not affected. The presented 1.95-A crystal structure of the complex (S)-MCT.HSV1 TK explains both the more favorable binding affinity and catalytic turnover of (S)-MCT for HSV1 TK over the North analog. Additionally the plasticity of the active site of the enzyme is addressed by comparing the binding of (North)- and (South)-carbathymidine analogs. The presented study of these two potent candidate prodrugs for HSV1 TK gene-directed enzyme prodrug therapy suggests that (S)-MCT may be even safer to use than its North counterpart (N)-MCT.
Collapse
Affiliation(s)
- Pierre Schelling
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Gardberg A, Shuvalova L, Monnerjahn C, Konrad M, Lavie A. Structural basis for the dual thymidine and thymidylate kinase activity of herpes thymidine kinases. Structure 2004; 11:1265-77. [PMID: 14527394 DOI: 10.1016/j.str.2003.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystal structures of equine herpesvirus type-4 thymidine kinase (EHV4-TK) in complex with (i). thymidine and ADP, (ii). thymidine and SO(4) and the bisubstrate analogs, (iii). TP(4)A, and (iv). TP(5)A have been solved. Additionally, the structure of herpes simplex virus type-1 thymidine kinase (HSV1-TK) in complex with TP(5)A has been determined. These are the first structures of nucleoside kinases revealing conformational transitions upon binding of bisubstrate analogs. The structural basis for the dual thymidine and thymidylate kinase activity of these TKs is elucidated. While the active sites of HSV1-TK and EHV4-TK resemble one another, notable differences are observed in the Lid regions and in the way the enzymes bind the base of the phosphoryl-acceptor. The latter difference could partly explain the higher activity of EHV4-TK toward the prodrug ganciclovir.
Collapse
Affiliation(s)
- Anna Gardberg
- University of Illinois at Chicago, Department of Biochemistry and Molecular Biology, 1819 West Polk St, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
19
|
Marquez VE, Ben-Kasus T, Barchi JJ, Green KM, Nicklaus MC, Agbaria R. Experimental and structural evidence that herpes 1 kinase and cellular DNA polymerase(s) discriminate on the basis of sugar pucker. J Am Chem Soc 2004; 126:543-9. [PMID: 14719951 DOI: 10.1021/ja037929e] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two isomers of methanocarba (MC) thymidine (T), one an effective antiherpes agent with the pseudosugar moiety locked in the North (N) hemisphere of the pseudorotational cycle (1a, N-MCT) and the other an inactive isomer locked in the antipodean South (S) conformation (1b, S-MCT) were used to determine whether kinases and polymerases discriminate between their substrates on the basis of sugar conformation. A combined solid-state and solution conformational analysis of both compounds, coupled with the direct measurement of mono-, di-, and triphosphate levels in control cells, cells infected with the Herpes simplex virus, or cells transfected with the corresponding viral kinase gene (HSV-tk), suggests that kinases prefer substrates that adopt the S sugar conformation. On the other hand, the cellular DNA polymerase(s) of a murine tumor cell line transfected with HSV-tk incorporated almost exclusively the triphosphate of the locked N conformer (N-MCTTP), notwithstanding the presence of higher triphosphate levels of the S-conformer (S-MCTTP).
