1
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
2
|
Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2019; 72:524-532. [PMID: 31891241 DOI: 10.1002/iub.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.
Collapse
Affiliation(s)
- Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| |
Collapse
|
3
|
Thomsen SK, Raimondo A, Hastoy B, Sengupta S, Dai XQ, Bautista A, Censin J, Payne AJ, Umapathysivam MM, Spigelman AF, Barrett A, Groves CJ, Beer NL, Manning Fox JE, McCarthy MI, Clark A, Mahajan A, Rorsman P, MacDonald PE, Gloyn AL. Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 2018; 50:1122-1131. [PMID: 30054598 PMCID: PMC6237273 DOI: 10.1038/s41588-018-0173-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human β-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in β-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.
Collapse
Affiliation(s)
- Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Vertex Pharmaceuticals Europe Ltd, Milton Park, Abingdon, UK
| | - Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- National Health and Medical Research Council, Canberra, Australia
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Xiao-Qing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
4
|
Ohta T, Hashida Y, Higuchi Y, Yamashita F, Hashida M. In Vitro Cellular Gene Delivery Employing a Novel Composite Material of Single-Walled Carbon Nanotubes Associated With Designed Peptides With Pegylation. J Pharm Sci 2016; 106:792-802. [PMID: 27989368 DOI: 10.1016/j.xphs.2016.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) attract great interest in biomedical fields including application for drug delivery system. In this study, we developed a novel gene delivery system employing SWCNTs associated with polycationic and amphiphilic H-(-Lys-Trp-Lys-Gly-)7-OH [(KWKG)7] peptides having pegylation. SWCNTs wrapped with (KWKG)7 formed a complex with plasmid DNA (pDNA) in aqueous solution based on polyionic interaction but later underwent aggregation. On the other hand, a complex of pDNA and SWCNT-(KWKG)7 modified with polyethylene glycol (PEG) chains of 12 units [SWCNT-(KWKG)7-(PEG)12] afforded good dispersion stability for 24 h even in a cell culture medium. The in vitro cellular uptake of SWCNT-(KWKG)7-(PEG)12/pDNA complex prepared with fluorescence-labeled pDNA was evaluated with fluorescent microscopic observation and flow cytometry. The uptake by A549 human lung adenocarcinoma epithelial cells increased along with the extent of pegylation, suggesting the importance of dispersion stability in addition to the cationic charge which facilitates ionic cellular interaction. The expression of pDNA encoding the monomeric Kusabira-Orange 2 fluorescent protein in the form of the SWCNT-(KWKG)7-(PEG)12/pDNA complex demonstrated remarkable enhancement of transfection depending also on the extent of pegylation and the N/P ratio. The potential of the SWCNT composite wrapped with polycationic and amphiphilic (KWKG)7 with pegylation as a carrier for gene delivery was demonstrated.
Collapse
Affiliation(s)
- Takahisa Ohta
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiko Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Ohta T, Hashida Y, Yamashita F, Hashida M. Development of Novel Drug and Gene Delivery Carriers Composed of Single-Walled Carbon Nanotubes and Designed Peptides With PEGylation. J Pharm Sci 2016; 105:2815-2824. [DOI: 10.1016/j.xphs.2016.03.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/01/2016] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
|
6
|
Ohta T, Hashida Y, Yamashita F, Hashida M. Sustained Release of Mitomycin C from Its Conjugate with Single-Walled Carbon Nanotubes Associated by Pegylated Peptide. Biol Pharm Bull 2016; 39:1687-1693. [DOI: 10.1248/bpb.b16-00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takahisa Ohta
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
| | - Yasuhiko Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Mitsuru Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
7
|
Pasqua T, Corti A, Gentile S, Pochini L, Bianco M, Metz-Boutigue MH, Cerra MC, Tota B, Angelone T. Full-length human chromogranin-A cardioactivity: myocardial, coronary, and stimulus-induced processing evidence in normotensive and hypertensive male rat hearts. Endocrinology 2013; 154:3353-65. [PMID: 23751870 DOI: 10.1210/en.2012-2210] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plasma chromogranin-A (CgA) concentrations correlate with severe cardiovascular diseases, whereas CgA-derived vasostatin-I and catestatin elicit cardiosuppression via an antiadrenergic/nitric oxide-cGMP mediated mechanism. Whether these phenomena are related is unknown. We here investigated whether and to what extent full-length CgA directly influences heart performance and may be subjected to stimulus-elicited intracardiac processing. Using normotensive and hypertensive rats, we evaluated the following: 1) direct myocardial and coronary effects of full-length CgA; 2) the signal-transduction pathway involved in its action mechanism; and 3) CgA intracardiac processing after β-adrenergic [isoproterenol (Iso)]- and endothelin-1(ET-1)-dependent stimulation. The study was performed by using a Langendorff perfusion apparatus, Western blotting, affinity chromatography, and ELISA. We found that CgA (1-4 nM) dilated coronaries and induced negative inotropism and lusitropism, which disappeared at higher concentrations (10-16 nM). In spontaneously hypertensive rats (SHRs), negative inotropism and lusitropism were more potent than in young normotensive rats. We found that perfusion itself, Iso-, and endothelin-1 stimulation induced intracardiac CgA processing in low-molecular-weight fragments in young, Wistar Kyoto, and SHR rats. In young normotensive and adult hypertensive rats, CgA increased endothelial nitric oxide synthase phosphorylation and cGMP levels. Analysis of the perfusate from both Wistar rats and SHRs of untreated and treated (Iso) hearts revealed CgA absence. In conclusion, in normotensive and hypertensive rats, we evidenced the following: 1) full-length CgA directly affects myocardial and coronary function by AkT/nitric oxide synthase/nitric oxide/cGMP/protein kinase G pathway; and 2) the heart generates intracardiac CgA fragments in response to hemodynamic and excitatory challenges. For the first time at the cardiovascular level, our data provide a conceptual link between systemic and intracardiac actions of full-length CgA and its fragments, expanding the knowledge on the sympathochromaffin/CgA axis under normal and physiopathological conditions.