1
|
Van Brempt N, Sgammato R, Beirinckx Q, Hammerschmid D, Sobott F, Dewilde S, Moens L, Herrebout W, Johannessen C, Van Doorslaer S. The effect of pH and nitrite on the haem pocket of GLB-33, a globin-coupled neuronal transmembrane receptor of Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140913. [PMID: 37004900 DOI: 10.1016/j.bbapap.2023.140913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Out of the 34 globins in Caenorhabditis elegans, GLB-33 is a putative globin-coupled transmembrane receptor with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of electronic circular dichroism, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.
Collapse
Affiliation(s)
- Niels Van Brempt
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Roberta Sgammato
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Quinten Beirinckx
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Frank Sobott
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | | | | |
Collapse
|
2
|
Julió Plana L, Martinez Grundman JE, Estrin DA, Lecomte JTJ, Capece L. Distal lysine (de)coordination in the algal hemoglobin THB1: A combined computer simulation and experimental study. J Inorg Biochem 2021; 220:111455. [PMID: 33882423 DOI: 10.1016/j.jinorgbio.2021.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/26/2022]
Abstract
THB1 is a monomeric truncated hemoglobin from the green alga Chlamydomonas reinhardtii. In the absence of exogenous ligands and at neutral pH, the heme group of THB1 is coordinated by two protein residues, Lys53 and His77. THB1 is thought to function as a nitric oxide dioxygenase, and the distal binding of O2 requires the cleavage of the Fe-Lys53 bond accompanied by protonation and expulsion of the lysine from the heme cavity into the solvent. Nuclear magnetic resonance spectroscopy and crystallographic data have provided dynamic and structural insights of the process, but the details of the mechanism have not been fully elucidated. We applied a combination of computer simulations and site-directed mutagenesis experiments to shed light on this issue. Molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics restrained optimizations were performed to explore the nature of the transition between the decoordinated and lysine-bound states of the ferrous heme in THB1. Lys49 and Arg52, which form ionic interactions with the heme propionates in the X-ray structure of lysine-bound THB1, were observed to assist in maintaining Lys53 inside the protein cavity and play a key role in the transition. Lys49Ala, Arg52Ala and Lys49Ala/Arg52Ala THB1 variants were prepared, and the consequences of the replacements on the Lys (de)coordination equilibrium were characterized experimentally for comparison with computational prediction. The results reinforced the dynamic role of protein-propionate interactions and strongly suggested that cleavage of the Fe-Lys53 bond and ensuing conformational rearrangement is facilitated by protonation of the amino group inside the distal cavity.
Collapse
Affiliation(s)
- Laia Julió Plana
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime E Martinez Grundman
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juliette T J Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States.
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Nye DB, Johnson EA, Mai MH, Lecomte JTJ. Replacement of the heme axial lysine as a test of conformational adaptability in the truncated hemoglobin THB1. J Inorg Biochem 2019; 201:110824. [PMID: 31514090 DOI: 10.1016/j.jinorgbio.2019.110824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Amino acid replacement is a useful strategy to assess the roles of axial heme ligands in the function of native heme proteins. THB1, the protein product of the Chlamydomonas reinhardtii THB1 gene, is a group 1 truncated hemoglobin that uses a lysine residue in the E helix (Lys53, at position E10 by reference to myoglobin) as an iron ligand at neutral pH. Phylogenetic evidence shows that many homologous proteins have a histidine, methionine or arginine at the same position. In THB1, these amino acids would each be expected to convey distinct reactive properties if replacing the native lysine as an axial ligand. To explore the ability of the group 1 truncated Hb fold to support alternative ligation schemes and distal pocket conformations, the properties of the THB1 variants K53A as a control, K53H, K53M, and K53R were investigated by electronic absorption, EPR, and NMR spectroscopies. We found that His53 is capable of heme ligation in both the Fe(III) and Fe(II) states, that Met53 can coordinate only in the Fe(II) state, and that Arg53 stabilizes a hydroxide ligand in the Fe(III) state. The data illustrate that the group 1 truncated Hb fold can tolerate diverse rearrangement of the heme environment and has a strong tendency to use two protein side chains as iron ligands despite accompanying structural perturbations. Access to various redox pairs and different responses to pH make this protein an excellent test case for energetic and dynamic studies of heme ligation.
Collapse
Affiliation(s)
- Dillon B Nye
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Melissa H Mai
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Tilleman L, Germani F, De Henau S, Helbo S, Desmet F, Berghmans H, Van Doorslaer S, Hoogewijs D, Schoofs L, Braeckman BP, Moens L, Fago A, Dewilde S. A globin domain in a neuronal transmembrane receptor of Caenorhabditis elegans and Ascaris suum: molecular modeling and functional properties. J Biol Chem 2015; 290:10336-52. [PMID: 25666609 DOI: 10.1074/jbc.m114.576520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 01/12/2023] Open
Abstract
We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor.
