1
|
Chasse SA, Flanary P, Parnell SC, Hao N, Cha JY, Siderovski DP, Dohlman HG. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:330-46. [PMID: 16467474 PMCID: PMC1405904 DOI: 10.1128/ec.5.2.330-346.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.
Collapse
Affiliation(s)
- Scott A Chasse
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Müller G, Wied S, Crecelius A, Kessler A, Eckel J. Phosphoinositolglycan-peptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms. Endocrinology 1997; 138:3459-75. [PMID: 9231801 DOI: 10.1210/endo.138.8.5308] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polar headgroups of free glycosyl-phosphatidylinositol (GPI) lipids or protein-bound GPI membrane anchors have been shown to exhibit insulin-mimetic activity in different cell types. However, elucidation of the molecular mode of action of these phospho-inositolglycan (PIG) molecules has been hampered by 1) lack of knowledge of their exact structure; 2) variable action profiles; and 3) rather modest effects. In the present study, these problems were circumvented by preparation of PIG-peptides (PIG-P) in sufficient quantity by sequential proteolytic (V8 protease) and lipolytic (phosphatidylinositol-specific phospholipase C) cleavage of the GPI-anchored plasma membrane protein, Gce1p, from the yeast Saccharomyces cerevisiae. The structure of the resulting PIG-P, NH2-Tyr-Cys-Asn-ethanolamine-PO4-6(Man1-2)Man1-2Man1-+ ++6Man1-4GlcNH(2)1-6myo-inositol-1,2-cyclicPO4, was revealed by amino acid analysis and Dionex exchange chromatography of fragments generated enzymatically or chemically from the neutral glycan core and is in accordance with the known consensus structures of yeast GPI anchors. PIG-P stimulated glucose transport and lipogenesis in normal, desensitized and receptor-depleted isolated rat adipocytes, increased glycerol-3-phosphate acyltransferase activity and translocation of the glucose transporter isoform 4, and inhibited isoproterenol-induced lipolysis and protein kinase A activation in adipocytes. Furthermore, PIG-P was found to stimulate glucose transport in isolated rat cardiomyocytes and glycogenesis and glycogen synthase in isolated rat diaphragms. The concentration-dependent effects of the PIG-P reached 70-90% of the maximal insulin activity with EC50-values of 0.5-5 microM. Chemical or enzymic cleavages within the glycan or peptide portion of the PIG-P led to decrease or loss of activity. The data demonstrate that PIG-P exhibits a potent insulin-mimetic activity which covers a broad spectrum of metabolic insulin actions on glucose transport and metabolism.
Collapse
Affiliation(s)
- G Müller
- Hoechst AG, Hoechst Marion Roussel, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
3
|
Müller G, Gross E, Wied S, Bandlow W. Glucose-induced sequential processing of a glycosyl-phosphatidylinositol-anchored ectoprotein in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:442-56. [PMID: 8524327 PMCID: PMC231021 DOI: 10.1128/mcb.16.1.442] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transfer of spheroplasts from the yeast Saccharomyces cerevisiae to glucose leads to the activation of an endogenous (glycosyl)-phosphatidylinositol-specific phospholipase C ([G]PI-PLC), which cleaves the anchor of at least one glycosyl-phosphatidylinositol (GPI)-anchored protein, the cyclic AMP (cAMP)-binding ectoprotein Gce1p (G. Müller and W. Bandlow, J. Cell Biol. 122:325-336, 1993). Analyses of the turnover of two constituents of the anchor, myo-inositol and ethanolamine, relative to the protein label as well as separation of the two differently processed versions of Gce1p by isoelectric focusing in spheroplasts demonstrate the glucose-induced conversion of amphiphilic Gce1p first into a lipolytically cleaved hydrophilic intermediate, which is then processed into another hydrophilic version lacking both myo-inositol and ethanolamine. When incubated with unlabeled spheroplasts, the lipolytically cleaved intermediate prepared in vitro is converted into the version lacking all anchor constituents, whereby the anchor glycan is apparently removed as a whole. The secondary cleavage ensues independently of the carbon source, attributing the key role in glucose-induced anchor processing to the endogenous (G)PI-PLC. The secondary processing of the lipolytically cleaved intermediate of Gce1p at the plasma membrane is correlated with the emergence of a covalently linked high-molecular-weight form of a cAMP-binding protein at the cell wall. This protein lacks anchor components, and its protein moiety appears to be identical with double-processed Gce1p detectable at the plasma membrane in spheroplasts. The data suggest that glucose-induced double processing of GPI anchors represents part of a mechanism of regulated cell wall expression of proteins in yeast cells.