Collapse
Affiliation(s)
- Victor E Marquez
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, 376 Boyles St., Frederick, MD, 21702, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Serafini M, Manganini M, Borleri G, Bonamino M, Imberti L, Biondi A, Golay J, Rambaldi A, Introna M. Characterization of CD20-transduced T lymphocytes as an alternative suicide gene therapy approach for the treatment of graft-versus-host disease. Hum Gene Ther 2004; 15:63-76. [PMID: 14965378 DOI: 10.1089/10430340460732463] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously proposed the CD20 molecule as a novel suicide gene for T lymphocytes in the context of allogeneic bone marrow transplantation, because CD20 can be used both as a selection marker and as a killer gene after exposure to the anti-CD20 therapeutic antibody rituximab. We now report on preclinical studies using this novel system, in which the best transduction protocol, reproducibility, yield, feasibility, and functionality of the transduced T lymphocytes have been investigated with a large donor series. Wild-type human CD20 cDNA was transduced into human T lymphocytes, using a Moloney-derived retroviral vector. Alternative protocols were tested by employing either one or four spinoculations (in which cells are centrifuged in the presence of retroviral vector supernatant) and stimulating T cells with phytohemagglutinin (PHA) or anti-CD3/CD28. One spinoculation alone was sufficient to obtain approximately 30% CD20-positive cells within four experimental days. Four spinoculations significantly increased transduction to 60%. A small difference in transduction efficiency was observed between the two stimulation methods, with PHA being superior to anti-CD3/CD28. Transduced cells could be purified on immunoaffinity columns, with purity reaching 98% and yield being on average 50%. Finally, 86-97% of immunoselected T lymphocytes could be killed in vitro with rituximab and complement. More importantly, the CD20 transgene did not alter the functionality of T lymphocytes with respect to allogeneic recognition and cytotoxic response, anti-Epstein-Barr virus cytotoxic response, antigenic response to tetanus toxoid antigen, interleukin 2 (IL-2), IL-4, and interferon gamma production; chemotaxis in the presence of stromal cell-derived factor 1, phenotype for several activation markers including HLA-DR, CD25, CD69, and CD95, and T cell repertoire.
Collapse
Affiliation(s)
- M Serafini
- Istituto di Ricerche Farmacologiche Mario Negri, 20157 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Russ P, Schelling P, Scapozza L, Folkers G, Clercq ED, Marquez VE. Synthesis and biological evaluation of 5-substituted derivatives of the potent antiherpes agent (north)-methanocarbathymine. J Med Chem 2003; 46:5045-54. [PMID: 14584954 DOI: 10.1021/jm030241s] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformationally locked nucleoside, (north)-methanocarbathymine (1a), is a potent and selective anti-herpes agent effective against herpes simplex type 1 (HSV1) and type 2 (HSV2) viruses. Hereby, we report on the synthesis and biological evaluation of a small set of 5-substituted pyrimidine nucleosides belonging to the same class of bicyclo[3.1.0]hexane nucleosides. Both the 5-bromovinyl (4) and the 5-bromo analogue (3) appeared to be exclusive substrates of HSV1 thymidine kinase (TK), contrasting with the 5-iodo analogue (2), which was significantly phosphorylated by the human cytosolic TK. The binding affinity constant and catalytic turnover for HSV1 TK were measured to assess the influence of the substitution on these parameters. In the plaque reduction and cytotoxicity assays, the 5-bromo analogue (3) showed good activity against HSV1 and HSV2 with less general toxicity than 1a. Against varicella-zoster virus (VZV), the north-locked 5-bromovinyl analogue (4) proved to be as potent as its conformationally unlocked 2'-deoxyriboside equivalent BVDU. The three compounds were also tested in vitro as prodrugs used in a gene therapy context on three osteosarcoma cell lines, either deficient in TK (TK(-)), nontransduced, or stably transduced with HSV1 TK. The 5-iodo compound (2, CC(50) 25 +/- 7 microM) was more efficient than ganciclovir (GCV, CC(50) 75 +/- 35 microM) in inhibiting growth of HSV1-TK transfected cells and less inhibitory than GCV toward TK(-) cells, whereas compound 3 inhibited transfected and nontransfected cell lines in a relatively similar dose-dependent manner.