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schneider F, Bach C, Chung H, Crippa L, Lavaux T, Bollaert PE, Wolff M, Corti A, Launoy A, Delabranche X, Lavigne T, Meyer N, Garnero P, Metz-Boutigue MH. Vasostatin-I, a chromogranin A-derived peptide, in non-selected critically ill patients: distribution, kinetics, and prognostic significance. Intensive Care Med 2012; 38:1514-22. [PMID: 22706917 DOI: 10.1007/s00134-012-2611-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 05/16/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE Chromogranin A (CGA) is released in the plasma during life-threatening illnesses. Its N-terminal 1-76 peptide, vasostatin-I (VS-I), has never been assessed in critically ill patients. Our aim was to examine whether the admission VS-I concentration has prognostic significance without having to specify a primary diagnosis. METHODS VS-I concentrations were assessed with a new ELISA in 481 consecutive patients and 13 healthy controls. CGA and standard biological tests (including lactate) were performed; the simplified acute physiological score II (SAPS II) was calculated. Mortality was assessed at day 28. In a subgroup of 13 patients with shock, serial VS-I doses were given over 60 h. RESULTS Critically ill patients had higher admission VS-I concentrations than controls [4.06 (2.78; 7.61) vs. 2.85 (2.47; 3.22) ng/ml, p < 0.001]. The plasma VS-I concentration was significantly lower in survivors than in non-survivors [3.70 (2.67; 6.12) vs. 5.75 (3.65; 11.20) ng/ml] and in the absence of shock [3.58 (2.59; 5.05) vs. 5.93 (3.30; 11.06) ng/ml, p < 0.001]. The survival rate was better in patients with VS-I concentrations under the median value of 3.97 ng/ml (p < 0.001). Admission VS-I and lactate values were independent predictors of mortality (p < 0.01). Moreover, taking them together, combined with age, provided a better indication for predicting mortality than taking each alone (p < 0.01). CONCLUSIONS Significant amounts of VS-I are detected on admission in critically ill patients. A plasma VS-I concentration above 3.97 ng/ml is associated with poor outcome, and in routine practice simultaneous measurements of the three independent factors VS-I, lactate and age can affect the assessment of severity.
Collapse
Affiliation(s)
- Francis Schneider
- Service de Réanimation Médicale, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg and INSERM U977, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Elias S, Delestre C, Courel M, Anouar Y, Montero-Hadjadje M. Chromogranin A as a crucial factor in the sorting of peptide hormones to secretory granules. Cell Mol Neurobiol 2010; 30:1189-95. [PMID: 21046450 DOI: 10.1007/s10571-010-9595-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 12/14/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored along with hormones and neuropeptides in secretory granules of endocrine cells. In the last four decades, intense efforts have been concentrated to characterize the structure and the biological function of CgA. Besides, CgA has been widely used as a diagnostic marker for tumors of endocrine origin, essential hypertension, various inflammatory diseases, and neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer's disease. CgA displays peculiar structural features, including numerous multibasic cleavage sites for prohormone convertases as well as a high proportion of acidic residues. Thus, it has been proposed that CgA represents a precursor of biologically active peptides, and a "granulogenic protein" that plays an important role as a chaperone for catecholamine storage in adrenal chromaffin cells. The widespread distribution of CgA throughout the neuroendocrine system prompted several groups to investigate the role of CgA in peptide hormone sorting to the regulated secretory pathway. This review summarizes the findings and theoretical concepts around the molecular machinery used by CgA to exert this putative intracellular function. Since CgA terminal regions exhibited strong sequence conservation through evolution, our work focused on the implication of these domains as potential functional determinants of CgA. Characterization of the molecular signals implicating CgA in the intracellular traffic of hormones represents a major biological issue that may contribute to unraveling the mechanisms defining the secretory competence of neuroendocrine cells.
Collapse
Affiliation(s)
- Salah Elias
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of Rouen, Mont-St-Aignan Cedex, France
| | | | | | | | | |
Collapse
|
10
|
Montero-Hadjadje M, Elias S, Chevalier L, Benard M, Tanguy Y, Turquier V, Galas L, Yon L, Malagon MM, Driouich A, Gasman S, Anouar Y. Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides. J Biol Chem 2009; 284:12420-31. [PMID: 19179339 DOI: 10.1074/jbc.m805607200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromogranin A (CgA) has been proposed to play a major role in the formation of dense-core secretory granules (DCGs) in neuroendocrine cells. Here, we took advantage of unique features of the frog CgA (fCgA) to assess the role of this granin and its potential functional determinants in hormone sorting during DCG biogenesis. Expression of fCgA in the constitutively secreting COS-7 cells induced the formation of mobile vesicular structures, which contained cotransfected peptide hormones. The fCgA and the hormones coexpressed in the newly formed vesicles could be released in a regulated manner. The N- and C-terminal regions of fCgA, which exhibit remarkable sequence conservation with their mammalian counterparts were found to be essential for the formation of the mobile DCG-like structures in COS-7 cells. Expression of fCgA in the corticotrope AtT20 cells increased pro-opiomelanocortin levels in DCGs, whereas the expression of N- and C-terminal deletion mutants provoked retention of the hormone in the Golgi area. Furthermore, fCgA, but not its truncated forms, promoted pro-opiomelanocortin sorting to the regulated secretory pathway. These data demonstrate that CgA has the intrinsic capacity to induce the formation of mobile secretory granules and to promote the sorting and release of peptide hormones. The conserved terminal peptides are instrumental for these activities of CgA.