Collapse
Affiliation(s)
| | | | - Sasha De Henau
- the Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Signe Helbo
- the Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Filip Desmet
- Physics, University of Antwerp, 2610 Antwerp, Belgium
| | | | | | - David Hoogewijs
- the Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, 8006 Zürich, Switzerland, Institute of Physiology, University of Duisburg-Essen, D-45147 Essen, Germany, and
| | - Liliane Schoofs
- the Functional Genomics and Proteomics Group, KU Leuven, 3000 Leuven, Belgium
| | - Bart P Braeckman
- the Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Luc Moens
- From the Departments of Biomedical Sciences and
| | - Angela Fago
- the Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
5
|
Sharpe MA, Krzyaniak MD, Xu S, McCracken J, Ferguson-Miller S. EPR evidence of cyanide binding to the Mn(Mg) center of cytochrome c oxidase: support for Cu(A)-Mg involvement in proton pumping. Biochemistry 2009; 48:328-35. [PMID: 19108635 DOI: 10.1021/bi801391r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the anion binding behavior of the Mg(Mn) site in cytochrome c oxidase to test a possible role of this center in proton pumping. Rhodobacter sphaeroides grown in a Mn(II)-rich medium replaces the intrinsic Mg(II) ion with an EPR-detectable Mn(II) ion without change in activity. Due to its close proximity and a shared ligand, oxidized Cu(A) is spin-coupled to the Mn(II) ion, affecting the EPR spectrum. An examination of both bovine and R.s. oxidase crystal structures reveals a hydrogen-bonding pattern in the vicinity of the Mg(II) site that is consistent with three water ligands of the Mg(Mn) center when Cu(A) is oxidized. In the reduced structure, one water molecule in the vicinity of the Cu(A) ligand, E198, moves closer, appearing to be converted into an ionically bonded hydronium ion, while a second water molecule bonded to Mg(Mn) shows evidence of conversion to a hydroxide. The implied proton movement is proposed to be part of a redox-linked export of a pumped proton from the binuclear center into the exit pathway. To test the model, cyanide and azide were added to the oxidized and reduced forms of the enzyme, and Mn(II) CW-EPR and ESEEM spectra were recorded. Addition of azide broadened the CW-EPR spectra for both oxidized and reduced enzyme. Cyanide addition affected the Mn(II) CW-EPR spectrum of reduced cytochrome c oxidase by increasing Mn(II) zero field splitting and broadening the spectral line shapes but had no effect on oxidized enzyme. ESEEM measurements support a differential ability of Mn(II) to bind cyanide in the reduced state of cytochrome c oxidase. This new observation of anion binding at the Mg/Mn site is of interest in terms of accessibility of the buried site and its potential role in redox-dependent proton pumping.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | | | | | | | |
Collapse
|
6
|
De Sanctis G, Petrella G, Ciaccio C, Feis A, Smulevich G, Coletta M. A comparative study on axial coordination and ligand binding in ferric mini myoglobin and horse heart myoglobin. Biophys J 2007; 93:2135-42. [PMID: 17496043 PMCID: PMC1959552 DOI: 10.1529/biophysj.106.098764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The absorption and resonance Raman spectra and the azide binding kinetics of ferric horse heart myoglobin (Mb) and mini myoglobin (a chemically truncated form of horse heart Mb containing residues 32-139) have been compared. The steady-state spectra show that an additional six-coordinated low-spin form (not present in entire horse heart Mb, which is purely six-coordinated high spin) predominates in mini Mb. The distal histidine is possibly the sixth ligand in this species. The presence of two species corresponds to a kinetic biphasicity for mini Mb that is not observed for horse heart Mb. Azide binds to horse heart Mb much more slowly than to sperm whale Mb. This difference may result from a sterically hindered distal pocket in horse heart Mb. In both cases, the rate constants level off at high azide concentrations, implying the existence of a rate-limiting step (likely referable to the dissociation of the axial sixth ligand). The faster rate constant of mini Mb is similar to that of sperm whale Mb, whereas the slower one is similar to that of entire horse heart Mb.