Collapse
Affiliation(s)
- Pamela Russ
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute at Frederick, 376 Boyles St., Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
22
|
Choi Y, George C, Comin MJ, Barchi JJ, Kim HS, Jacobson KA, Balzarini J, Mitsuya H, Boyer PL, Hughes SH, Marquez VE. A conformationally locked analogue of the anti-HIV agent stavudine. An important correlation between pseudorotation and maximum amplitude. J Med Chem 2003; 46:3292-9. [PMID: 12852759 DOI: 10.1021/jm030116g] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and biological evaluation of a bicyclo[3.1.0]hexene nucleoside designed as a conformational mimic of the anti-HIV agent stavudine (1, D4T) is described. The unsaturated methanocarbocyclic pseudosugar of N-MCD4T (2) was constructed from an iodo-substituted precursor by a DBU-catalyzed olefination reaction. Mitsunobu coupling with N(3)-benzoylthymine afforded the desired target after deprotection. Both D4T and N-MCD4T are in the North (N) hemisphere of the pseudorotational cycle but 70 degrees away from a perfect N (P = 0 degrees ) conformation toward the East and West hemispheres, respectively. Despite this large difference, the double bond reduces the puckering amplitude (nu(max)) of N-MCD4T to 6.81 degrees, and the superposition of both structures showed a RMS deviation of only 0.039 A. The combined structural analysis of P and nu(max) shows that while the value of P may differ substantially, the low nu(max) resolves the differences and becomes the dominant pseudorotational parameter. N-MCD4T is active against HIV-1 and HIV-2 in CEM, MT-2, and MT-4 cells, and while it is somewhat less potent than D4T, it also appears to be less toxic. The triphosphate (N-MCD4TTP) inhibits HIV reverse transcriptase with a 10-fold higher IC(50) than D4TTP. By virtue of its carbocyclic nature, N-MCD4T (2) is a more robust molecule stable to conditions that would cleave D4T.
Collapse
Affiliation(s)
- Yongseok Choi
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bird LE, Ren J, Wright A, Leslie KD, Degrève B, Balzarini J, Stammers DK. Crystal structure of varicella zoster virus thymidine kinase. J Biol Chem 2003; 278:24680-7. [PMID: 12686543 DOI: 10.1074/jbc.m302025200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes virus thymidine kinases are responsible for the activation of nucleoside antiviral drugs including (E)-5-(2-bromovinyl)-2'-deoxyuridine. Such viral thymidine kinases (tk), beside having a broader substrate specificity compared with host cell enzymes, also show significant variation in nucleoside phosphorylation among themselves. We have determined the crystal structure of Varicella zoster virus (VZV, human herpes virus 3) thymidine kinase complexed with (E)-5-(2-bromovinyl)-2'-deoxyuridine 5'-monophosphate and ADP. Differences in the conformation of a loop region (residues 55-61) and the position of two alpha-helices at the subunit interface of VZV-tk compared with the herpes simplex virus type 1 (human herpes virus 1) enzyme give rise to changes in the positioning of residues such as tyrosine 66 and glutamine 90, which hydrogen bond to the substrate in the active site. Such changes in combination with the substitution in VZV-tk of two phenylalanine residues (in place of a tyrosine and methionine), which sandwich the substrate pyrimidine ring, cause an alteration in the positioning of the base. The interaction of the (E)-5-(2-bromovinyl)-2'-deoxyuridine deoxyribose ring with the protein is altered by substitution of tyrosine 21 and phenylalanine 139 (analagous to herpes simplex virus type 1 histidine 58 and tyrosine 172), which may explain some of the differences in nucleoside sugar selectivity between both enzymes. The altered active site architecture may also account for the differences in the substrate activity of ganciclovir for the two thymidine kinases. These data should be of use in the design of novel antiherpes and antitumor drugs.
Collapse
Affiliation(s)
- Louise E Bird
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, Henry Wellcome Building of Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Spadola L, Novellino E, Folkers G, Scapozza L. Homology modelling and docking studies on Varicella Zoster Virus Thymidine kinase. Eur J Med Chem 2003; 38:413-9. [PMID: 12750029 DOI: 10.1016/s0223-5234(03)00053-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymidine kinase (TK) is the key enzyme in antiviral and suicide gene therapies. While herpes simplex virus type 1 thymidine kinase has been widely studied and crystallised less is known on Varicella Zoster Virus thymidine kinase (VZV TK) and its three-dimensional structure. In this paper we report the model of the three-dimensional structure of VZV TK resulting from a homology modelling study. Subsequent docking studies of the natural substrate deoxythymidine (dT) and known antiviral drugs were performed and shaded new light on the binding characteristics of the enzyme.