Collapse
Affiliation(s)
- Maité Montero-Hadjadje
- Equipe Associée 4310 Neuronal and Neuroendocrine Differentiation and Communication, INSERM U413, European Institute for Peptide Research (IFRMP 23), France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ma GQ, Wang B, Wang HB, Wang Q, Bao L. Short elements with charged amino acids form clusters to sort protachykinin into large dense-core vesicles. Traffic 2008; 9:2165-79. [PMID: 18939957 DOI: 10.1111/j.1600-0854.2008.00836.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sorting of neuropeptide tachykinins into large dense-core vesicles (LDCVs) is a key step in their regulated secretion from neurons. However, the sorting mechanism for protachykinin has not yet to be clearly resolved. In this study, we report that the clustered short elements with charged amino acids regulate the efficiency of protachykinin sorting into LDCVs. A truncation experiment showed that the propeptide and the mature peptide-containing sequence of protachykinin were sorted into LDCVs. These two regions exhibit a polarized distribution of charged amino acids. The LDCV localization of the propeptide was gradually decreased with an increasing number of neutral amino acids. Furthermore, the short element with four to five amino acids containing two charged residues was found to be a basic unit for LDCV sorting that enables regulated secretion. In the native propeptide sequence, these charged short elements were clustered to enhance the intermolecular aggregation by electrostatic interaction and produce a gradual and additive effect on LDCV sorting. The optimal conditions for intermolecular aggregation of protachykinin were at millimolar Ca(2+) concentrations and pH 5.5-6.0. These results demonstrate that the charged short elements are clustered such that they serve as aggregative signals and regulate the efficiency of protachykinin sorting into LDCVs. These findings reveal a novel mechanism for the sorting of neuropeptides into a regulated secretory pathway.
Collapse
Affiliation(s)
- Guo-Qiang Ma
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
12
|
Courel M, Rodemer C, Nguyen ST, Pance A, Jackson AP, O'connor DT, Taupenot L. Secretory granule biogenesis in sympathoadrenal cells: identification of a granulogenic determinant in the secretory prohormone chromogranin A. J Biol Chem 2006; 281:38038-51. [PMID: 17032650 DOI: 10.1074/jbc.m604037200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromogranin A (CgA) may be critical for secretory granule biogenesis in sympathoadrenal cells. We found that silencing the expression of CgA reduced the number of secretory granules in normal sympathoadrenal cells (PC12), and we therefore questioned whether a discrete domain of CgA might promote the formation of a regulated secretory pathway in variant sympathoadrenal cells (A35C) devoid of such a phenotype. The secretory granule-forming activity of a series of human CgA domains labeled with a hemagglutinin epitope, green fluorescent protein, or embryonic alkaline phosphatase was assessed in A35C cells by deconvolution and electron microscopy and by secretagogue-stimulated release assays. Expression of CgA in A35C cells induced the formation of vesicular organelles throughout the cytoplasm, whereas two constitutive secretory pathway markers accumulated in the Golgi complex. The lysosome-associated membrane protein LGP110 did not co-localize with CgA, consistent with non-lysosomal targeting of the granin in A35C cells. Thus, CgA-expressing A35C cells showed electron-dense granules approximately 180-220 nm in diameter, and secretagogue-stimulated exocytosis of CgA from A35C cells suggested that expression of the granin may be sufficient to restore a regulated secretory pathway and thereby rescue the sorting of other secretory proteins. We show that the formation of vesicular structures destined for regulated exocytosis may be mediated by a determinant located within the CgA N-terminal region (CgA-(1-115), with a necessary contribution of CgA-(40-115)), but not the C-terminal region (CgA-(233-439)) of the protein. We propose that CgA promotes the biogenesis of secretory granules by a mechanism involving a granulogenic determinant located within CgA-(40-115) of the mature protein.
Collapse
Affiliation(s)
- Maïté Courel
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0838, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Rabie HR, Rong J, Glavinović MI. Monte Carlo simulation of release of vesicular content in neuroendocrine cells. BIOLOGICAL CYBERNETICS 2006; 94:483-99. [PMID: 16550439 DOI: 10.1007/s00422-006-0061-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 02/15/2006] [Indexed: 05/07/2023]
Abstract
The release of transmitter from the vesicle, its diffusion through the fusion pore, and the cleft and its interaction with the carbon electrode were simulated using the Monte Carlo method. According to the simulation the transmitter release is largely determined by geometric factors--the ratio of the fusion pore cross-sectional and vesicular areas, if the diffusion constant is as in the aqueous solution--but the speed of transmitter dissociation from the gel matrix plays an important role during the rise phase of release. Transmitter is not depleted near the entrance to the fusion pore and there is no cleft-to-vesicle feedback, but the depletion becomes evident if the diffusion constant is reduced, especially if the pore is wide. In general, the time course of amperometric currents closely resembles the time course of the simulated transmitter concentration in the cleft and the time course of release. Surprisingly, even a tenfold change of the electrode efficiency has only a marginal effect on the amplitude or the time course of amperometric currents. Greater electrode efficiency however lowers the cleft concentration, but only if the cleft is narrow. As the cleft widens the current amplitudes diminish and rise times lengthen, but the decay times are less affected. Moreover, the amplitude dependence of the rise and decay times becomes steeper as the cleft widens and/or as the release kinetics slows. Finally, lower diffusion constant of transmitter in the narrow cleft does not further prolong the amperometric currents, whose slow time course reflects slow release kinetics.
Collapse
Affiliation(s)
- H R Rabie
- Department of Applied Chemical Sciences, Ryerson Polytechnic University, Toronto, ON, Canada
| | | | | |
Collapse
|
14
|
Taupenot L, Harper KL, O'Connor DT. Role of H+-ATPase-mediated acidification in sorting and release of the regulated secretory protein chromogranin A: evidence for a vesiculogenic function. J Biol Chem 2004; 280:3885-97. [PMID: 15542860 DOI: 10.1074/jbc.m408197200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The constitutive and regulated secretory pathways represent the classical routes for secretion of proteins from neuroendocrine cells. Selective aggregation of secretory granule constituents in an acidic, bivalent cation-rich environment is considered to be a prerequisite for sorting to the regulated secretory pathway. The effect of selective vacuolar H+-ATPase (V-ATPase) inhibitor bafilomycin A1 on the pH gradient along the secretory pathway was used here to study the role of acidification on the trafficking of the regulated secretory protein chromogranin A (CgA) in PC12 cells. Sorting of CgA was assessed by three-dimensional deconvolution microscopy, subcellular fractionation, and secretagogue-stimulated release, examining a series of full-length or truncated domains of human CgA (CgA-(1-115), CgA-(233-439)) fused to either green fluorescent protein or to a novel form of secreted embryonic alkaline phosphatase (EAP). We show that a full-length CgA/EAP chimera is sorted to chromaffin granules for exocytosis. Inhibition of V-ATPase by bafilomycin A1 markedly reduced the secretagogue-stimulated release of CgA-EAP by perturbing sorting of the chimera (at the trans-Golgi network or immature secretory granule) rather than the late steps of exocytosis. The effect of bafilomycin A1 on CgA secretion depends on a sorting determinant located within the amino terminus (CgA-(1-115)) but not the C-terminal region of the granin. Moreover, examination of chromaffin granule abundance in PC12 cells exposed to bafilomycin A1 reveals a substantial decrease in the number of dense-core vesicles. We propose that a V-ATPase-mediated pH gradient in the secretory pathway is an important factor for the formation of dense-core granules by regulating the ability of CgA to form aggregates, a crucial step that may underlie the granulogenic function of the protein.