Collapse
Affiliation(s)
- Giampiero De Sanctis
- Department of Molecular, Cellular and Animal Biology, University of Camerino, I-62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
7
|
Sun W, Arese M, Brunori M, Nurizzo D, Brown K, Cambillau C, Tegoni M, Cutruzzolà F. Cyanide binding to cd(1) nitrite reductase from Pseudomonas aeruginosa: role of the active-site His369 in ligand stabilization. Biochem Biophys Res Commun 2002; 291:1-7. [PMID: 11829453 DOI: 10.1006/bbrc.2002.6391] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyanide binding to fully reduced Pseudomonas aeruginosa cd(1) nitrite reductase (Pa cd(1) NiR) has been investigated for the wild-type enzyme and a site-directed mutant in which the active-site His369 was replaced by Ala. This mutation reduces the affinity toward cyanide (by approximately 13-fold) and especially decreases the rate of binding of cyanide to the reduced d(1) heme (by approximately 100-fold). The crystal structure of wild-type reduced Pa cd(1) NiR saturated with cyanide was determined to a resolution of 2.7 A. Cyanide binds to the iron of the d(1) heme, with an Fe-C-N angle of 168 degrees for both subunits of the dimer and only His369 is within hydrogen bonding distance of the nitrogen atom of the ligand. These results suggest that in Pa cd(1) NiR the invariant distal residue His369 plays a dominant role in controlling the binding of anionic ligands and allow the discussion of the mechanism of cyanide binding to the wild-type enzyme.
Collapse
Affiliation(s)
- Wenliang Sun
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Centro di Biologia Molecolare del CNR, Università di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
De Rosa MC, Bertonati C, Giardina B, Di Stasio E, Brancaccio A. The effect of anions on azide binding to myoglobin: an unusual functional modulation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:341-52. [PMID: 11904230 DOI: 10.1016/s0167-4838(01)00327-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of increasing concentrations of several anions on the azide (N(-)(3)) binding properties of sperm whale and horse ferric myoglobin has been studied. Surprisingly, a number of anions may act as heterotropic effectors, decreasing the affinity of myoglobins for N(-)(3), in the following order: ClO(-)(4)=I(-)>Br(-)>Cl(-) and SO(2-)(4), which mirrors the increase in their charge density. The largest effects were measured using ClO(-)(4) and I(-), which produce a 4-fold and 8-fold reduction of the N(-)(3) binding affinity in horse and sperm whale myoglobins, respectively. A dissociation equilibrium constant (K(d)) ranging from 150 to 250 mM was estimated for ClO(-)(4) and I(-) binding to myoglobins. In order to analyse the molecular mechanism producing the reduction of the N(-)(3) binding affinity to ferric myoglobin, the potential anionic binding sites within ferric myoglobin were investigated by a molecular modelling study using the program Grid. Analysis of the theoretical results suggests two particularly favourable binding sites: the first, next to the distal side of the haem, whose occupancy might alter the electrostatic potential surrounding the bound N(-)(3); the second, involving residues of helices B and G which are far from the haem iron atom, thus implying a long range effect on the bound N(-)(3). Based on the evidence that no significant conformational changes are found in the three-dimensional structures of N(-)(3)-free and N(-)(3)-bound myoglobin and on previous results on N(-)(3) binding to ferric myoglobin mutants in CD3 positions, we favour the first hypothesis, suggesting that the functional heterotropic modulation of monomeric myoglobin is mainly depending on a decrease of the positive charge density induced by the binding of anions to the haem distal side.
Collapse
Affiliation(s)
- M Cristina De Rosa
- Institute of Chemistry and Clinical Chemistry, and C.N.R. Centre of Receptor Chemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | |
Collapse
|
9
|
Lin J, Merryweather J, Vitello LB, Erman JE. Metmyoglobin/azide: the effect of heme-linked ionizations on the rate of complex formation. Arch Biochem Biophys 1999; 362:148-58. [PMID: 9917339 DOI: 10.1006/abbi.1998.0991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinetics of formation and dissociation of the horse metmyoglobin/azide complex has been investigated between pH 3.5 and 11.5. The ionic strength dependence of the reaction has been determined at integral pH values between 5 and 10. Hydrazoic acid, HN3, binds to metmyoglobin with a rate constant of (3.8 +/- 1.0) x 10(5) M-1 s-1. Protonation of a group with an apparent pKa of 4.0 +/- 0.3 increases the rate of HN3 binding 6.5-fold to (2.5 +/- 0.8) x 10(6) M-1 s-1. The ionizable group is attributed to the distal histidine, His-64. The azide anion, N-3, binds to metmyoglobin with a rate constant of (4.7 +/- 0.3) x 10(3) M-1 s-1, about two orders of magnitude slower than HN3. Conversion of aquometmyoglobin to hydroxymetmyoglobin slows azide binding significantly. Binding of HN3 to hydroxymetmyoglobin cannot be detected, while N-3 binds to hydroxymetmyoglobin with a rate of 5.7 +/- 3.2 M-1 s-1, almost three orders of magnitude slower than N-3 binding to aquometmyoglobin. Protonation of the distal histidine facilitates HN3 dissociation from the complex. HN3 dissociates from the metmyoglobin/azide complex with a rate constant of 18 +/- 6 s-1, while the azide anion dissociates with a rate constant of 0.16 +/- 0.02 s-1, about 100 times slower. The apparent pKa for His-64 is essentially the same in metmyoglobin and the metmyoglobin/azide complex, 4.0 +/- 0.3 and 4.4 +/- 0.2, respectively. The ionic strength dependence of the observed association rate constant is influenced by both primary and secondary kinetic salt effects. The primary kinetic salt effect is anomalous, with the rate of N-3 binding decreasing with increasing ionic strength above the isoelectric point of metmyoglobin where the protein has a net negative charge. The ionic strength dependence of the dissociation rate constant can be described solely in terms of the ionic strength dependence of the acid dissociation constant for His-64 in the metmyoglobin/azide complex, a secondary kinetic salt effect.
