1
|
Manchekar M, Kapil R, Sun Z, Segrest JP, Dashti N. Relationship between Amphipathic β Structures in the β 1 Domain of Apolipoprotein B and the Properties of the Secreted Lipoprotein Particles in McA-RH7777 Cells. Biochemistry 2017; 56:4084-4094. [PMID: 28702990 DOI: 10.1021/acs.biochem.6b01174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous studies demonstrated that the first 1000 amino acid residues (the βα1 domain) of human apolipoprotein (apo) B-100, termed apoB:1000, are required for the initiation of lipoprotein assembly and the formation of a monodisperse stable phospholipid (PL)-rich particle. The objectives of this study were (a) to assess the effects on the properties of apoB truncates undergoing sequential inclusion of the amphipathic β strands in the 700 N-terminal residues of the β1 domain of apoB-100 and (b) to identify the subdomain in the β1 domain that is required for the formation of a microsomal triglyceride transfer protein (MTP)-dependent triacylglycerol (TAG)-rich apoB-containing particle. Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. (1) The presence of amphipathic β strands in the 200 N-terminal residues of the β1 domain resulted in the secretion of apoB truncates (apoB:1050 to apoB:1200) as both lipidated and lipid-poor particles. (2) Inclusion of residues 300-700 of the β1 domain led to the secretion of apoB:1300, apoB:1400, apoB:1500, and apoB:1700 predominantly as lipidated particles. (3) Particles containing residues 1050-1500 were all rich in PL. (4) There was a marked increase in the lipid loading capacity and TAG content of apoB:1700-containing particles. (5) Only the level of secretion of apoB:1700 was markedly diminished by MTP inhibitor BMS-197636. These results suggest that apoB:1700 marks the threshold for the formation of a TAG-rich particle and support the concept that MTP participates in apoB assembly and secretion at the stage where particles undergo a transition from PL-rich to TAG-rich.
Collapse
Affiliation(s)
| | | | | | - Jere P Segrest
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
2
|
Mitsche MA, Packer LE, Brown JW, Jiang ZG, Small DM, McKnight CJ. Surface tensiometry of apolipoprotein B domains at lipid interfaces suggests a new model for the initial steps in triglyceride-rich lipoprotein assembly. J Biol Chem 2014; 289:9000-12. [PMID: 24515109 DOI: 10.1074/jbc.m113.540955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein B (apoB) is the principal protein component of triacylglyceride (TAG)-rich lipoproteins, including chylomicrons and very low density lipoprotein, which is the precursor to LDL (the "bad cholesterol"). TAG-rich lipoprotein assembly is initiated by the N-terminal βα1 superdomain of apoB, which co-translationally binds and remodels the luminal leaflet of the rough endoplasmic reticulum. The βα1 superdomain contains four domains and is predicted to interact directly with lipids. Using drop tensiometry, we examined the interfacial properties of the α-helical and C-sheet domains and several subdomains to establish a detailed structure-function relationship at the lipid/water interface. The adsorption, stress response, exchangeability, and pressure (Π)-area relationship were studied at both triolein/water and triolein/1-palmitoyl, 2-oleoylphosphatidylcholine/water interfaces that mimic physiological environments. The α-helical domain spontaneously adsorbed to a triolein/water interface and formed a viscoelastic surface. It was anchored to the surface by helix 6, and the other helices were ejected and/or remodeled on the surface as a function of surface pressure. The C-sheet instead formed an elastic film on a triolein/water interface and was irreversibly anchored to the lipid surface, which is consistent with the behavior of amphipathic β-strands. When both domains were adsorbed together on the surface, the C-sheet shielded a portion of the α-helical domain from the surface, which retained its globular structure. Overall, the unique secondary and tertiary structures of the N-terminal domains of apoB support the intrinsic capability of co-translational lipid recruitment. The evidence presented here allows the construction of a detailed model of the initiation of TAG-rich lipoprotein assembly.