Collapse
Affiliation(s)
- Laurent Taupenot
- Department of Medicine and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
15
|
Taupenot L, Harper KL, Mahapatra NR, Parmer RJ, Mahata SK, O'Connor DT. Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A. J Cell Sci 2002; 115:4827-41. [PMID: 12432071 DOI: 10.1242/jcs.00140] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromogranin A (CgA) is the index member of the chromogranin/secretogranin (or 'granin') family of regulated secretory proteins that are ubiquitously distributed in amine- and peptide-containing secretory granules of endocrine, neuroendocrine and neuronal cells. Because of their abundance and such widespread occurrence, granins have often been used as prototype proteins to elucidate mechanisms of protein targeting into dense-core secretory granules. In this study, we used a series of full-length, point mutant or truncated CgA-green fluorescent protein (GFP) chimeras to explore routing of CgA in neuroendocrine PC12 cells. Using sucrose gradient fractionation and 3D deconvolution microscopy to determine the subcellular localization of the GFP chimeras, as well as secretagogue-stimulated release, the present study establishes that a CgA-GFP fusion protein expressed in neuroendocrine PC12 cells is trafficked to the dense core secretory granule and thereby sorted to the regulated pathway for exocytosis. We show that information necessary for such trafficking is contained within the N-terminal but not the C-terminal region of CgA. We find that CgA's conserved N-terminal hydrophobic Cys(17)-Cys(38) loop structure may not be sufficient for sorting of CgA into dense-core secretory granules, nor is its stabilization by a disulfide bond necessary for such sorting. Moreover, our data reveal for the first time that the CgA(77-115) domain of the mature protein may be necessary (though perhaps not sufficient) for trafficking CgA into the regulated pathway of secretion.
Collapse
Affiliation(s)
- Laurent Taupenot
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Colombo B, Longhi R, Marinzi C, Magni F, Cattaneo A, Yoo SH, Curnis F, Corti A. Cleavage of Chromogranin A N-terminal Domain by Plasmin Provides a New Mechanism for Regulating Cell Adhesion. J Biol Chem 2002; 277:45911-9. [PMID: 12297497 DOI: 10.1074/jbc.m202637200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been proposed that chromogranin A (CgA), a protein secreted by many normal and neoplastic neuroendocrine cells, can play a role as a positive or a negative modulator of cell adhesion. The mechanisms that regulate these extracellular functions of CgA are unknown. We show here that plasmin can regulate the anti/pro-adhesive activity of CgA by proteolytic cleavage of the N-terminal domain. Limited proteolytic processing decreased its anti-adhesive activity and induced pro-adhesive effects in fibronectin or serum-dependent fibroblast adhesion assays. Cleavage of Lys(77)-Lys(78) dibasic site in CgA(1-115) was relatively rapid and associated with an increase of pro-adhesive effect. In contrast, antibodies against the region 53-90 enhanced the anti-adhesive activity of CgA and CgA(1-115). Structure-activity relationship studies showed that the conserved region 47-64 (RILSILRHQNLLKELQDL) is critical for both pro- and anti-adhesive activity. These findings suggest that CgA might work on one hand as a negative modulator of cell adhesion and on the other hand as a precursor of positive modulators, the latter requiring proteolytic processing for activation. Given the importance of plasminogen activation in tissue invasion and remodeling, the interplay between CgA and plasmin could provide a novel mechanism for regulating fibroblast adhesion and function in neuroendocrine tumors.
Collapse
Affiliation(s)
- Barbara Colombo
- Department of Biological and Technological Research, San Raffaele H. Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang WJ, Russo SJ, Mulugeta S, Beers MF. Biosynthesis of surfactant protein C (SP-C). Sorting of SP-C proprotein involves homomeric association via a signal anchor domain. J Biol Chem 2002; 277:19929-37. [PMID: 11907042 DOI: 10.1074/jbc.m201537200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat surfactant protein C (SP-C) is synthesized as a 194-amino acid propeptide (SP-C-(1-194)) that is directed to the distal secretory pathway and proteolytically processed as an integral membrane protein to yield its mature form. We had shown previously that trafficking of proSP-C is mediated both by a signal anchor domain contained within the mature SP-C sequence and by a targeting domain in the NH(2)-flanking propeptide. Based on evidence from other integral membrane proteins, we hypothesized that proSP-C targeting is effected by oligomerization of proSP-C monomers. To evaluate this in vitro, cDNA constructs encoding for either wild type proSP-C (pcDNA3/SP-C-(1-194)) or heterologous fusion proteins containing green fluorescent protein (EGFP) linked to SP-C-(1-194) (EGFP/SP-C-(1-194)), to mutant proSP-C lacking the NH(2) targeting domain (EGFP/SP-C-(24-194)), or to mature SP-C alone (EGFP/SP-C-(24-58)) were produced. In transfected A549 cells, fluorescence microscopy revealed that pcDNA3/SP-C-(1-194) and EGFP/SP-C-(1-194) were each expressed in CD63 (+), EEA1 (-) cytoplasmic vesicles. Expression of EGFP/SP-C-(24-194) or EGFP/SP-C-(24-58) resulted in translocation but retention in early compartments. When co-transfected with pcDNA3/SP-C-(1-194), both EGFP/SP-C-(24-194) and EGFP/SP-C-(24-58) were directed to CD63 (+) vesicles that also contained SP-C-(1-194). In contrast, trafficking of a folding mutant that forms juxtanuclear aggregates, EGFP/SP-C(C122/186G), was not corrected by cotransfection with pcDNA3/SP-C-(1-194). Chemical cross-linking studies of transfected cell lysates with bismaleimidohexane produced multimeric forms of both EGFP/SP-C-(1-194) and EGFP/SP-C-(24-58). These results indicate that sorting involves oligomeric association of proSP-C monomers mediated by the mature SP-C domain. Heteromeric assembly allows wild type proSP-C to facilitate trafficking of SP-C mutants with intact transmembrane domains but lacking targeting signals. We speculate that heterotypic oligomerization of wild type with SP-C folding mutants produces a dominant negative thus contributing to the pathology of chronic lung disease associated with patients heterozygous for mutant SP-C alleles.