Collapse
Affiliation(s)
- G Müller
- Hoechst Aktiengesellschaft Frankfurt am Main, Frankfurt, Germany
| | | | | | | |
Collapse
|
4
|
Benghezal M, Lipke PN, Conzelmann A. Identification of six complementation classes involved in the biosynthesis of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae. J Biophys Biochem Cytol 1995; 130:1333-44. [PMID: 7559756 PMCID: PMC2120569 DOI: 10.1083/jcb.130.6.1333] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are synthesized by the posttranslational attachment of a preformed glycolipid to newly made glycoproteins. alpha-Agglutinin is a GPI-anchored glycoprotein that gets expressed at the cell surface of MAT alpha cells after induction with type a mating factor. Mutants affecting the biosynthesis of GPI anchors were obtained by selecting for the absence of alpha-agglutinin from the cell wall after induction with a-factor at 37 degrees C. 10 recessive mutants were grouped into 6 complementation classes, gpi4 to gpi9. Mutants are considered to be deficient in the biosynthesis of GPI anchors, since each mutant accumulates an abnormal, incomplete GPI glycolipid containing either zero, two, or four mannoses. One mutant accumulates a complete precursor glycolipid, suggesting that it might be deficient in the transfer of complete precursor lipids to proteins. When labeled with [2-3H]inositol, mutants accumulate reduced amounts of radiolabeled GPI-anchored proteins, and the export of the GPI-anchored Gas1p out of the ER is severely delayed in several mutant strains. On the other hand, invertase and acid phosphatase are secreted by all but one mutant. All mutants show an increased sensitivity to calcofluor white and hygromycin B. This suggests that GPI-anchored proteins are required for the integrity of the yeast cell wall.
Collapse
Affiliation(s)
- M Benghezal
- Institute of Biochemistry, University of Fribourg, Switzerland
| | | | | |
Collapse
|
5
|
Affiliation(s)
- J M Thevelein
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit te Leuven, Heverlee, Flanders, Belgium
| |
Collapse
|
6
|
Müller G, Wetekam EM, Jung C, Bandlow W. Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes. Biochemistry 1994; 33:12149-59. [PMID: 7918436 DOI: 10.1021/bi00206a018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
cAMP-binding ectoprotein (Gce1) and lipoprotein lipase (LPL) are anchored to plasma membranes of rat adipocytes by glycosylphosphatidylinositol (GPI) moieties as demonstrated by cleavage by bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), reactivity with anti-crossreacting determinant antibodies (anti-CRD), and metabolic labeling with radiolabeled palmitic acid and myo-inositol. Quantitative release from the membrane of LPL and Gce1 requires both lipolytic removal of their GPI anchors and the presence of either 2 M NaCl or 1 mM inositol 1,2-cyclic monophosphate or inositol 1-monophosphate. PI-PLC-cleaved and released LPL or Gce1 reassociates with isolated plasma membranes of rat adipocytes and, less efficiently, with membranes of 3T3 fibroblasts. The specificity of the reassociation is demonstrated (i) by its inhibition after pretreatment of the membranes with trypsin, (ii) by its competition with inositol 1,2-cyclic monophosphate and inositol 1-monophosphate in a concentration-dependent manner, and (iii) by the limited number of binding sites. Enzymic or chemical removal as well as masking with anti-CRD antibodies of the terminal inositol (cyclic) monophosphate moiety of hydrophilic Gce1 and LPL significantly impairs the reassociation. These data suggest that in rat adipocytes GPI-proteins are not readily released from the cell surface upon lipolytic cleavage, but remain associated through a receptor which specifically recognizes the terminal inositol (cyclic) monophosphate epitope of the (G)PI-PLC-cleaved GPI moiety. This interaction may have implications for the regulated membrane release of GPI-proteins and for their possible internalization.