Collapse
Affiliation(s)
- Loredana Spadola
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli, Via D. Montesano 49, 80131, Napoli, Italy
| | | | | | | |
Collapse
|
25
|
Denny WA. Prodrugs for Gene-Directed Enzyme-Prodrug Therapy (Suicide Gene Therapy). J Biomed Biotechnol 2003; 2003:48-70. [PMID: 12686722 PMCID: PMC179761 DOI: 10.1155/s1110724303209098] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 07/19/2002] [Indexed: 01/10/2023] Open
Abstract
This review focuses on the prodrugs used in suicide gene therapy. These prodrugs need to satisfy a number of criteria. They must be efficient and selective substrates for the activating enzyme, and be metabolized to potent cytotoxins preferably able to kill cells at all stages of the cell cycle. Both prodrugs and their activated species should have good distributive properties, so that the resulting bystander effects can maximize the effectiveness of the therapy, since gene transduction efficiencies are generally low. A total of 42 prodrugs explored for use in suicide gene therapy with 12 different enzymes are discussed, particularly in terms of their physiocochemical properties. An important parameter in determining bystander effects generated by passive diffusion is the lipophilicity of the activated form, a property conveniently compared by diffusion coefficients (log P for nonionizable compounds and log D(7) for compounds containing an ionizable centre). Many of the early antimetabolite-based prodrugs provide very polar activated forms that have limited abilities to diffuse across cell membranes, and rely on gap junctions between cells for their bystander effects. Several later studies have shown that more lipophilic, neutral compounds have superior diffusion-based bystander effects. Prodrugs of DNA alkylating agents, that are less cell cycle-specific than antimetabolites and more effective against noncycling tumor cells, appear in general to be more active prodrugs, requiring less prolonged dosing schedules to be effective. It is expected that continued studies to optimize the bystander effects and other properties of prodrugs and the activated species they generate will contribute to improvements in the effectiveness of suicide gene therapy.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, School of Medical & Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1000, New Zealand
| |
Collapse
|
26
|
Wu Y, Fa M, Tae EL, Schultz PG, Romesberg FE. Enzymatic phosphorylation of unnatural nucleosides. J Am Chem Soc 2002; 124:14626-30. [PMID: 12465973 DOI: 10.1021/ja028050m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to expand the genetic alphabet, a number of unnatural, predominantly hydrophobic, nucleoside analogues have been developed which pair selectively in duplex DNA and during enzymatic synthesis. Significant progress has been made toward the efficient in vitro replication of DNA containing these base pairs. However, the in vivo expansion of the genetic alphabet will require that the unnatural nucleoside triphosphates be available within the cell at sufficient concentrations for DNA replication. We report our initial efforts toward the development of an unnatural in vivo nucleoside phosphorylation pathway that is based on nucleoside salvage enzymes. The first step of this pathway is catalyzed by the D. melanogaster nucleoside kinase, which catalyzes the phosphorylation of nucleosides to the corresponding monophosphates. We demonstrate that each unnatural nucleoside is phosphorylated with a rate that should be sufficient for the in vivo replication of DNA.
Collapse
Affiliation(s)
- Yiqin Wu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
27
|
Yoshimura Y, Moon HR, Choi Y, Marquez VE. Enantioselective synthesis of bicyclo[3.1.0]hexane carbocyclic nucleosides via a lipase-catalyzed asymmetric acetylation. Characterization of an unusual acetal byproduct. J Org Chem 2002; 67:5938-45. [PMID: 12182625 DOI: 10.1021/jo020249u] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bicyclo[3.1.0]hexane scaffold can lock the conformation of a carbocyclic nucleoside into one of the two antipodal (north or south) conformations typical of conventional nucleosides that normally exist in a rapid, two-state equilibrium in solution. In a recent brief communication, we reported a practical method to access the requisite bicyclo[3.1.0]hexane pseudosugar for the north antipode via an intramolecular olefin-ketocarbene cycloaddition. The most attractive features of this synthesis was that a relatively complex synthon was obtained from simple and inexpensive starting materials and that the resulting racemic mixtures of purine nucleosides could be successfully resolved by adenosine deaminase (ADA) hydrolysis. In this work, we describe the development of a more general, lipase-catalyzed double-acetylation reaction, which could successfully resolve an earlier precursor, 4-(tert-butyldiphenylsilamethoxy)-1-(hydroxymethyl)bicyclo[3.1.0]hexan-2-ol [(+/-)-7], into enantiomerically pure (+)-diacetate 8 and (-)-monoacetate 9. The former diacetate was converted to the conformationally locked (north)-carbocyclic guanosine (+)-17 identical to the one obtained previously by ADA resolution. The present method represents a more general and efficient process applicable to the synthesis of all classes of (north) bicyclo[3.1.0]hexane nucleosides, including pyrimidine analogues. During the lipase-catalyzed resolution, we were able to demonstrate the presence of an unusual acetal-forming reaction that consumed small amounts of the unreactive monoacetate (-)-9. This side reaction was also enzyme-catalyzed and was triggered by the byproduct acetaldehyde generated during the reaction.