Collapse
Affiliation(s)
- Wen-Jing Wang
- Lung Epithelial Cell Biology Laboratories, Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
18
|
Glavinović MI. Mechanisms shaping fast excitatory postsynaptic currents in the central nervous system. Neural Comput 2002; 14:1-19. [PMID: 11747532 DOI: 10.1162/089976602753284437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
How different factors contribute to determine the time course of the basic element of fast glutamate-mediated excitatory postsynaptic currents (mEPSCs) in the central nervous system has been a focus of interest of neurobiologists for some years. In spite of intensive investigations, these mechanisms are not well understood. In this review, basic hypotheses are summarized, and a new hypothesis is proposed, which holds that desensitization of AMPA receptors plays a major role in shaping the time course of fast mEPSCs. According to the new hypothesis, desensitization shortens the time course of mEPSCs largely by reducing the buffering of glutamate molecules by AMPA receptors. The hypothesis accounts for numerous findings on fast mEPSCs and is expected to be equally fruitful as a framework for further experimental and theoretical investigations.
Collapse
Affiliation(s)
- Mladen I Glavinović
- Departments of Anaesthesia Research and Physiology, McGill University, Montreal PQ H3G 1Y6, Canada.
| |
Collapse
|
19
|
Gerdes HH, Glombik MM. Signal-mediated sorting of chromogranins to secretory granules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:41-54. [PMID: 11192600 DOI: 10.1007/0-306-46837-9_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- H H Gerdes
- Dept. of Neurobiology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
20
|
Helle KB. The chromogranins. Historical perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:3-20. [PMID: 11192591 DOI: 10.1007/0-306-46837-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K B Helle
- Department of Physiology, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
21
|
Cowley DJ, Moore YR, Darling DS, Joyce PB, Gorr SU. N- and C-terminal domains direct cell type-specific sorting of chromogranin A to secretory granules. J Biol Chem 2000; 275:7743-8. [PMID: 10713086 DOI: 10.1074/jbc.275.11.7743] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromogranins are a family of regulated secretory proteins that are stored in secretory granules in endocrine and neuroendocrine cells and released in response to extracellular stimulation (regulated secretion). A conserved N-terminal disulfide bond is necessary for sorting of chromogranins in neuroendocrine PC12 cells. Surprisingly, this disulfide bond is not necessary for sorting of chromogranins in endocrine GH4C1 cells. To investigate the sorting mechanism in GH4C1 cells, we made several mutant forms removing highly conserved N- and C-terminal regions of bovine chromogranin A. Removing the conserved N-terminal disulfide bond and the conserved C-terminal dimerization and tetramerization domain did not affect the sorting of chromogranin A to the regulated secretory pathway. In contrast, removing the C-terminal 90 amino acids of chromogranin A caused rerouting to the constitutive secretory pathway and impaired aggregation properties as compared with wild-type chromogranin A. Since this mutant was sorted to the regulated secretory pathway in PC12 cells, these results demonstrate that chromogranins contain independent N- and C-terminal sorting domains that function in a cell type-specific manner. Moreover, this is the first evidence that low pH/calcium-induced aggregation is necessary for sorting of a chromogranin to the regulated secretory pathway of endocrine cells.
Collapse
Affiliation(s)
- D J Cowley
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
22
|
Yoo SH, Lewis MS. Interaction between an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor and the near N-terminal peptide of chromogranin A. FEBS Lett 1998; 427:55-8. [PMID: 9613599 DOI: 10.1016/s0014-5793(98)00393-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The near N-terminal region of chromogranin A (CGA) has been shown to be the secretory vesicle membrane binding region, and tetrameric chromogranin A has been demonstrated to bind four molecules of an intraluminal loop peptide of the inositol 1,4,5-trisphosphate (IP3) receptor. It was therefore necessary to determine whether the conserved near N-terminal region of CGA interacts with the intraluminal loop region of the IP3 receptor. In the present study, we found that the proposed anchor region of CGA, the conserved near N-terminal region, does indeed interact with the intraluminal loop region of the IP3 receptor at the intravesicular pH of 5.5, further strengthening the case for the potential interaction between tetrameric chromogranins and tetrameric IP3 receptors in the cell.