Collapse
Affiliation(s)
- Matthew A Mitsche
- From the Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | | | | | |
Collapse
|
3
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
Wang L, Jiang ZG, McKnight CJ, Small DM. Interfacial properties of apolipoprotein B292-593 (B6.4-13) and B611-782 (B13-17). Insights into the structure of the lipovitellin homology region in apolipoprotein B. Biochemistry 2010; 49:3898-907. [PMID: 20353182 DOI: 10.1021/bi100056v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-terminal sequence of apolipoprotein B (apoB) is critical in triacylglycerol-rich lipoprotein assembly. The first 17% of apoB (B17) is thought to consist of three domains: B5.9, a beta-barrel, B6.4-13, a series of 17 alpha-helices, and B13-17, a putative beta-sheet. B5.9 does not bind to lipid, while B6.4-13 and B13-17 contain hydrophobic interfaces that can interact with lipids. To understand how B6.4-13 and B13-17 might interact with triacylglycerol during lipoprotein assembly, the interfacial properties of both peptides were studied at the triolein/water interface. Both B6.4-13 and B13-17 are surface active. Once bound, the peptides can be neither exchanged nor pushed off the interface. Some residues of the peptides can be ejected from the interface upon compression but readsorb on expansion. B13-17 binds to the interface more strongly. The maximum pressure the peptide can withstand without being partially ejected (Pi(max)) is 19.2 mN/m for B13-17 compared to 16.7 mN/m for B6.4-13. B13-17 is purely elastic at the interface, while B6.4-13 forms a viscous-elastic film. When they are spread at an air/water interface, the limiting area and the collapse pressures are 16.6 A(2)/amino acid and 31 mN/m for B6.4-13 and 17.8 A(2)/amino acid and 35 mN/m for B13-17, respectively. The alpha-helical B6.4-13 contains some hydrophobic helices that stay bound and prevent the peptide from leaving the surface. The beta-sheets of B13-17 bind irreversibly to the surface. We suggest that during lipoprotein assembly, the N-terminal apoB starts recruiting lipid as early as B6.4, but additional sequences are essential for formation of a lipid pocket that can stabilize lipoprotein emulsion particles for secretion.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
5
|
Rutledge AC, Su Q, Adeli K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assemblyThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:251-67. [DOI: 10.1139/o09-168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein B100 (apoB) is a large amphipathic lipid-binding protein that is synthesized by hepatocytes and used to assemble and stabilize very low density lipoproteins (VLDL). It may have been derived through evolution from other lipid-associating proteins such as microsomal triglyceride transfer protein or vitellogenin. The correct folding of apoB requires assistance from chaperone proteins in co-translational lipidation, disulfide bond formation, and glycosylation. Any impairment in these processes results in co-translational targeting of the misfolded apoB molecule for proteasomal degradation. In fact, most of the regulation of apoB production is mediated by intracellular degradation. ApoB that misfolds post-translationally, perhaps as a result of oxidative stress, may be eliminated through autophagy. This review focuses on the proposed pentapartite domain structure of apoB, the role that each domain plays in the binding of lipid species and regulation of apoB synthesis, and the process of VLDL assembly. The factors involved in the recognition, ubiquitination, and proteasomal delivery of defective apoB molecules are also discussed.
Collapse
Affiliation(s)
- Angela C. Rutledge
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiaozhu Su
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Khosrow Adeli
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Liu Y, Manchekar M, Sun Z, Richardson PE, Dashti N. Apolipoprotein B-containing lipoprotein assembly in microsomal triglyceride transfer protein-deficient McA-RH7777 cells. J Lipid Res 2010; 51:2253-64. [PMID: 20181985 DOI: 10.1194/jlr.m005371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein (apo) B-containing lipoproteins. Previously, we demonstrated that the N-terminal 1,000 residues of apoB (apoB:1000) are necessary for the initiation of apoB-containing lipoprotein assembly in rat hepatoma McA-RH7777 cells and that these particles are phospholipid (PL) rich. To determine if the PL transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB:1000-containing lipoproteins, we employed microRNA-based short hairpin RNAs (miR-shRNAs) to silence Mttp gene expression in parental and apoB:1000-expressing McA-RH7777 cells. This approach led to 98% reduction in MTP protein levels in both cell types. Metabolic labeling studies demonstrated a drastic 90-95% decrease in the secretion of rat endogenous apoB100-containing lipoproteins in MTP-deficient McA-RH7777 cells compared with cells transfected with negative control miR-shRNA. A similar reduction was observed in the secretion of rat endogenous apoB48 under the experimental conditions employed. In contrast, MTP absence had no significant effect on the synthesis, lipidation, and secretion of human apoB:1000-containing particles. These results provide strong evidence in support of the concept that in McA-RH7777 cells, acquisition of PL by apoB:1000 and initiation of apoB-containing lipoprotein assembly, a process distinct from the conventional first-step assembly of HDL-sized apoB-containing particles, do not require MTP. This study indicates that, in hepatocytes, a factor(s) other than MTP mediates the formation of the PL-rich primordial apoB:1000-containing initiation complex.