Collapse
Affiliation(s)
- Yuichi Yoshimura
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute-Frederick, 376 Boyles St., Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
28
|
Zalah L, Huleihel M, Manor E, Konson A, Ford H, Marquez VE, Johns DG, Agbaria R. Metabolic pathways of N-methanocarbathymidine, a novel antiviral agent, in native and herpes simplex virus type 1 infected Vero cells. Antiviral Res 2002; 55:63-75. [PMID: 12076752 DOI: 10.1016/s0166-3542(02)00010-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
N-methanocarbathymidine ((N)-MCT), a thymidine analog incorporating a pseudosugar with a fixed Northern conformation, exhibits potent antiherpetic activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). This study contrasts the metabolic pathway of (N)-MCT and the well-known antiherpetic agent ganciclovir (GCV) in HSV-1-infected and uninfected Vero cells. Treatment of HSV-1 infected Vero cells immediately after viral infection with (N)-MCT profoundly inhibited the development of HSV-1 infection. Using standard plaque reduction assay to measure viral infection, (N)-MCT showed a potency greater than that of ganciclovir (GCV), the IC50s were 0.02 and 0.25 microM for (N)-MCT and GCV, respectively. (N)-MCT showed no cytotoxic effect on uninfected Vero cells (CC50>100 microM). Dose and time dependence studies showed high levels of (N)-MCT-triphosphate ((N)-MCT-TP), and GCV-triphosphate (GCV-TP) in HSV-1-infected cells incubated with (N)-MCT or GCV, respectively. In contrast, uninfected cells incubated with (N)-MCT showed elevated levels of (N)-MCT-monophosphate only, while low levels of mono, di- and triphosphates of GCV were found following incubation with GCV. Although the accumulation rate of (N)-MCT and GCV phosphates in HSV-1-infected cells were similar, the decay rate of (N)-MCT-TP was slower than that of GCV-TP. These results suggest that: (1) the antiviral activity of (N)-MCT against herpes viruses is mediated through its triphosphate metabolite; (2) in contrast to GCV, the diphosphorylation of (N)-MCT in HSV-1- infected cells is the rate limiting step; (3) (N)-MCT-TP accumulates rapidly and has a long half-life in HSV-1-infected cells; and (4) HSV-tk catalyzed the mono, and diphosphorylation of (N)-MCT while monophosphorylating GCV only. These results provide a biochemical rational for the highly selective and effective inhibition of HSV-1 by (N)-MCT.