Collapse
Affiliation(s)
- J Lin
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, 60115, USA
| | | | | | | |
Collapse
|
10
|
Merryweather J, Summers F, Vitello LB, Erman JE. Metmyoglobin/fluoride: effect of distal histidine protonation on the association and dissociation rate constants. Arch Biochem Biophys 1998; 358:359-68. [PMID: 9784251 DOI: 10.1006/abbi.1998.0872] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinetics of formation and dissociation of the horse metmyoglobin/fluoride complex has been investigated between pH 3.4 and 11. The ionic strength dependence of the reaction has been measured at integral pH values between pH 5 and 10. Hydrofluoric acid, HF, binds to metmyoglobin with a rate constant of (4.7 +/- 0. 7) x 10(4) M-1 s-1. An apparent ionization in metmyoglobin with a pKa of 4.4 +/- 0.5 influences the rate of HF binding and is attributed to the distal histidine, His-64. Protonation of His-64 increases the HF binding rate by a factor of 2.6. The fluoride anion, F-, binds to metmyoglobin with a rate constant of (5.6 +/- 1.4) x 10(-2) M-1 s-1, about 10(6) times slower than HF. Binding of either HF or F- to hydroxymetmyoglobin cannot be detected. Protonation of the distal histidine facilitates HF dissociation from the metmyoglobin/fluoride complex. HF dissociates with a rate constant of 1.9 +/- 0.3 s-1. The fluoride anion dissociates 2000 times more slowly, with a rate constant of (8.7 +/- 1.6) x 10(-4) s-1. The apparent pKa for His-64 ionization in the fluorometmyoglobin complex is 5.7 +/- 0.1. The association and dissociation rate constants are relatively independent of ionic strength with secondary kinetic salt effects sufficient to account for the ionic strength variation of both, consistent with the idea that association and dissociation of neutral HF dominate the kinetics of fluoride binding to metmyoglobin.
Collapse
Affiliation(s)
- J Merryweather
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb 60115, USA
| | | | | | | |
Collapse
|
11
|
Luo Y, Peyton DH, Yee S. Proton resonance assignments and ligand exchange kinetics in high-spin and mixed-spin myoglobin complexes using two-dimensional exchange spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:66-76. [PMID: 9774707 DOI: 10.1016/s0167-4838(98)00161-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The task of assigning resonances in proton nuclear magnetic resonance spectra of paramagnetic heme proteins can be an arduous process, but with the development of multi-dimensional NMR methods the situation has improved. It is demonstrated here that two-dimensional exchange spectroscopic experiments can be used to obtain to assignment correlations for the heme protons of methydroxy-, metthiocyano-, metaquo-, and metimidazole-myoglobin forms. All the assignments are unambiguous and straightforward when the temperature and mixing times are adjusted to minimize nuclear Overhauser cross-peaks from each complex. Moreover, saturation transfer experiments allow the study of ligand binding kinetics. The exchange rates between metaquo- and metimidazole- (or methyl substituted imidazole) myoglobin complexes are estimated. The differences between the exchange rates reflect differences in the hydrophobic and steric interactions between the ligands and the protein moiety.