Collapse
Affiliation(s)
- Yanwen Liu
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
7
|
Small DM, Wang L, Mitsche MA. The adsorption of biological peptides and proteins at the oil/water interface. A potentially important but largely unexplored field. J Lipid Res 2009; 50 Suppl:S329-34. [PMID: 19029067 PMCID: PMC3283257 DOI: 10.1194/jlr.r800083-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/21/2008] [Indexed: 11/20/2022] Open
Abstract
This review focuses on some new techniques to study the behavior of peptides and proteins bound to oil droplets. We will show how model peptides e.g., amphipathic alpha helices (AalphaH) and amphipathic beta strand (AbetaS) and some apolipoproteins adsorb to triacylglycerol (TAG) droplets and how they behave once adsorbed to the interface. While most of the studies described involve peptides and proteins at an oil/water interface, studies can also be carried out when the surface has been partially covered with phospholipids. This work is important because it examines biophysical changes that take place at lipid droplet interfaces and how this may relate to the metabolism of lipoproteins and lipid droplets.
Collapse
Affiliation(s)
- Donald M Small
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, W-302, Boston, MA 02118, USA.
| | | | | |
Collapse
|
8
|
Wang L, Martin DDO, Genter E, Wang J, McLeod RS, Small DM. Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable. J Lipid Res 2009; 50:1340-52. [PMID: 19251580 DOI: 10.1194/jlr.m900040-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein. During lipoprotein assembly, it recruits phospholipids and triacylglycerols (TAG) into TAG-rich lipoprotein particles. It remains bound to secreted lipoproteins during lipid metabolism in plasma. The beta1 region (residues 827-1880) of apoB has a high amphipathic beta strand (AbetaS) content and is proposed to be one region anchoring apoB to lipoproteins. The AbetaS-rich region between apoB37 and apoB41 (residues 1694-1880) was cloned, expressed, and purified. The interfacial properties were studied at the triolein/water (TO/W) and air/water (A/W) interfaces. ApoB[37-41] is surface-active and adsorbs to the TO/W interface. After adsorption the unbound apoB[37-41] was removed from the aqueous phase. Adsorbed apoB[37-41] did not desorb and could not be forced off by increasing the surface pressure up to 23 mN/m. ApoB[37-41] adsorbed on the TO/W interface was completely elastic when compressed and expanded by +/-13% of its area. On an A/W interface, the apoB[37-41] monolayer became solid when compressed to 4 mN/m pressure indicating extended beta-sheet formation. It could be reversibly compressed and expanded between low pressure and its collapse pressure (35 mN/m). Our studies confirm that the AbetaS structure of apoB[37-41] is a lipid-binding motif that can irreversibly anchor apoB to lipoproteins.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
| | | | | | | | | | | |
Collapse
|
9
|
Jiang ZG, Liu Y, Hussain MM, Atkinson D, McKnight CJ. Reconstituting initial events during the assembly of apolipoprotein B-containing lipoproteins in a cell-free system. J Mol Biol 2008; 383:1181-94. [PMID: 18804479 DOI: 10.1016/j.jmb.2008.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 12/12/2022]
Abstract
The synthesis of apolipoprotein B (apoB) dictates the formation of chylomicrons and very low-density lipoproteins, two major lipoprotein precursors in the human plasma. Despite its biological significance, the mechanism of the assembly of these apoB-containing lipoproteins remains elusive. An essential obstacle is the lack of systems that allow fine dissection of key components during assembly, including nascent apoB peptide, lipids in defined forms, chaperones, and microsomal triglyceride transfer protein (MTP). In this study, we used a prokaryotic cell-free expression system to reconstitute early events in the assembly of apoB-containing lipoprotein that involve the N-terminal domains of apoB. Our study shows that N-terminal domains larger than 20.5% of apoB (B20.5) have an intrinsic ability to remodel vesicular phospholipid bilayers into discrete protein-lipid complexes. The presence of appropriate lipid substrates during apoB translation plays a pivotal role for successful lipid recruitment, and similar lipid recruitment fails to occur if the lipids are added posttranslationally. Cotranslational presence of MTP can dramatically promote the folding of B6.4-20.5 and B6.4-22. Furthermore, apoB translated in the presence of MTP retains its phospholipid recruitment capability posttranslationally. Our data suggest that during the synthesis of apoB, the N-terminal domain has a short window for intrinsic phospholipid recruitment, the time frame of which is predetermined by the environment where apoB synthesis occurs. The presence of MTP prolongs this window of time by acting as a chaperone. The absence of either proper lipid substrate or MTP may result in the improper folding of apoB and, consequently, its degradation.