Collapse
Affiliation(s)
- Livnat Zalah
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pospisil P, Kuoni T, Scapozza L, Folkers G. Methodology and problems of protein-ligand docking: case study of dihydroorotate dehydrogenase, thymidine kinase, and phosphodiesterase 4. J Recept Signal Transduct Res 2002; 22:141-54. [PMID: 12503612 DOI: 10.1081/rrs-120014592] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The docking methodology was applied to three different therapeutically interesting enzymes: human dihydroorotate dehydrogenase (DHODH), Herpes simplex virus type I thymidine kinase (HSV1 TK) and human phosphodiesterase 4 (PDE4). Programs FlexX, AutoDock and DOCK where used. The three targets represent three distinct cases. For DHODH and HSV1 TK, the binding modes of substrate and inhibitors within the active site are known, while the binding orientation of cAMP within PDE4 has been solely hypothesized. Active site of DHODH is mainly hydrophobic and the binding mode of the inhibitor brequinar was used as a template for evaluating the docking strategies. The presence of cofactors revealed to be crucial for the definition of the docking site. The HSV1 TK active site is small and polar and contains crystal water molecules and ATP. Docking of thymidine and aciclovir (ACV) within the active site was analyzed by keeping or removing water molecules. It showed the crucial role of water in predicting the binding of pyrimidines and purines. The crystal structure of PDE4 contains magnesium and zinc cations as well as catalytic water molecule but no ligand. Several docking experiments of cAMP and rolipram were performed and the results showed clear-cut dependence between the ligand orientation and the presence of metals in the active site. All three cases show specific problems of the docking methodology, depending on the character of the active site.
Collapse
Affiliation(s)
- Pavel Pospisil
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
30
|
Paquette LA, Bibart RT, Seekamp CK, Kahane AL. Spirocyclic restriction of nucleosides. Synthesis of the first exemplary syn-1-oxaspiro[4.4]nonanyl member. Org Lett 2001; 3:4039-41. [PMID: 11735579 DOI: 10.1021/ol010209x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The potential benefits associated with the spirocyclic restriction of nucleosides are summarized. Following exploration of a pi-allylpalladium route to 5'-alpha- or syn-dideoxy examples, we evaluated MOM protection of the 5'-hydroxyl as being suited to the synthesis of the first member of this new class of nucleoside mimic.
Collapse
Affiliation(s)
- L A Paquette
- Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
31
|
Wurth C, Thomas RM, Folkers G, Scapozza L. Folding and self-assembly of herpes simplex virus type 1 thymidine kinase. J Mol Biol 2001; 313:657-70. [PMID: 11676546 DOI: 10.1006/jmbi.2001.5060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymidine kinase from herpes simplex virus type 1 (HSV1 TK) has been postulated to be a homodimer throughout the X-ray crystallography literature. Our study shows that HSV1 TK exists as a monomer-dimer equilibrium mixture in dilute aqueous solutions. In the presence of 150 mM NaCl, the equilibrium is characterized by a dissociation constant of 2.4 microm; this constant was determined by analytical ultracentrifugation and gel filtration experiments. Dimerization seems to be unfavorable for enzymatic activity: dimers show inferior catalytic efficiency compared to the monomers. Moreover, soluble oligomers formed by self-assembly of TK in the absence of physiological salt concentrations are even enzymatically inactive. This study investigates enzymatic and structural relevance of the TK dimer in vitro. Dissociation of the dimers into monomers is not accompanied by large overall changes in secondary or tertiary structure as shown by thermal and urea-induced unfolding studies monitored by circular dichroism and fluorescence spectroscopy. A disulfide-bridge mutant TK (V119C) was designed bearing two cysteine residues at the dimer interface in order to crosslink the two subunits covalently. Under reducing conditions, the properties of V119C and wild-type HSV1 TK (wt HSV1 TK) were identical in terms of expression yield, denaturing SDS PAGE gel electrophoresis, enzyme kinetics, CD spectra and thermal stability. Crosslinked V119C (V119Cox) was found to have an increased thermal stability with a t(m) value of 59.1(+/-0.5) degrees C which is 16 deg. C higher than for the wild type protein. This is thought to be a consequence of the conformational restriction of the dimer interface. Furthermore, enzyme kinetic studies on V119Cox revealed a K(m) for thymidine of 0.2 microm corresponding to wt HSV1 TK, but a significantly higher K(m) for ATP. The present findings raise the question whether the monomer, not the dimer, might be the active species in vivo.