Collapse
Affiliation(s)
- Y Luo
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA
| | | | | |
Collapse
|
12
|
Maurus R, Bogumil R, Nguyen NT, Mauk AG, Brayer G. Structural and spectroscopic studies of azide complexes of horse heart myoglobin and the His-64-->Thr variant. Biochem J 1998; 332 ( Pt 1):67-74. [PMID: 9576852 PMCID: PMC1219452 DOI: 10.1042/bj3320067] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The high-resolution X-ray crystallographic structures of horse heart azidometmyoglobin complexes of the wild-type protein and the His-64-->Thr variant have been determined to 2.0 and 1.8 A respectively. Azide binds to wild-type metmyoglobin in a bent configuration with an Fe-N-1-N-3 angle of 119 degrees and is oriented into the distal crevice in the direction of Ile-107. The proximity of the His-64 NE2 atom to the N-1 atom of the bound azide indicates stabilization of the ligand by the His-64 side chain through hydrogen bonding. In addition, structural characterization of wild-type horse heart azidometmyoglobin establishes that the only structural change induced by ligand binding is a small movement of the Leu-29 side chain away from the azide ligand. EPR and Fourier transform infrared spectroscopy were used to characterize the myoglobin azide complexes further. EPR spectroscopy revealed that, in contrast with wild-type azidometmyoglobin, two slightly different low-spin species are formed by azide bound to the His-64-->Thr variant both in solution and in a polycrystalline sample. One of these low-spin species has a greater relative intensity, with g values very similar to those of the azide complex of the wild-type protein. These EPR results together with structural information on this variant indicate the presence of two distinct conformations of bound azide, with one form predominating. The major conformation is comparable to that formed by wild-type myoglobin in which azide is oriented into the distal crevice. In the minor conformation the azide is oriented towards the exterior of the protein.
Collapse
Affiliation(s)
- R Maurus
- Department of Biochemistry and Molecular Biology and the Protein Engineering Network of Centres of Excellence, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
13
|
Lloyd E, King BC, Hawkridge FM, Mauk AG. Electrostatic Modulation of Ligand Binding and Electrochemical Properties of Myoglobin: The Role of Charge Compensation. Inorg Chem 1998. [DOI: 10.1021/ic9710824] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emma Lloyd
- Protein Engineering Network of Centres of Excellence and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and Department of Chemistry, Virginia Commonwealth University, Box 2006, Richmond, Virginia 23284-2006
| | - Bertha C. King
- Protein Engineering Network of Centres of Excellence and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and Department of Chemistry, Virginia Commonwealth University, Box 2006, Richmond, Virginia 23284-2006
| | - Fred M. Hawkridge
- Protein Engineering Network of Centres of Excellence and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and Department of Chemistry, Virginia Commonwealth University, Box 2006, Richmond, Virginia 23284-2006
| | - A. Grant Mauk
- Protein Engineering Network of Centres of Excellence and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and Department of Chemistry, Virginia Commonwealth University, Box 2006, Richmond, Virginia 23284-2006
| |
Collapse
|
14
|
Nguyen BD, Zhao X, Vyas K, La Mar GN, Lile RA, Brucker EA, Phillips GN, Olson JS, Wittenberg JB. Solution and crystal structures of a sperm whale myoglobin triple mutant that mimics the sulfide-binding hemoglobin from Lucina pectinata. J Biol Chem 1998; 273:9517-26. [PMID: 9545280 DOI: 10.1074/jbc.273.16.9517] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bivalve mollusc Lucina pectinata harbors sulfide-oxidizing chemoautotrophic bacteria and expresses a monomeric hemoglobin I, HbI, with normal O2, but extraordinarily high sulfide affinity. The crystal structure of aquomet Lucina HbI has revealed an active site with three residues not commonly found in vertebrate globins: Phe(B10), Gln(E7), and Phe(E11) (Rizzi, M., Wittenberg, J. B., Coda, A., Fasano, M., Ascenzi, P., and Bolognesi, M. (1994) J. Mol. Biol. 244, 86-89). Engineering these three residues into sperm whale myoglobin results in a triple mutant with approximately 700-fold higher sulfide affinity than for wild-type. The single crystal x-ray structure of the aquomet derivative of the myoglobin triple mutant and the solution 1H NMR active site structures of the cyanomet derivatives of both the myoglobin mutant and Lucina HbI have been determined to examine further the structural origin of their unusually high sulfide affinities. The major differences in the distal pocket is that in the aquomet form the carbonyl of Gln64(E7) serves as a H-bond acceptor, whereas in the cyanomet form the amido group acts as H-bond donor to the bound ligand. Phe68(E11) is rotated approximately 90 degrees about chi2 and located approximately 1-2 A closer to the iron atom in the myoglobin triple mutant relative to its conformation in Lucina HbI. The change in orientation potentially eliminates the stabilizing interaction with sulfide and, together with the decrease in size of the distal pocket, accounts for the 7-fold lower sulfide affinity of the myoglobin mutant compared with that of Lucina HbI.