Collapse
Affiliation(s)
- Z Gordon Jiang
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
10
|
Manchekar M, Richardson PE, Sun Z, Liu Y, Segrest JP, Dashti N. Charged amino acid residues 997-1000 of human apolipoprotein B100 are critical for the initiation of lipoprotein assembly and the formation of a stable lipidated primordial particle in McA-RH7777 cells. J Biol Chem 2008; 283:29251-65. [PMID: 18725409 DOI: 10.1074/jbc.m804912200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We previously demonstrated that a portion, or perhaps all, of the residues between 931 and 1000 of apolipoprotein (apo) B100 are required for the initiation of apoB-containing particle assembly. Based on our structural model of the first 1000 residues of apoB (designated as apoB:1000), we hypothesized that this domain folds into a three-sided lipovitellin-like "lipid pocket" via a hairpin-bridge mechanism. We proposed that salt bridges are formed between four tandem charged residues 717-720 in the turn of the hairpin bridge and four tandem complementary residues 997-1000 located at the C-terminal end of the model. To identify the specific motif within residues 931 and 1000 that is critical for apoB particle assembly, apoB:956 and apoB:986 were produced. To test the hairpin-bridge hypothesis, the following mutations were made: 1) residues 997-1000 deletion (apoB:996), 2) residues 717-720 deletion (apoB:1000Delta717-720), and 3) substitution of charged residues 997-1000 with alanines (apoB:996 + 4Ala). Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. 1) ApoB:956 did not form stable particles and was secreted as large lipid-rich aggregates. 2) ApoB:986 formed both a lipidated particle that was denser than HDL(3) and large lipid-rich aggregates. 3) Compared with wild-type apoB:1000, apoB:1000Delta717-720 displayed the following: (i) significantly diminished capacity to form intact lipidated particles and (ii) increased propensity to form large lipid-rich aggregates. 4) In striking contrast to wild-type apoB:1000, (i) apoB:996 and apoB:996 + 4Ala were highly susceptible to intracellular degradation, (ii) only a small proportion of the secreted proteins formed stable HDL(3)-like lipoproteins, and (iii) a majority of the secreted proteins formed large lipid-rich aggregates. We conclude that the first 1000 amino acid residues of human apoB100 are required for the initiation of nascent apoB-containing lipoprotein assembly, and residues 717-720 and 997-1000 play key roles in this process, perhaps via a hairpin-bridge mechanism.
Collapse
Affiliation(s)
- Medha Manchekar
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
11
|
Dashti N, Manchekar M, Liu Y, Sun Z, Segrest JP. Microsomal triglyceride transfer protein activity is not required for the initiation of apolipoprotein B-containing lipoprotein assembly in McA-RH7777 cells. J Biol Chem 2007; 282:28597-28608. [PMID: 17690102 DOI: 10.1074/jbc.m700229200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.
Collapse
Affiliation(s)
- Nassrin Dashti
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294; Department of Cell Biology, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294.
| | - Medha Manchekar
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Yanwen Liu
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Zhihuan Sun
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Jere P Segrest
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
12
|
Jiang ZG, Gantz D, Bullitt E, McKnight CJ. Defining lipid-interacting domains in the N-terminal region of apolipoprotein B. Biochemistry 2006; 45:11799-808. [PMID: 17002280 PMCID: PMC2519233 DOI: 10.1021/bi060600w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein that dictates the synthesis of chylomicrons and very low density lipoproteins. ApoB is the major protein in low density lipoprotein, also known as the "bad cholesterol" that is directly implicated in atherosclerosis. It has been suggested that the N-terminal domain of apoB plays a critical role in the formation of apoB-containing lipoproteins through the initial recruitment of phospholipids in the endoplasmic reticulum. However, very little is known about the mechanism of lipoprotein nucleation by apoB. Here we demonstrate that a strong phospholipid remodeling function is associated with the predicted alpha-helical and C-sheet domains in the N-terminal 17% of apoB (B17). Using dimyristoylphosphatidylcholine (DMPC) as a model lipid, these domains can convert multilamellar DMPC vesicles into discoidal-shaped particles. The nascent particles reconstituted from different apoB domains are distinctive and compositionally homogeneous. This phospholipid remodeling activity is also observed with egg phosphatidylcholine (egg PC) and is therefore not DMPC-dependent. Using kinetic analysis of the DMPC clearance assay, we show that the identified phospholipid binding sequences all map to the surface of the lipid binding pocket in the B17 model based on the homologous protein, lipovitellin. Since both B17 and microsomal triglyceride transfer protein (MTP), a critical chaperone during lipoprotein assembly, are homologous with lipovitellin, the identification of these phospholipid remodeling sequences in B17 provides important insights into the potential mechanism that initiates the assembly of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Zhenghui Gordon Jiang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
13
|