Collapse
Affiliation(s)
- S H Yoo
- Secretory Granule Research Group, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejon, South Korea.
| | | |
Collapse
|
23
|
Mullen CA, Jennings PA. A single mutation disrupts the pH-dependent dimerization of glycinamide ribonucleotide transformylase. J Mol Biol 1998; 276:819-27. [PMID: 9500916 DOI: 10.1006/jmbi.1997.1530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monomeric GART reversibly associates into a dimeric form as a function of decreasing solution pH. The transition is consistent with a three-proton transfer reaction with an apparent pKa near 7. We now report that a single mutation, which replaces a glutamic acid at position 70 in the dimer interface with alanine (E70A), disrupts the pH-dependent dimerization of GART based on dynamic light scattering and gel filtration studies. A comparison of data obtained from UV-absorbance difference spectroscopy for both the wild-type and mutant forms of GART indicates that a tyrosine residue(s) undergoes a change in solvent exposure over the pH range 6.55 to 8.19. A conformational change in tertiary structure that accompanies dimerization accounts for 60% of the observed optical difference, while the remaining 40% can be attributed to a pH-dependent process unrelated to dimerization. In addition, fluorescence studies of the mutant protein indicate that a pH-dependent change in tryptophan fluorescence exhibited by the wild-type protein is unrelated to quaternary structural changes and is likely a result of simple fluorescence quenching by nearby protonated histidine side-chains. Taken together, our results indicate that a single amino acid change at the dimer interface is sufficient to interrupt the highly specific, pH-dependent assembly reaction of GART, although pH-dependent conformational changes present in the wild-type protein also occur in E70A GART. This work is a first application of structure-based site-directed mutagenesis to the analysis of this pH-dependent assembly reaction.
Collapse
Affiliation(s)
- C A Mullen
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0359, USA
| | | |
Collapse
|
24
|
Thiele C, Huttner WB. The disulfide-bonded loop of chromogranins, which is essential for sorting to secretory granules, mediates homodimerization. J Biol Chem 1998; 273:1223-31. [PMID: 9422790 DOI: 10.1074/jbc.273.2.1223] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chromogranins A and B, two widespread neuroendocrine secretory proteins, contain a homologous N-terminal disulfide-bonded loop that is required for sorting to secretory granules. Here we have investigated the role of this loop in the oligomerization of chromogranin A. Reduction of the disulfide bond or the addition of an excess of an N-terminal chromogranin A fragment containing the loop (CgA1-60) resulted in the dissociation into monomers of the chromogranin A dimer found at pH 7.4 and 6.4 and of the chromogranin tetramer found at pH 5.4. The addition of an excess of a synthetic peptide corresponding to the conserved C-terminal domain of chromogranin A (CgA406-431) had no effect on the chromogranin dimers at pH 7.4 and 6.4 and resulted in the dissociation of the chromogranin A tetramers at pH 5.4 into dimers. Fluorescence energy transfer experiments using fluorescently labeled CgA1-60 showed that the N-terminal disulfide-bonded loop has a high affinity for homodimerization (KD = 20 nM at pH 6.4), which was sufficient to mediate dimerization of full-length chromogranin A. Association and dissociation of loop-mediated chromogranin A dimerization approached completion within a few seconds. Our results imply that chromogranin A homodimerizes shortly after synthesis in the endoplasmic reticulum and that the loop-mediated homodimeric state is an essential prerequisite for its sorting, in the trans-Golgi-network, to secretory granules.
Collapse
Affiliation(s)
- C Thiele
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | |
Collapse
|
25
|
Corti A, Sanchez LP, Gasparri A, Curnis F, Longhi R, Brandazza A, Siccardi AG, Sidoli A. Production and structure characterisation of recombinant chromogranin A N-terminal fragments (vasostatins) -- evidence of dimer-monomer equilibria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:692-9. [PMID: 9342219 DOI: 10.1111/j.1432-1033.1997.00692.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vasostatins (VS) are vasoinhibitory peptides derived from the N-terminal domain of chromogranin A, a secretory protein present in the electron-dense granules of many neuroendocrine cells. In this work we describe a method for the production in Escherichia coli of large amounts of recombinant vasostatins, corresponding to chromogranin A residues 1-78 (VS-1), and 1-115 (VS-2), and the use of these materials for structure characterisation. The masses of both products were close to the expected values, by SDS/PAGE and mass spectrometry analysis. However, their hydrodynamic behaviours in size-exclusion chromatography corresponded to that of proteins with a larger size. SDS/PAGE analysis of VS-1 and VS-2 after cross-linking with disuccinimidyl suberate indicated that both polypeptides form dimers. VS-2 was almost entirely dimeric at > 4 microM, but rapidly converted to monomer after dilution to 70 nM. The rapid dimer-monomer transition of VS-2 after dilution could be part of a mechanism for regulating its activity and localising its action. Immunological studies of VS-1 have shown that residues 37-70 constitute a highly antigenic region characterised by an abundance of linear epitopes efficiently mimicked by synthetic peptides. The recombinant products and the immunological reagents developed in this work could be valuable tools for further investigating the structure and the function of chromogranin A and its fragments.
Collapse
Affiliation(s)
- A Corti
- DIBIT, Department of Biological and Technological Research, San Raffaele H. Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Trifaró JM, Glavinovic M, Rosé SD. Secretory vesicle pools and rate and kinetics of single vesicle exocytosis in neurosecretory cells. Neurochem Res 1997; 22:831-41. [PMID: 9232636 DOI: 10.1023/a:1022087910902] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Secretory vesicles are localized in specific compartments within neurosecretory cells. Morphometric, cytochemical and electrophysiological techniques have allowed the definition of secretory vesicle compartments. These are different pools in which vesicles are in various states of releasability. The transit of vesicles between compartments is not random, but an event controlled and regulated by Ca2+ and the cortical F-actin network. Cortical F-actin disassembly, a Ca(2+)-dependent event, controls the transit of secretory vesicles from the reserve compartment to the release-ready vesicle pool. Furthermore, the recent development of new technical approaches (patch-clamp membrane capacitance, electrochemical detection of amines with carbon-fibre microelectrodes) has now permitted us to understand the kinetics of single vesicle exocytosis.