Collapse
Affiliation(s)
- C Wurth
- Department of Applied BioSciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
32
|
Schelling P, Folkers G, Scapozza L. A spectrophotometric assay for quantitative determination of kcat of herpes simplex virus type 1 thymidine kinase substrates. Anal Biochem 2001; 295:82-7. [PMID: 11476548 DOI: 10.1006/abio.2001.5191] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple method to determine the in vitro catalytic turnover constant of several substrates of herpes simplex virus type 1 thymidine kinase is presented in this study. The method is based on a continuous spectroscopic enzyme-coupled assay and allows one to monitor the herpes simplex virus type 1 thymidine kinase activity in the presence of unlabeled substrates. A clear correlation between the catalytic turnover constant and the rate of decrease in absorbance over time during the assay has been demonstrated. Exploiting this correlation, this method has been used to determine rapidly and precisely the catalytic turnover constant of antiviral lead compounds not readily available in the radioactive labeled form.
Collapse
Affiliation(s)
- P Schelling
- Department of Applied BioSciences, Swiss Federal Institute of Technology (ETH), Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | |
Collapse
|
33
|
Sulpizi M, Schelling P, Folkers G, Carloni P, Scapozza L. The rational of catalytic activity of herpes simplex virus thymidine kinase. a combined biochemical and quantum chemical study. J Biol Chem 2001; 276:21692-7. [PMID: 11262392 DOI: 10.1074/jbc.m010223200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most antiherpes therapies exploit the large substrate acceptance of herpes simplex virus type 1 thymidine kinase (TK(HSV1)) relative to the human isoenzyme. The enzyme selectively phosphorylates nucleoside analogs that can either inhibit viral DNA polymerase or cause toxic effects when incorporated into viral DNA. To relate structural properties of TK(HSV1) ligands to their chemical reactivity we have carried out ab initio quantum chemistry calculations within the density functional theory framework in combination with biochemical studies. Calculations have focused on a set of ligands carrying a representative set of the large spectrum of sugar-mimicking moieties and for which structural information of the TK(HSV1)-ligand complex is available. The k(cat) values of these ligands have been measured under the same experimental conditions using an UV spectrophotometric assay. The calculations point to the crucial role of electric dipole moment of ligands and its interaction with the negatively charged residue Glu(225). A striking correlation is found between the energetics associated with this interaction and the k(cat) values measured under homogeneous conditions. This finding uncovers a fundamental aspect of the mechanism governing substrate diversity and catalytic turnover and thus represents a significant step toward the rational design of novel and powerful prodrugs for antiviral and TK(HSV1)-linked suicide gene therapies.
Collapse
Affiliation(s)
- M Sulpizi
- Scuola Internazionale Superiore di Studi Aranzati, International School for Advanced Studies, via Beirut 2-4, 34013 Trieste, Italy
| | | | | | | | | |
Collapse
|
34
|
Wurth C, Kessler U, Vogt J, Schulz GE, Folkers G, Scapozza L. The effect of substrate binding on the conformation and structural stability of Herpes simplex virus type 1 thymidine kinase. Protein Sci 2001; 10:63-73. [PMID: 11266595 PMCID: PMC2249856 DOI: 10.1110/ps.27401] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The structure of Herpes simplex virus type 1 thymidine kinase (TK(HSV1)) is known at high resolution in complex with a series of ligands and exhibits important structural similarities to the nucleoside monophosphate (NMP) kinase family, which are known to show large conformational changes upon binding of substrates. The effect of substrate binding on the conformation and structural stability of TK(HSV1), measured by thermal denaturation experiments, far-UV circular dichroism (CD) and fluorescence is described, and the results indicate that the conformation of the ligand-free TK(HSV1) is less ordered and less stable compared to the ligated enzyme. Furthermore, two crystal structures of TK(HSV1) in complex with two new ligands, HPT and HMTT, refined to 2.2 A are presented. Although TK(HSV1):HPT does not exhibit any significant deviations from the model of TK(HSV1):dT, the TK(HSV1):HMTT complex displays a unique conformationally altered active site resulting in a lowered thermal stability of this complex. Moreover, we show that binding affinity and binding mode of the ligand correlate with thermal stability of the complex. We use this correlation to propose a method to estimate binding constants for new TK(HSV1)substrates using thermal denaturation measurements monitored by CD spectroscopy. The kinetic and structural results of both test substrates HPT and HMTT show that the CD thermal denaturation system is very sensitive to conformational changes caused by unusual binding of a substrate analog.