Wang L, Walsh MT, Small DM. Apolipoprotein B is conformationally flexible but anchored at a triolein/water interface: a possible model for lipoprotein surfaces. Proc Natl Acad Sci U S A 2006; 103:6871-6. [PMID: 16636271 PMCID: PMC1458986 DOI: 10.1073/pnas.0602213103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein B (apoB) is one of a unique group of proteins that form and bind to fat droplets, stabilize the emulsified fat, and direct their metabolism. ApoB, secreted on lipoproteins (emulsions), remains bound during lipid metabolism yet exhibits conformational flexibility. It has amphipathic beta-strand (AbetaS)-rich domains and amphipathic alpha-helix (AalphaH)-rich domains. We showed that two consensus AbetaS peptides of apoB bound strongly to hydrophobic interfaces [triolein/water (TO/W) and dodecane/water], were elastic, and were not pushed off the interface when the surface was compressed. In contrast, an AalphaH peptide modeling helical parts of apoB was forced off the TO/W interface by compression and readsorbed when the interface was expanded. In this report, the surface behavior of apoB-100 was studied at the TO/W interface. Solubilized apoB lowered the interfacial tension of TO/W in a concentration-dependent fashion. At equilibrium tension, if the surface was compressed, part of apoB was pushed off but quickly readsorbed when the surface was expanded. Even when the surface area was compressed by approximately 55%, part of the apoB molecule remained bound. The maximum surface pressure that apoB could withstand without being partially ejected was 13 mN/m. ApoB showed high elasticity at the TO/W interface. Based on studies of the consensus AbetaS and AalphaH peptides, we suggest that AbetaSs anchor apoB and are its nonexchangeable motif, whereas its conformational flexibility arises from both the elastic nature of the AbetaS and the ability of AalphaH domains of the molecule to desorb and readsorb rapidly in response to surface pressure changes.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Mary T. Walsh
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Donald M. Small
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
- To whom correspondence should be addressed at:
Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, W-302, Boston, MA 02118. E-mail:
| |
Collapse
|
14
|
Wang L, Small DM. Interfacial properties of amphipathic β strand consensus peptides of apolipoprotein B at oil/water interfaces. J Lipid Res 2004; 45:1704-15. [PMID: 15231853 DOI: 10.1194/jlr.m400106-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The region between residues 968 and 1882 of apolipoprotein B (apoB-21 to apoB-41) is rich in amphipathic beta strands (AbetaSs) and promotes the assembly of primordial triacylglyceride (TAG)-rich lipoproteins. To understand the importance of AbetaS in recruiting TAG, the interfacial properties of two AbetaS consensus peptides, P12 and P27, were studied at dodecane/water (DD/W) and triolein/water (TO/W) interfaces. P12 (acetyl-LSLSLNADLRLK-amide) and P27 (acetyl-LSLSLNADLRLKNGNLSLSLNADLRLK-amide), when added into the aqueous phase surrounding a suspended oil drop (dodecane or triolein), decreased the interfacial tension (gamma) in a concentration-dependent manner. At the DD/W interface, 1 x 10(-5) M P12 decreased gamma to approximately 20 mN/m and 6.6 x 10(-6) M P27 decreased gamma to approximately 13 mN/m. At the TO/W interface, 1.5 x 10(-5) M P12 decreased gamma to approximately 14 mN/m and 9.0 x 10(-6) M P27 decreased gamma to approximately 12 mN/m. The surface area of both peptides was between 11.2 and 15.1 angstroms2 per residue, consistent with beta sheets lying flat on DD/W and TO/W interfaces. P12 and P27 are almost purely elastic on DD/W, TO/W, and air/water interfaces. When P12 and P27 were compressed beyond the equilibrium gamma to as low as 4 mN/m, they could not be readily desorbed from either interface. These properties probably help in assembling nascent TAG-rich lipoproteins, and AbetaS may anchor apoB to beta lipoproteins.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | | |
Collapse
|
15
|
Manchekar M, Richardson PE, Forte TM, Datta G, Segrest JP, Dashti N. Apolipoprotein B-containing lipoprotein particle assembly: lipid capacity of the nascent lipoprotein particle. J Biol Chem 2004; 279:39757-66. [PMID: 15254032 DOI: 10.1074/jbc.m406302200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously proposed that the N-terminal 1000-residue betaalpha(1) domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin. In support of this "lipid pocket" hypothesis, we demonstrated that apoB:1000 (residues 1-1000) is secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with high density lipoprotein 3 (HDL(3)) density. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to lipovitellin, was secreted as a particle considerably more dense than HDL(3). In the present study we have determined the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. The secreted [(3)H]glycerol-labeled apoB:1000 particles, isolated by nondenaturing gradient gel electrophoresis, contained 50 phospholipid (PL) and 11 triacylglycerol (TAG) molecules/particle. In contrast, apoB:931 particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000 particles, isolated by immunoaffinity chromatography, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules/particle. The surface to core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by oleate supplementation. Although very small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000 particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which (i) the first 1000 amino acid residues of apoB are competent to complete the lipid pocket without a structural requirement for MTP; (ii) a portion, or perhaps all, of the amino acid residues between 931 and 1000 of apoB-100 are critical for the formation of a stable, bulk lipid-containing nascent lipoprotein particle, and (iii) the lipid pocket created by the first 1000 residues of apoB-100 is PL-rich, suggesting a small bilayer type organization and has a maximum capacity on the order of 50 molecules of phospholipid.