Collapse
Affiliation(s)
- G Müller
- Hoechst Aktiengesellschaft Frankfurt am Main, SBU Metabolic Diseases H 825, Germany
| | | | | | | |
Collapse
|
7
|
Müller G, Dearey EA, Korndörfer A, Bandlow W. Stimulation of a glycosyl-phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport. J Biophys Biochem Cytol 1994; 126:1267-76. [PMID: 8063863 PMCID: PMC2120161 DOI: 10.1083/jcb.126.5.1267] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lipoprotein lipase (LPL) and glycolipid-anchored cAMP-binding ectoprotein (Gce1) are modified by glycosyl-phosphatidylinositol (GPI) in rat adipocytes, however, the linkage is potentially unstable. Incubation of the cells with either insulin (0.1-30 nM) or the sulfonylurea, glimepiride (0.5-20 microM), in the presence of glucose led to conversion of up to 35 and 20%, respectively, of the total amphiphilic LPL and Gce1 to their hydrophilic versions. Inositol-phosphate was retained in the residual protein-linked anchor structure. This suggests cleavage of the GPI anchors by an endogenous GPI-specific insulin- and glimepiride-inducible phospholipase (GPI-PL). Despite cleavage, hydrophilic LPL and Gce1 remained membrane associated and were released only if a competitor, e.g., inositol-(cyclic)monophosphate, had been added. Other constituents of the GPI anchor (glucosamine and mannose) were less efficient. This suggests peripheral interaction of lipolytically cleaved LPL and Gce1 with the adipocyte cell surface involving the terminal inositol-(cyclic)monophosphate epitope and presumably a receptor of the adipocyte plasma membrane. In rat adipocytes which were resistant toward glucose transport stimulation by insulin, the sensitivity and responsiveness of GPI-PL to stimulation by insulin was drastically reduced. In contrast, activation of both GPI-PL and glucose transport by the sulfonylurea, glimepiride, was not affected significantly. Inhibition of glucose transport or incubation of rat adipocytes in glucose-free medium completely abolished stimulation of GPI-PL by either insulin or glimepiride. The activation was partially restored by the addition of glucose or nonmetabolizable 2-deoxyglucose. These data suggest that increased glucose transport stimulates a GPI-PL in rat adipocytes.
Collapse
Affiliation(s)
- G Müller
- Hoechst AG, Pharmaceutical Research Division, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
8
|
van Berkel MA, Caro LH, Montijn RC, Klis FM. Glucosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae. FEBS Lett 1994; 349:135-8. [PMID: 8045291 DOI: 10.1016/0014-5793(94)00631-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extension of a reporter protein with the carboxyterminal thirty amino acids of the cell wall mannoprotein alpha-agglutinin of Saccharomyces cerevisiae resulted in incorporation of the chimeric protein in the cell wall. By Western analysis it was shown that the incorporated protein contained beta-1,6-glucan similar to endogenous cell wall proteins, whereas excreted reporter protein was not glucosylated. This suggests that beta-1,6-glucan is involved in anchoring mannoproteins in the cell wall.