Collapse
Affiliation(s)
- C Wurth
- Department of Applied BioSciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Bissantz C, Folkers G, Rognan D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 2000; 43:4759-67. [PMID: 11123984 DOI: 10.1021/jm001044l] [Citation(s) in RCA: 526] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three different database docking programs (Dock, FlexX, Gold) have been used in combination with seven scoring functions (Chemscore, Dock, FlexX, Fresno, Gold, Pmf, Score) to assess the accuracy of virtual screening methods against two protein targets (thymidine kinase, estrogen receptor) of known three-dimensional structure. For both targets, it was generally possible to discriminate about 7 out of 10 true hits from a random database of 990 ligands. The use of consensus lists common to two or three scoring functions clearly enhances hit rates among the top 5% scorers from 10% (single scoring) to 25-40% (double scoring) and up to 65-70% (triple scoring). However, in all tested cases, no clear relationships could be found between docking and ranking accuracies. Moreover, predicting the absolute binding free energy of true hits was not possible whatever docking accuracy was achieved and scoring function used. As the best docking/consensus scoring combination varies with the selected target and the physicochemistry of target-ligand interactions, we propose a two-step protocol for screening large databases: (i) screening of a reduced dataset containing a few known ligands for deriving the optimal docking/consensus scoring scheme, (ii) applying the latter parameters to the screening of the entire database.
Collapse
Affiliation(s)
- C Bissantz
- Department of Applied Biosciences, ETH Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
36
|
Moon HR, Ford H, Marquez VE. A remarkably simple chemicoenzymatic approach to structurally complex bicyclo[3.1.0]hexane carbocyclic nucleosides. Org Lett 2000; 2:3793-6. [PMID: 11101421 DOI: 10.1021/ol000238s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Intramolecular cyclopropanation of a carbene engendered from the corresponding diazo beta-ketoester produced the desired bicyclo[3.1. 0]hexane pseudosugar. Purine nucleosides obtained via Mitsunobu coupling were resolved with adenosine deaminase. The requisite beta-ketoester was assembled in one step from ethyl acetoacetate and acrolein.
Collapse
Affiliation(s)
- H R Moon
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, FCRDC, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
37
|
Mu L, Sarafianos SG, Nicklaus MC, Russ P, Siddiqui MA, Ford H, Mitsuya H, Le R, Kodama E, Meier C, Knispel T, Anderson L, Barchi JJ, Marquez VE. Interactions of conformationally biased north and south 2'-fluoro-2', 3'-dideoxynucleoside 5'-triphosphates with the active site of HIV-1 reverse transcriptase. Biochemistry 2000; 39:11205-15. [PMID: 10985766 DOI: 10.1021/bi001090n] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations of a ternary complex of HIV-1 reverse transcriptase (RT), double-stranded DNA, and bound dideoxynucleoside-5'-triphosphate (RT-DNA-ddNTP), utilizing the ddNTPs ddATP, betaFddATP, and alphaFddATP, explain the experimentally observed order of potency of these 5'-triphosphates as inhibitors of RT: ddATP > betaFddATP > alphaFddATP. On the basis of RT's known preference to bind the incoming dNTP (or ddNTP) with a north conformation at the polymerase site, alphaFddATP, which in solution prefers almost exclusively a north conformation, was predicted to be the most potent inhibitor. However, Tyr115, which appears to function as a steric gate to preclude the binding of ribonucleoside 5'-triphosphates, prevents the effective binding of alphaFddATP in its preferred north conformation. The south-biased betaFddATP, while able to bind to RT without hindrance by Tyr115, has to pay a high energy penalty to be flipped to the active north conformation at the polymerase site. Finally, the more flexible and less conformationally biased ddATP is able to switch to a north conformation at the RT site with a smaller energy penalty than betaFddATP. These results highlight the opposite conformational preferences of HIV-1 RT for alphaFddATP and betaFddATP and help establish conformational guidelines for optimal binding at the polymerase site of this enzyme.
Collapse
Affiliation(s)
- L Mu
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, and Experimental Retrovirology Section, Medicine Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|