Collapse
Affiliation(s)
- Medha Manchekar
- Department of Medicine, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
16
|
Lapierre LR, Currie DL, Yao Z, Wang J, McLeod RS. Amino acid sequences within the β1 domain of human apolipoprotein B can mediate rapid intracellular degradation. J Lipid Res 2004; 45:366-77. [PMID: 14581578 DOI: 10.1194/jlr.m300104-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB)-48 contains a region termed the beta1 domain that is predicted to be composed of extensive amphipathic beta-strands. Analysis of truncated apoB variants revealed that sequences between the carboxyl termini of apoB-37 and apoB-42 governed the secretion efficiency and intracellular stability of apoB. Although apoB-37, apoB-34, and apoB-29 were stable and secreted efficiently, apoB-42 and apoB-100 were secreted poorly and were degraded by an acetyl-leucyl-leucyl-norleucinal (ALLN)-sensitive pathway. Amino acid sequence analysis suggested that a segment between the carboxyl termini of apoB-38 and apoB-42 was 63% homologous to fatty acid binding proteins (FABPs), which contain orthogonal beta-sheets. To test the hypothesis that sequences from the beta1 domain are involved in apoB degradation, fusion proteins were created that contained apoB-29 linked to fragments derived from the beta1 domain of apoB or to liver FABP. Fusion proteins containing the beta1 domain segments apoB-34-42 or apoB-37-42 were degraded rapidly, whereas other fusion proteins were stable and secreted efficiently. Degradation was ALLN-sensitive, and the apoB-34-42 segment increased the association of the apoB protein with the cytosolic surface of the microsomal membrane. Our data suggest that the presence of specific sequences in the beta1 domain of human apoB increases degradation by promoting the cytosolic exposure of the protein, although not all regions of the beta1 domain are functionally equivalent.
Collapse
Affiliation(s)
- Louis R Lapierre
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
17
|
Shelness GS, Hou L, Ledford AS, Parks JS, Weinberg RB. Identification of the lipoprotein initiating domain of apolipoprotein B. J Biol Chem 2003; 278:44702-7. [PMID: 12941937 DOI: 10.1074/jbc.m307562200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have explored the minimum sequence requirement for the initiation of apolipoprotein B (apoB)-mediated triglyceride-rich lipoprotein assembly. A series of apoB COOH-terminal truncation mutants, spanning a range from apoB34 (amino acid residues 1-1544 of apoB100) to apoB19 (residues 1-862) were transfected into COS cells with and without coexpression of the microsomal triglyceride transfer protein (MTP). ApoB34, -25, -23, -21, -20.5, and -20.1 underwent efficient conversion to buoyant lipoproteins when coexpressed with MTP. ApoB19.5 (amino acids 1-884) also directed MTP-dependent particle assembly, although at reduced efficiency. When apoB19.5 was truncated by another 22 amino acids to form apoB19, MTP-dependent lipoprotein assembly was abolished. Analysis of the lipid stoichiometry of secreted lipoproteins revealed that all apoB truncation mutants formed spherical particles containing a hydrophobic core. Even highly truncated assembly-competent forms of apoB, such as apoB19.5 and 20.1, formed lipoproteins with surface:core lipid ratios of <1. We conclude that the translation of the first approximately 884 amino acids of apoB completes a domain capable of initiating nascent lipoprotein assembly. The composition of lipids recruited into lipoproteins by this initiating domain is consistent with formation of small emulsion particles, perhaps by simultaneous desorption of both polar and neutral lipids from a saturated bilayer.
Collapse
Affiliation(s)
- Gregory S Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA.