Collapse
Affiliation(s)
- B D Nguyen
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang W, Cutruzzolá F, Allocatelli CT, Brunori M, La Mar GN. A myoglobin mutant designed to mimic the oxygen-avid Ascaris suum hemoglobin: elucidation of the distal hydrogen bonding network by solution NMR. Biophys J 1997; 73:1019-30. [PMID: 9251819 PMCID: PMC1180999 DOI: 10.1016/s0006-3495(97)78135-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The solution 1H NMR structure of the active site and ligand dissociation rate for the cyanomet complex have been determined for a sperm whale myoglobin triple mutant Leu29(B10)-->Tyr, His64(E7)-->Gln, Thr67(E10)-->Arg that mimics the distal residue configuration of the oxygen-avid hemoglobin from Ascaris suum. A double mutant that retains Leu29(B10) was similarly investigated. Two-dimensional NMR analysis of the iron-induced dipolar shifts, together with the conserved proximal side structure for the two mutants, allowed the determination of the orientations of the paramagnetic susceptibility tensor for each complex. The resulting magnetic axes, together with paramagnetic relaxation and steady-state NOEs, led to a quantitative description of the distal residue orientations. The distal Tyr29(B10) in the triple mutant provides a strong hydrogen bond to the bound cyanide comparable to that provided by His64(E7) in wild-type myoglobin. The distal Gln64(E7) in the triple mutant is sufficiently close to the bound cyanide to severe as a hydrogen bond donor, but the angle is not consistent with a strong hydrogen bond. Dipolar contacts between the Arg67(E10) guanidinium group and the Gln64(E7) side chain in both mutants support a hydrogen-bond to the Gln64(E7) carbonyl group. The much lower oxygen affinity of this triple mutant relative to that of Ascaris hemoglobin is concluded to arise from side-chain orientations that do not allow hydrogen bonds between the Gln64(E7) side-chain NHs and both the ligand and Tyr29(B10) hydroxyl oxygen. Cyanide dissociation rates for the reduced cyanide complexes are virtually unaffected by the mutations and are consistent with a model of the rate-determining step as the intrinsically slow Fe-C bond breaking that is largely independent of any hydrogen bonds to the cyanide nitrogen.
Collapse
Affiliation(s)
- W Zhang
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
16
|
Cutruzzolà F, Travaglini Allocatelli C, Brancaccio A, Brunori M. Aplysia limacina myoglobin cDNA cloning: an alternative mechanism of oxygen stabilization as studied by active-site mutagenesis. Biochem J 1996; 314 ( Pt 1):83-90. [PMID: 8660313 PMCID: PMC1217055 DOI: 10.1042/bj3140083] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The isolation and cloning of the cDNA coding for myoglobin (Mb) from the mollusc Aplysia limacina is reported here. Five amino acid differences from the previously published protein sequence have been found in positions 22, 26, 27, 77 and 80 by back transplanting the cDNA; some of these may be relevant for overall structure stabilization in this Mb. High-level expression of the holoprotein in Escherichia coli has been achieved in the presence of the haem precursor delta-aminolevulinic acid, underlying the importance of tuning haem and apoprotein biosynthesis to achieve high-level expression of haemproteins in bacteria. The recombinant protein is identical to the protein purified from the mollusc buccal muscle. Native A. limacina Mb has an oxygen dissociation rate constant of 70 s(-1) [as compared with the value of 15 s(-1) for sperm whale Mb, which displays His(E7) and Thr(E10)] (amino acid positions are referred to within the eight helices A-H of the globin fold). In order to understand the mechanism of oxygen stabilization in A. limacina Mb, we have prepared and investigated three active-site mutants: two single mutants in which Val(E7) and Arg(E10) have been replaced by His and Thr, respectively, and a double mutant carrying both mutations. When Arg(E10) is substituted with Thr, the oxygen dissociation rate constant is increased from 70 s(-1) to more than 700 s(-1), in complete agreement with the previously proposed role of the former residue in ligand stabilization. In the His(E7)-containing single and double mutants, both displaying high oxygen dissociation rates, the stabilization of bound oxygen by the distal His is insufficient to slow down the ligand dissociation rate constant to the value of sperm whale Mb. These results essentially prove the hypothesis that in A. limacina Mb a mechanism of oxygen stabilization involving Arg(E10), and thus different from that mediated by His(E7), has evolved.