Collapse
Affiliation(s)
- M A van Berkel
- Institute for Molecular Cell Biology, University of Amsterdam, BioCentrum Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
9
|
Cho-Chung YS, Clair T. The regulatory subunit of cAMP-dependent protein kinase as a target for chemotherapy of cancer and other cellular dysfunctional-related diseases. Pharmacol Ther 1993; 60:265-88. [PMID: 8022860 DOI: 10.1016/0163-7258(93)90010-b] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three separate experimental approaches, using site-selective cAMP analogs, antisense strategy and retroviral vector-mediated gene transfer, have provided evidence that two isoforms, the RI- and RII-regulatory subunits of cAMP-dependent protein kinase, have opposite roles in cell growth and differentiation; RI being growth stimulatory while RII is a growth-inhibitory and differentiation-inducing protein. As RI expression is enhanced during chemical or viral carcinogenesis, in human cancer cell lines and in primary human tumors, it is a target for cancer diagnosis and therapy. 8-Cl-cAMP and RI antisense oligodeoxynucleotide, those that effectively down-regulate RI alpha and up-regulate RII beta, provide new approaches toward the treatment of cancer. This approach to modulation of RI vs RII cAMP transducers may also be beneficial toward therapy of endocrine or cellular dysfunction-related diseases where abnormal signal transduction of cAMP is critically involved.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
10
|
Müller G, Bandlow W. Glucose induces lipolytic cleavage of a glycolipidic plasma membrane anchor in yeast. J Cell Biol 1993; 122:325-36. [PMID: 8320256 PMCID: PMC2119645 DOI: 10.1083/jcb.122.2.325] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae an amphiphilic cAMP-binding protein has been found recently to be anchored to plasma membranes by virtue of a glycolipid structure (Müller and Bandlow, 1991a, 1992). The cAMP-binding parameters of this protein are affected by the lipolytic removal of the glycosylphosphatidylinositol (GPI) membrane anchor by exogenous (G)PI-specific phospholipases C or D (PLC or PLD) (Müller and Bandlow, 1993) suggesting a regulatory role of glycolipidic membrane anchorage. Here we report that transfer of yeast cells from lactate to glucose medium results in the conversion of the amphiphilic form of the cAMP receptor protein into a hydrophilic version accompanied by the rapid loss of fatty acids from the GPI anchor of the [14C]palmitic acid-labeled protein. Analysis of the cleavage site identifies [14C]inositol phosphate as the major product after treatment of the soluble, [14C]inositol-labeled protein with nitrous acid which destroys the glucosamine constituent of the anchor. Together with the observed cross-reactivity of the hydrophilic fragment with antibodies directed against the cross-reacting determinant of soluble trypanosomal variable surface glycoproteins (i.e., myo-inositol-1,2-cyclic phosphate) this demonstrates that, in membrane release, the initial cleavage event is catalyzed by an intrinsic GPI-PLC activated upon transfer of cells to glucose medium. Release from the plasma membrane in soluble form requires, in addition, the presence of high salt or alpha-methyl mannopyranoside, or the removal of the carbohydrate moieties, because otherwise the protein remains associated with the membrane presumably at least in part via its N-glycosidic carbohydrate side chains. The data point to the possibility that cleavage of the anchor could play a role in the transfer of the signal for the nutritional situation to the interior of the cell.
Collapse
Affiliation(s)
- G Müller
- Hoechst Aktiengesellschaft Frankfurt am Main, Federal Republic of Germany
| | | |
Collapse
|
11
|
Kraakman LS, Griffioen G, Zerp S, Groeneveld P, Thevelein JM, Mager WH, Planta RJ. Growth-related expression of ribosomal protein genes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:196-204. [PMID: 8389977 DOI: 10.1007/bf00281618] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The rate of ribosomal protein gene (rp-gene) transcription in yeast is accurately adjusted to the cellular requirement for ribosomes under various growth conditions. However, the molecular mechanisms underlying this co-ordinated transcriptional control have not yet been elucidated. Transcriptional activation of rp-genes is mediated through two different multifunctional transacting factors, ABF1 and RAP1. In this report, we demonstrate that changes in cellular rp-mRNA levels during varying growth conditions are not parallelled by changes in the in vitro binding capacity of ABF1 or RAP1 for their cognate sequences. In addition, the nutritional upshift response of rp-genes observed after addition of glucose to a culture growing on a non-fermentative carbon source turns out not to be the result of increased expression of the ABF1 and RAP1 genes or of elevated DNA-binding activity of these factors. Therefore, growth rate-dependent transcription regulation of rp-genes is most probably not mediated by changes in the efficiency of binding of ABF1 and RAP1 to the upstream activation sites of these genes, but rather through other alterations in the efficiency of transcription activation. Furthermore, we tested the possibility that cAMP may play a role in elevating rp-gene expression during a nutritional shift-up. We found that the nutritional upshift response occurs normally in several mutants defective in cAMP metabolism.