| | | | | | | | | |
Collapse
|
18
|
Zhang J, Herscovitz H. Nascent lipidated apolipoprotein B is transported to the Golgi as an incompletely folded intermediate as probed by its association with network of endoplasmic reticulum molecular chaperones, GRP94, ERp72, BiP, calreticulin, and cyclophilin B. J Biol Chem 2003; 278:7459-68. [PMID: 12397072 DOI: 10.1074/jbc.m207976200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that endoplasmic reticulum (ER)-resident molecular chaperones interact with apolipoprotein B-100 (apoB) during its maturation. The initial stages of apoB folding occur while it is bound to the ER membrane, where it becomes partially lipidated to form a primordial intermediate. We determined whether this intermediate is dependent on the assistance of molecular chaperones for its subsequent folding steps. To that end, microsomes were prepared from HepG2 cells and luminal contents were subjected to KBr density gradient centrifugation. Immunoprecipitation of apoB followed by Western blotting showed that the luminal pool floated at a density of 1.12 g/ml and, like the membrane-bound pool, was associated with GRP94, ERp72, BiP, calreticulin, and cyclophilin B. Except for calreticulin, chaperone/apoB ratio in the lumen was severalfold higher than that in the membrane, suggesting a role for these chaperones both in facilitating the release of the primordial intermediate into the ER lumen and in providing stability. Subcellular fractionation on sucrose gradients showed that apoB in the Golgi was associated with the same array of chaperones as the pool of apoB recovered from heavy microsomes containing the ER, except that chaperone/apoB ratio was lower. KBr density gradient fractionation showed that the major pool of luminal apoB in the Golgi was recovered from 1.02 < d < 1.08 g/ml, whereas apoB in ER was recovered primarily from 1.08 < d < 1.2 g/ml. Both fractions were associated with the same spectrum of chaperones. Together with the finding that GRP94 was found associated with sialylated apoB, we conclude that correct folding of apoB is dependent on the assistance of molecular chaperone, which play multiple roles in its maturation throughout the secretory pathway including distal compartments such as the trans-Golgi network.
Collapse
Affiliation(s)
- Jianying Zhang
- Department of Physiology and Biophysics, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
19
|
Vukmirica J, Nishimaki-Mogami T, Tran K, Shan J, McLeod RS, Yuan J, Yao Z. The N-linked oligosaccharides at the amino terminus of human apoB are important for the assembly and secretion of VLDL. J Lipid Res 2002; 43:1496-507. [PMID: 12235182 DOI: 10.1194/jlr.m200077-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the role of N-linked glycosylation of apolipoprotein B (apoB) in the assembly and secretion of lipoproteins using transfected rat hepatoma McA-RH7777 cells expressing human apoB-17, apoB-37, and apoB-50, three apoB variants with different ability to recruit neutral lipids. Substituting Asn residue with Gln at the single glycosylation site within apoB-17 (N(158)) decreased its secretion efficiency to a level equivalent to that of wild-type apoB-17 treated with tunicamycin, but had little effect on its synthesis or intracellular distribution. When selective N-to-Q substitution was introduced at one or more of the five N-linked glycosylation sites within apoB-37 (N(158), N(956), N(1341), N(1350), and N(1496)), secretion efficiency of apoB-37 from transiently transfected cells was variably affected. When all five N-linked glycosylation sites were mutated within apoB-37, the secretion efficiency and association with lipoproteins were decreased by >50% as compared with wild-type apoB-37. Similarly, mutant apoB-50 with all of its N-linked glycosylation sites mutagenized showed decreased secretion efficiency and decreased lipoprotein association in both d < 1.02 and d > 1.02 g/ml fractions. The inability of mutant apoB-37 and apoB-50 to associate with very low-density lipoproteins was attributable to impaired assembly and was not due to the limitation of lipid availability. The decreased secretion of mutant apoB-17 and apoB-37 was not accompanied by accumulation within the cells, suggesting that the proportion of mutant apoB not secreted was rapidly degraded. However unlike apoB-17 or apoB-37, accumulation of mutant apoB-50 was observed within the endoplasmic reticulum and Golgi compartments. These data imply that the N-glycans at the amino terminus of apoB play an important role in the assembly and secretion of lipoproteins containing the carboxyl terminally truncated apoB.
Collapse
Affiliation(s)
- Jelena Vukmirica
- Lipoprotein and Atherosclerosis Group, Department of Pathology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada, K1Y 4W7
| | | | | | | | | | | | | |
Collapse
|
20
|
Cartwright IJ, Higgins JA. Direct evidence for a two-step assembly of ApoB48-containing lipoproteins in the lumen of the smooth endoplasmic reticulum of rabbit enterocytes. J Biol Chem 2001; 276:48048-57. [PMID: 11675380 DOI: 10.1074/jbc.m104229200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the types and characteristics of chylomicron precursors in the lumen of the secretory compartment of rabbit enterocytes. Luminal contents were separated into density subfractions in two continuous self-generating gradients of different density profiles. In enterocytes from rabbits fed a low fat diet, newly synthesized and immunodetectable apoB48 was only in the subfraction of density similar to high density lipoprotein (dense particles); the luminal triacylglycerol (TAG) content was low and only in the subfraction of density similar to that of chylomicrons/very low density lipoproteins (light particles). After feeding fat, newly synthesized, and immunodetectable apoB48 was in both dense (phospholipid-rich) and light (TAG-rich) particles. Luminal TAG mass and synthesis increased after fat feeding and was only in light particles. Pulse-chase experiments showed that the luminal-radiolabeled apoB48 lost from the dense particles was recovered in the light particles and the secreted chylomicrons. All of the light particle lipids (mass and newly synthesized) co-immunoprecipitated with apoB48. However, in the dense particles, there was a preferential co-precipitation of the preexisting rather than newly synthesized phospholipid. Assembly of apoB48-containing TAG-enriched lipoproteins is therefore a two-step process. The first step produces dense apoB48 phospholipid-rich particles, which accumulate in the smooth endoplasmic reticulum lumen. In the second step, these dense particles rapidly acquire the bulk of the TAG and additional phospholipid in a single and rapid step.