Collapse
Affiliation(s)
- J M Trifaró
- Department of Pharmacology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
27
|
Walker A, Glavinović MI, Trifaró J. Temperature dependence of release of vesicular content in bovine chromaffin cells. Pflugers Arch 1996; 432:885-92. [PMID: 8772140 DOI: 10.1007/s004240050212] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies suggest that the time course of secretion of the vesicular content in bovine chromaffin cells is much slower than in the peripheral or the central nervous system, but the reasons for this marked difference are not known. In this study we try to assess the importance of factors that may influence the time course of release of the vesicular content of bovine chromaffin cells, namely: (1) diffusion of catecholamines in the extracellular solution, (2) dissociation of catecholamines from the matrix of chromogranin A, and (3) the kinetics of opening and closing of the fusion pore. The temperature dependence of the time course and the amplitude of the spontaneous current spikes were examined using the carbon filament recording technique in amperometric mode. The change in amplitude was not statistically significant, but both the rise and the decay times were shortened (from 29 +/- 12 to 16 +/- 5 ms, and from 87 +/- 26 to 57 +/- 11 ms respectively) as temperature was raised by 20 degrees C [from 15 to 35 degrees C; n = 6; the changes were statistically significant at the level of P = 0.05; their respective temperature coefficients (Q10) were 1.4 and 1.3]. The areas underneath the spontaneous current spikes, however, were not altered significantly. Neither the relationship between the rise and the decay times nor the frequency of occurrence of the spontaneous current spikes changed consistently as the temperature was raised. However, the frequency histograms could, in all cases, be well described by a monoexponential function. It is concluded that the release of catecholamine content from the individual vesicles in bovine chromaffin cells is probably mostly determined by the dissociation of catecholamines from the matrix of chromogranin A.
Collapse
Affiliation(s)
- A Walker
- Department of Physiology, McGill University, 3655 Drummond Street, Montreal P.Q. H3G 1Y6 Canada
| | | | | |
Collapse
|
28
|
Erlich R, Gleeson PA, Campbell P, Dietzsch E, Toh BH. Molecular characterization of trans-Golgi p230. A human peripheral membrane protein encoded by a gene on chromosome 6p12-22 contains extensive coiled-coil alpha-helical domains and a granin motif. J Biol Chem 1996; 271:8328-37. [PMID: 8626529 DOI: 10.1074/jbc.271.14.8328] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Using autoantibodies from a Sjögren's syndrome patient, we have previously identified a 230-kDa peripheral membrane protein associated with the cytosolic face of the trans-Golgi (Kooy, J., Toh, B. H., Pettitt, J. M., Erlich, R. and Gleeson, P. A. (1992) J. Biol. Chem. 267, 20255-20263). Here we report the molecular cloning and sequence analysis of human p230 and the localization of its gene to chromosome 6p12 22. Partial cDNA clones, isolated from a HeLa cell cDNA library using autoantibodies, were used to obtain additional cDNAs, which together span 7695 base pairs (bp). The p230 mRNA is approximately 7.7 kilobases. Two alternatively spliced mRNAs for p230 were detected. These differed by 21- and 63-bp insertions in the 3'-sequence, resulting in differences in amino acid sequence at the carboxyl terminus. The predicted 261-kDa protein is highly hydrophilic with 17-20% homology with many proteins containing coiled-coil domains. Apart from two proline-rich regions (amino acids 1-117 and 239-270), p230 contains a very high frequency of heptad repeats, characteristic of alpha-helices that form dimeric coiled-coil structures. p230 also includes the sequence ESLALEELEL (amino acids 538-546), a motif found in the granin family of acidic proteins present in secretory granules of neuroendocrine cells. This is the first report of a cytosolic Golgi protein containing a granin motif. The structural characteristics of p230 indicate that it may play a role in vesicular transport from the trans-Golgi.
Collapse
Affiliation(s)
- R Erlich
- Department of Pathology and Immunology, Monash University Medical School, Melbourne, Victoria 3181, Australia
| | | | | | | | | |
Collapse
|
29
|
Iacangelo AL, Eiden LE. Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. REGULATORY PEPTIDES 1995; 58:65-88. [PMID: 8577930 DOI: 10.1016/0167-0115(95)00069-n] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A L Iacangelo
- Section on Molecular Neuroscience, NIMH, NIH, Bethesda, MD 20892-4090, USA
| | | |
Collapse
|
30
|
Frère V, Sourgen F, Monnot M, Troalen F, Fermandjian S. A peptide fragment of human DNA topoisomerase II alpha forms a stable coiled-coil structure in solution. J Biol Chem 1995; 270:17502-7. [PMID: 7615554 DOI: 10.1074/jbc.270.29.17502] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Results are presented on a peptide fragment (1013-1056) from human DNA topoisomerase II alpha. This was selected using the procedure of Lupas et al. (Lupas, A., Van Dyke, M., and Stock, J. (1991) Science 252, 1162-1164) for its potential to adopt a stable coiled-coil structure. The same theoretical treatment rejected the segment 994-1021 proposed by Zwelling and Perry (Zwelling, L. A., and Perry, W. M. (1989) Mol. Endocrinol. 3, 603-604) as a possible core for leucine-zipper formation. Our experimental studies combine cross-linking and CD analysis. Cross-linking establishes that the 1013-1056 fragment forms a stable homodimer in solution. Effects of increasing peptide concentration on CD spectra confirm that only the 1013-1056 fragment can undergo a coiled-coil stabilization from an isolated alpha-helix. Unfolding experiments further show that the coiled-coil is more stable in guanidium chloride than in urea. Values of -6.8 and -7.4 kcal/mol for the dimerization free energy are determined by thermal and urea unfolding, respectively. These are strikingly similar to the value recently found for the dissociation/reassociation of the entire yeast topoisomerase II from sedimentation equilibrium experiments (Lamhasni, S., Larsen, A. K., Barray, M., Monnot, M., Delain, E., and Fermandjian, S. (1995) Biochemistry 34, 3632-3639), although their significance relatively to topoisomerase II undoubtedly requires further analysis.