Collapse
Affiliation(s)
- L S Kraakman
- Department of Biochemistry and Molecular Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Magdolen U, Müller G, Magdolen V, Bandlow W. A yeast gene (BLH1) encodes a polypeptide with high homology to vertebrate bleomycin hydrolase, a family member of thiol proteinases. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1171:299-303. [PMID: 8424954 DOI: 10.1016/0167-4781(93)90069-p] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have purified bleomycin hydrolase from yeast (molecular mass 55,000 Da). Using protein sequence-derived degenerate oligonucleotide primers and amplification by polymerase chain reaction, the yeast gene BLH1 was isolated and characterized. The deduced amino acid sequence (483 amino acids) exhibits surprisingly high homology to vertebrate bleomycin hydrolase (43% identical residues and 22% conserved exchanges). It contains three blocks of sequences found conserved in other members of the thiol proteinase family and thought to be associated with the catalytic centre. BLH1 is non-essential under all growth conditions tested. However, in the presence of 3.5 mg bleomycin/ml medium wild-type cells have a slight growth advantage compared to blh1 mutant cells.
Collapse
Affiliation(s)
- U Magdolen
- Institut für Genetik und Mikrobiologie, München, Germany
| | | | | | | |
Collapse
|
13
|
Müller G, Dearey EA, Pünter J. The sulphonylurea drug, glimepiride, stimulates release of glycosylphosphatidylinositol-anchored plasma-membrane proteins from 3T3 adipocytes. Biochem J 1993; 289 ( Pt 2):509-21. [PMID: 7678737 PMCID: PMC1132197 DOI: 10.1042/bj2890509] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sulphonylurea drugs stimulate glucose transport and metabolism in muscle and fat cells in vitro. The molecular basis for the insulin-mimetic extrapancreatic effects of these oral antidiabetic therapeutic agents is unknown at present. Here we demonstrate that incubation of 3T3 adipocytes with the novel sulphonylurea, glimepiride, causes a time- and concentration-dependent release of the glycosylphosphatidylinositol (GPI)-anchored ecto-proteins, 5'-nucleotidase, lipoprotein lipase and a 62 kDa cyclic AMP (cAMP)-binding protein from the plasma membrane into the culture medium. The change in the localization is accompanied by conversion of the membrane-anchored amphiphilic proteins into their soluble hydrophilic versions, as judged by pulse-chase experiments and Triton X-114 partitioning, and by appearance of anti-cross-reacting determinant (CRD) immunoreactivity of the released proteins as shown by Western blotting. Metabolic labelling of cells with myo-[14C]inositol demonstrates that inositol is retained in the major portion of released lipoprotein lipase and cAMP-binding ectoprotein. The identification of inositol phosphate after deamination of these proteins with nitrous acid suggests cleavage of their GPI membrane anchor by a GPI-specific phospholipase C. However, after longer incubation with glimepiride the amount of soluble versions of the GPI-proteins lacking inositol and anti-CRD immunoreactivity increases, which may be caused by additional drug-stimulated hydrolytic events within their GPI structure or C-termini. Since insulin also stimulates membrane release of these GPI-modified proteins, and in combination with glimepiride in a synergistic manner, sulphonylurea drugs may exert their peripheral actions in adipose tissue by using (part of) the insulin postreceptor signalling cascade at the step of activation of a GPI-specific phospholipase C.
Collapse
Affiliation(s)
- G Müller
- Hoechst Aktiengesellschaft Frankfurt am Main Pharmaceutical Research Division SBU Metabolism, Germany
| | | | | |
Collapse
|
14
|
Müller G, Schubert K, Fiedler F, Bandlow W. The cAMP-binding ectoprotein from Saccharomyces cerevisiae is membrane-anchored by glycosyl-phosphatidylinositol. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74045-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
|
16
|
M�ller G, Kornd�rfer A, Saar K, Karbe-Th�nges B, M�llner S. 100 Selective solubilization of glycosyl-phosphatidylinositol-anchored membrane proteins. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf00332094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|