Collapse
Affiliation(s)
- I J Cartwright
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
21
|
Sellers JA, Shelness GS. Lipoprotein assembly capacity of the mammary tumor-derived cell line C127 is due to the expression of functional microsomal triglyceride transfer protein. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31516-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Segrest JP, Jones MK, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)30267-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Davis RA, Hui TY. 2000 George Lyman Duff Memorial Lecture: atherosclerosis is a liver disease of the heart. Arterioscler Thromb Vasc Biol 2001; 21:887-98. [PMID: 11397693 DOI: 10.1161/01.atv.21.6.887] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The production of apolipoprotein B (apoB)-containing lipoproteins by the liver is regulated by a complex series of processes involving apoB being cotranslationally translocated across the endoplasmic reticulum and assembled into a lipoprotein particle. The translocation of apoB across the endoplasmic reticulum is facilitated by the intraluminal chaperone, microsomal triglyceride transfer protein (MTP). MTP facilitates the translocation and folding of apoB, as well as the addition of lipid to lipid-binding domains (which consist of amphipathic beta sheets and alpha helices). In the absence of MTP or sufficient lipid, apoB exhibits translocation arrest. Thus, apoB translation, translocation, and assembly with lipids to form a core-containing lipoprotein particle occur as concerted processes. Abrogation of >/=1 of these processes diverts apoB into a degradation pathway that is dependent on conjugation with ubiquitin and proteolysis by the proteasome. The nascent core-containing lipoprotein particle that forms within the lumen of the endoplasmic reticulum can be "enlarged" to form a mature very low density lipoprotein particle. Additional studies show that the assembly and secretion of apoB-containing lipoproteins are linked to the cholesterol/bile acid synthetic pathway controlled by cholesterol 7alpha-hydroxylase. Studies in cultured cells and transgenic mice indicate that the expression of cholesterol 7alpha-hydroxylase indirectly regulates the expression of lipogenic enzymes through changes in the cellular content of mature sterol response element binding proteins. Oxysterols and bile acids may also act via the ligand-activated nuclear receptors LXR and FXR to link the metabolic pathways controlling energy balance and lipid metabolism to nutritional state.
Collapse
Affiliation(s)
- R A Davis
- Mammalian Cell and Molecular Biology Laboratory, San Diego State University, San Diego, CA 92182-4614, USA.
| | | |
Collapse
|
24
|
Abstract
The assembly of apolipoprotein B (apoB) into VLDL is broadly divided into two steps. The first involves transfer of lipid by the microsomal triglyceride transfer protein (MTP) to apoB during translation. The second involves fusion of apoB-containing precursor particles with triglyceride droplets to form mature VLDL. ApoB and MTP are homologs of the egg yolk storage protein, lipovitellin. Homodimerization surfaces in lipovitellin are reutilized in apoB and MTP to achieve apoB-MTP interactions necessary for first step assembly. Structural modeling predicts a small lipovitellin-like lipid binding cavity in MTP and a transient lipovitellin-like cavity in apoB important for nucleation of lipid sequestration. The formation of triglyceride droplets in the endoplasmic reticulum requires MTP however, their fusion with apoB may be MTP-independent. Second step assembly is modulated by phospholipase D and A2. Phospholipases may prime membrane transport steps required for second step fusion and/or channel phospholipids into a pathway for VLDL triglyceride production. The enzymology of VLDL triglyceride synthesis is still poorly understood; however, it appears that ACAT2 is the sole source of cholesterol esters for VLDL and chylomicron assembly. VLDL production is controlled primarily at the level of presecretory degradation. Recently, it was discovered that the LDL receptor modulates VLDL production through its interactions with nascent VLDL in the secretory pathway.
Collapse
Affiliation(s)
- G S Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | |
Collapse
|
25
|
Herscovitz H, Derksen A, Walsh MT, McKnight CJ, Gantz DL, Hadzopoulou-Cladaras M, Zannis V, Curry C, Small DM. The N-terminal 17% of apoB binds tightly and irreversibly to emulsions modeling nascent very low density lipoproteins. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32335-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|