Collapse
Affiliation(s)
- V Frère
- Département de Biologie et Pharmacologie Structurales, URA 147 CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
31
|
Yoo SH, Lewis MS. Thermodynamic study of the pH-dependent interaction of chromogranin A with an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor. Biochemistry 1995; 34:632-8. [PMID: 7819258 DOI: 10.1021/bi00002a030] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The secretory vesicles of adrenal chromaffin cells have previously been identified as a major inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, and their Ca2+ store role has been attributed to the presence of chromogranin A, a high capacity, low affinity Ca2+ binding protein. Chromogranin A has since been shown to exist primarily in a dimeric state at pH 7.5 and primarily in a tetrameric state at the intravesicular pH of 5.5 and has also been shown to interact with the membrane proteins of secretory vesicles at pH 5.5, including a 260-kDa protein reactive to IP3 receptor antibody [Yoo, S. H. (1994) J. Biol. Chem. 269, 12001-12006]. In a recent study, chromogranin A was shown to interact with one of the intraluminal loop regions of the IP3 receptor at pH 5.5 but not at pH 7.5 [Yoo, S. H., & Lewis, M. S. (1994) FEBS Lett. 341, 28-32]. To gain further insight, we have studied the temperature dependence of the pH-dependent interaction of chromogranin A with the intraluminal peptide of the the IP3 receptor by analytical ultracentrifugation, using multiwavelength scan analysis, and found that four molecules of the intraluminal domain peptide of the IP3 receptor bound to each chromogranin A tetramer with delta Go values ranging from -23.6 to -27.6 kcal mol-1 in the absence and presence of 35 mN Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S H Yoo
- Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
32
|
O'Connor DT, Wu H, Gill BM, Rozansky DJ, Tang K, Mahata SK, Mahata M, Eskeland NL, Videen JS, Zhang X. Hormone storage vesicle proteins. Transcriptional basis of the widespread neuroendocrine expression of chromogranin A, and evidence of its diverse biological actions, intracellular and extracellular. Ann N Y Acad Sci 1994; 733:36-45. [PMID: 7978886 DOI: 10.1111/j.1749-6632.1994.tb17254.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chromogranin A (CgA) is an acidic soluble protein found in the core of secretory vesicles throughout the neuroendocrine system, from which it is coreleased by exocytosis with a variety of amine and peptide hormones and neurotransmitters. Much has now been learned about the structure of CgA, and there is emerging evidence that it plays several biological roles, both within secretory granules and after release from neuroendocrine cells. Factors governing its gene's widespread yet restricted (neuroendocrine) pattern of expression are only now being explored. In an attempt to understand how cells throughout the neuroendocrine system (but not exocrine or other nonendocrine cells) turn on and control the expression of CgA, we have isolated and begun to characterize functional 5' promoter elements from the rodent CgA genes. Within the sympathoadrenal system, interest focuses on a recently proposed (though as yet incompletely investigated) function of CgA: its ability to suppress catecholamine release from adrenal chromaffin cells when such cells are stimulated by their usual physiologic secretagogue. We anticipate that such studies will contribute to an understanding of this abundant, yet previously mysterious protein's role in neuroendocrine function.
Collapse
Affiliation(s)
- D T O'Connor
- Department of Medicine (9111H), University of California, San Diego 92161
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The development of micro-voltammetry to detect the release of secretory products from single cells has yielded surprising information, which suggests that the release of secretory products is regulated after the fusion of secretory vesicles with the plasma membrane. This technique has also been used to demonstrate that the release of secretory products can occur during transient fusion events, which leads one to question the current models for membrane recycling. In the past year, strong evidence has emerged in support of a role for rab3 and G alpha i3 proteins in regulating a putative scaffold of proteins that cause bilayer fusion during exocytosis. These findings parallel the biochemical identification of several new cytosolic, secretory vesicle and plasma membrane proteins that may also play a role in regulating fusion.
Collapse
Affiliation(s)
- I M Robinson
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
34
|
Yoo SH, Lewis MS. pH-dependent interaction of an intraluminal loop of inositol 1,4,5-trisphosphate receptor with chromogranin A. FEBS Lett 1994; 341:28-32. [PMID: 8137917 DOI: 10.1016/0014-5793(94)80234-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store role of the secretory vesicles of adrenal medullary chromaffin cells is attributed to the presence of high capacity, low affinity Ca2+ binding protein chromogranin A. Chromogranin A has recently been shown to interact with the protein component(s) on the intraluminal side of the secretory vesicle membrane at the intravesicular pH of 5.5 but to dissociate from them at the near physiological pH of 7.5. Further, one of the chromogranin A-interacting membrane proteins was tentatively identified as the IP3 receptor. Therefore, the pH-dependent potential interaction of the intraluminal loop domains of the IP3 receptor with chromogranin A was studied by analytical ultracentrifugation utilizing synthetic intraluminal loop peptides of the IP3 receptor labeled with 5-hydroxy-tryptophan at the N-terminus as a chromophore. One of the intraluminal loop domains was found to interact with chromogranin A at pH 5.5 but not at pH 7.5, suggesting the importance of the intraluminal loop domain in transmitting Ca2+ mobilization signals to chromogranin A.
Collapse
Affiliation(s)
- S H Yoo
- Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
35
|
Yoo SH, Ferretti JA. Nature of the pH-induced conformational changes and exposure of the C-terminal region of chromogranin A. FEBS Lett 1993; 334:373-7. [PMID: 8243650 DOI: 10.1016/0014-5793(93)80715-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chromogranin A is known to undergo pH induced conformational changes, and the difference in conformation is supposed to be responsible for the difference in Ca2+ binding property. To gain insight regarding the overall structure and the nature of pH-induced conformational changes of chromogranin A, limited trypsin digestions were carried out at pH 5.5 and pH 7.5. The resulting fragments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the amino acid sequences of the tryptic fragments were determined. From these analyses it was shown that the chromogranin A structure consists of an N-terminal compact core region and a rather loosely organized C-terminal region and that the change of pH from 7.5 to 5.5 loosened the overall structure of chromogranin A, exposing the C-terminal region. Since the conserved C-terminal region (residues 407-431) was shown to exist in monomer-dimer and monomer-tetramer equilibria at pH 7.5 and 5.5, respectively, the conformational changes of the region at pH 7.5 and 5.5 were studied by circular dichroism spectroscopy using a synthetic peptide representing the conserved C-terminal region. When the pH was changed from 7.5 to 5.5, the coil structure of the C-terminal peptide decreased with an accompanying increase of alpha-helicity.
Collapse
Affiliation(s)
- S H Yoo
- Laboratory of Cellular Biology, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|