Collapse
Affiliation(s)
- F Cutruzzolà
- Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma 'La Sapienza', Italia
| | | | | | | |
Collapse
|
17
|
Leci E, Brancaccio A, Cutruzzolà F, Allocatelli CT, Tarricone C, Bolognesi M, Desideri A, Ascenzi P. Formate binding to ferric wild type and mutant myoglobins thermodynamic and X-ray crystallographic study. FEBS Lett 1995; 357:227-9. [PMID: 7835416 DOI: 10.1016/0014-5793(94)01324-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The X-ray crystal structure of the formate derivative of ferric loggerhead sea turtle (Caretta caretta) Mb has been determined at 2.0 A resolution (R = 0.164) by difference Fourier techniques. Formate, sitting in the central part of the heme distal site, is coordinated to the heme iron as unidentate ligand, through the O1 oxygen atom, and is hydrogen bonded to the distal His64(E7) NE2 atom through O2. Thermodynamics for formate binding to ferric loggerhead sea turtle Mb, sperm whale Mb, Aplysia limacina Mb, as well as to the VR and VRS mutants of sperm whale Mb were obtained between pH 4.5 and 8.5, at 20.0 degrees C. These results, representing the first structure of a ferric hemoprotein:formate complex solved by X-ray crystallography, outline the role of amino acid residues at positions E7, F8 and E10 in modulating ligand binding properties of oxygen carrying proteins.
Collapse
Affiliation(s)
- E Leci
- Department of Biochemical Sciences Alessandro Rossi Fanelli, University of Rome, La Sapienza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Travaglini Allocatelli C, Cutruzzolà F, Brancaccio A, Vallone B, Brunori M. Engineering Ascaris hemoglobin oxygen affinity in sperm whale myoglobin: role of tyrosine B10. FEBS Lett 1994; 352:63-6. [PMID: 7925944 DOI: 10.1016/0014-5793(94)00918-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The contribution to oxygen stabilization of a tyrosine residue in topological position (B10) has been studied in sperm whale myoglobin by simultaneous replacement of residues at positions (B10), (E7) and (E10) as suggested by analysis of the sequence of high oxygen affinity hemoglobins, such as that of the nematode Ascaris suum. Kinetic and equilibrium experiments with the gaseous ligands oxygen and carbon monoxide show that indeed the introduction of tyrosine (B10), together with replacement of the distal histidine (E7) with glutamine, is associated with a large decrease in the oxygen dissociation rate constant. Our results are consistent with the possible formation in the distal pocket of two hydrogen bonds with the iron-bound oxygen.
Collapse
|
19
|
Bogumil R, Hunter CL, Maurus R, Tang HL, Lee H, Lloyd E, Brayer GD, Smith M, Mauk AG. FTIR analysis of the interaction of azide with horse heart myoglobin variants. Biochemistry 1994; 33:7600-8. [PMID: 8011626 DOI: 10.1021/bi00190a013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interaction of azide with variants of horse heart myoglobin (Mb) has been characterized by Fourier transform infrared (FTIR), electron paramagnetic resonance (EPR), and UV-VIS absorption spectroscopy and by molecular modeling calculations. Distal histidine variants (His64Thr, His64Ile, His64Lys) and charged surface variants (Val67Arg, Lys45Glu, Lys45Glu/Lys63Glu) were included in this study. All variants, with the exception of Val67Arg, have a lower azide affinity than the wild-type protein. Analysis of the temperature dependence of the FTIR spectra (277-313 K) revealed that the wild-type protein and all variants exhibit a high-spin/low-spin equilibrium. Introduction of positively charged amino acid residues shifts nu max for the low-spin form to higher energy while negatively charged residues shifted this maximum to lower energy. The low azide binding affinity exhibited by the His64Thr and His64Ile variants is accompanied by a shift of the nu max for the low-spin infrared band to lower energy and by a significant increase in the corresponding half-bandwidths. This observation indicates greater mobility of the bound azide ligand in these variants. The His64Lys variant exhibits two infrared bands attributable to low-spin forms that are assigned to two different conformations of the lysyl residue. In one conformation, the lysine is proposed to form a hydrogen bond with the bound azide similar to that proposed to occur between the distal histidine and bound azide, and in the other conformation no interaction occurs.
Collapse
Affiliation(s)
- R Bogumil
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brancaccio A, Cutruzzolá F, Allocatelli C, Brunori M, Smerdon S, Wilkinson A, Dou Y, Keenan D, Ikeda-Saito M, Brantley R. Structural factors governing azide and cyanide binding to mammalian metmyoglobins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36724-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Antonini G, Bellelli A, Concetti A, Falcioni G, Brunori M. Cyanide dissociation from the hemoglobin of Parascaris equorum. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1205:252-7. [PMID: 8155705 DOI: 10.1016/0167-4838(94)90241-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The reduction of cyanomethemoglobin by dithionite leads to the appearance of an intermediate, the complex of cyanide with ferrous hemoglobin, whose dissociation is easily followed in a stopped flow apparatus. This reaction was studied in the hemoglobin from the parasitic nematode Parascaris equorum, whose extremely high oxygen affinity is due to a very low dissociation rate. The rate of cyanide dissociation from ferrous Parascaris hemoglobin is not so dramatically different from that of other hemoglobins and myoglobins. Other features of the reaction are: (i) the rate constant of cyanide release is pH independent, an observation which is agreement with the possible absence of the distal histidine, given the mechanism suggested in a previous study (Bellelli, A., Antonini, G., Brunori, M, Springer, B.A. and Sligar, S.G. (1990) J. Biol. Chem. 265, 18898-18901), and (ii) the time-course shows no kinetic cooperativity. The structural basis of the extremely high oxygen affinity of Parascaris hemoglobin cannot be explained on the basis of the results here reported. This study also confirms that, even though cyanide binding to ferrous hemoglobins is controlled by distal interactions, the functional behaviour of this ligand is characteristic and differs from the behaviour of oxygen.
Collapse
Affiliation(s)
- G Antonini
- Department of Biochemical Sciences, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
22
|
1H NMR study of the solution molecular and electronic structure of engineered distal myoglobin His64(E7) Val/Val68(E11) His double mutant. Coordination of His64(E11) at the sixth position in both low-spin and high-spin states. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42224-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
|
24
|
Qin J, Pande U, La Mar G, Ascoli F, Ascenzi P, Cutruzzolá F, Travaglini-Allocatelli C, Brunori M. 1H NMR study of the dynamics of the pH modulation of axial coordination in Aplysia limacina (Val(E7)) and sperm whale double mutant His(E7)–>Val,Thr(E10)–>Arg metmyoglobin. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80486-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Qin J, La Mar GN, Cutruzzolá F, Allocatelli CT, Brancaccio A, Brunori M. Solution 1H nuclear magnetic resonance determination of the distal pocket structure of cyanomet complexes of genetically engineered sperm whale myoglobin His64 (E7)-->Val, Thr67 (E10)-->Arg. The role of distal hydrogen bonding by Arg67 (E10) in modulating ligand tilt. Biophys J 1993; 65:2178-90. [PMID: 8298042 PMCID: PMC1225950 DOI: 10.1016/s0006-3495(93)81270-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sequence-specific 2D methodology has been used to assign the 1H NMR signals for all active site residues in the paramagnetic cyano-met complexes of sperm whale synthetic double mutant His64[E7]-->Val/Thr67[E10]-->Arg (VR-met-MbCN) and triple mutant His64[E7]-->Val/Thr67[E10]-->Arg/Arg45[CD3]-->Asn (VRN-metMbCN). The resulting dipolar shifts for noncoordinated proximal side residues were used to quantitatively determine the orientation of the paramagnetic susceptibility tensor in the molecular framework for the two mutants, which were found indistinguishable but distinct from those of both wild-type and the His64[E7]-->Val single point mutant (V-metMbCN). The observed dipolar shifts for the E helix backbone protons and Phe43[CD1], together with steady-state nuclear Overhauser effect between the E helix and the heme, were analyzed to show that both the E helix and Phe43[CD1] move slightly closer to the iron to minimize the vacancy resulting from the His64[E7]-->Val substitution, as found in V-metMbCN (Rajarathnam, K., J. Qin, G.N. LaMar, M. L. Chiu, and S. G. Sligar. 1993. Biochemistry. 32:5670-5680). The dipolar shifts of the mutated Val64[E7] and Arg67[E10] allow the determination of their orientations relative to the heme, and the latter residue is shown to insert into the pocket and provide a hydrogen bond to the coordinated ligand, as found in the naturally occurring ValE7/ArgE10 genetic variant, Aplysia limacina Mb. The oxy-complex of both A. limacina Mb and VR-Mb, VRN-Mb have been proposed to be stabilized by this hydrogen bonding interaction (Travaglini Allocatelli, C. et al. 1993. Biochemistry. 32:6041-6049). The magnitude of the tilt of the major magnetic axes from the heme normal in VR-metMbCN and VRN-metMbCN, which is related to the tilt of the ligand, is the same as in wild-type or V-metMbCN, but the direction of tilt is altered from that in V-metMbCN. It is concluded that the change in the direction of the ligand tilt in both the double and triple mutants, as compared to WT metMbCN and V-metMbCN single mutant, is due to the attractive hydrogen-bonding between ArgE10 and the bound cyanide.
Collapse
Affiliation(s)
- J Qin
- Department of Chemistry, University of California, Davis 95616
| | | | | | | | | | | |
Collapse
|