1
|
Zargan S, Jalili H, Dabirmanesh B, Mesdaghinia S, Khajeh K. Amyloidogenesis of SARS-CoV-2 delta plus and omicron variants receptor-binding domain (RBD): impact of SUMO fusion tag. Biotechnol Lett 2024; 46:1037-1048. [PMID: 39182215 DOI: 10.1007/s10529-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE The RBD of SARS-CoV-2 mediates viral entry into host cells by binding to the host receptor ACE2. SARS-CoV-2 infection is linked to various health issues resembling amyloid-related problems, persuading us to investigate the amyloidogenicity of the SARS-CoV-2 spike RBD. METHODS The FoldAmyloid program was used to assess the amyloidogenic propensities in the RBD of Delta Plus and RBD of the Omicron variant, with and without the SUMO tag. After the expression of RBDs, purification, and dialysis steps were performed, subsequently the ThT assay, FTIR, and TEM were employed to check the RBD ability to form fibrils. RESULTS The ThT assay, TEM, and FTIR revealed the ability of RBD to self-assemble into β-sheet-rich aggregates (48.4% β-sheet content). Additionally, the presence of the SUMO tag reduced the formation of RBD amyloid-like fibrils. The amyloidogenic potential of Omicron RBD was higher than Delta Plus, according to both in silico and experimental analyses. CONCLUSIONS The SARS-CoV-2 RBD can assemble itself by forming aggregates containing amyloid-like fibrils and the presence of a SUMO tag can significantly decrease the formation of RBD amyloid-like fibrils. In silico analysis suggested that variation in the ThT fluorescence intensity of amyloid accumulations in the two SARS-CoV-2 strains arises from specific mutations in their RBD regions.
Collapse
Affiliation(s)
- Sadegh Zargan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hasan Jalili
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saba Mesdaghinia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Gao F, Ma X, Tan Y, Zhang B, Yang Y, Nie H, Xu Z. The Effect of Organic Matter from Sewage Sludge as an Interfacial Layer on the Surface of Nano-Al and Fluoride. Molecules 2023; 28:6494. [PMID: 37764270 PMCID: PMC10536677 DOI: 10.3390/molecules28186494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Due to its high reactivity, the nano aluminum particle (n-Al) has attracted more attention in energetic materials but is easily oxidized during processing. In order to realize sewage sludge (SS) resource and n-Al coating, the organic matter was extracted from SS, using the deep eutectic solvent method due to its strong dissolving capacity, and then the organic matter was pretreated by ball milling, which was used as an interfacial layer between n-Al and fluoride. It was found that organic matter was successfully extracted from SS. The main organic matter is proteins. The ball milling method can effectively destroy the secondary structure of proteins to release more active functional groups. During the pretreatment, the Maillard reaction broke the proteins structure to form more active low molecular weight compounds. It was confirmed that n-Al can be coated by PBSP under mild conditions to form a uniform core-shell structure. PFOA can effectively coat the n-Al@PBSP to form n-Al@PBSP/PFOA, which can enhance the combustion of n-Al. The gas phase flame temperature can notably improve to 2892 K. The reaction mechanism between n-Al and coating was analyzed. The results could help SS treatment and provide new insights for n-Al coating and SS-based organic matter recovery and utilization.
Collapse
Affiliation(s)
- Fan Gao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; (F.G.)
| | - Xueqin Ma
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; (F.G.)
| | - Yi Tan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; (F.G.)
| | - Bo Zhang
- School of Energy and Environment, Southeast University, Nanjing 210096, China;
| | - Yixing Yang
- Oil &Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an 710018, China;
| | - Hongqi Nie
- Science and Technology on Combustion, Internal Flow and Thermostructure Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhixiang Xu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; (F.G.)
| |
Collapse
|
3
|
Cifuentes J, Cifuentes-Almanza S, Ruiz Puentes P, Quezada V, González Barrios AF, Calderón-Peláez MA, Velandia-Romero ML, Rafat M, Muñoz-Camargo C, Albarracín SL, Cruz JC. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson's disease. Front Bioeng Biotechnol 2023; 11:1181842. [PMID: 37214285 PMCID: PMC10196638 DOI: 10.3389/fbioe.2023.1181842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.
Collapse
Affiliation(s)
- Javier Cifuentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
4
|
Physico-chemical characterization of bovine serum albumin-cationic gemini surfactant interaction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Baker A, Khalid M, Uddin I, Khan MS. Targeted non AR mediated smart delivery of abiraterone to the prostate cancer. PLoS One 2022; 17:e0272396. [PMID: 36018864 PMCID: PMC9416994 DOI: 10.1371/journal.pone.0272396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is the second-deadliest tumor in men all over the world. Different types of drugs with various delivery systems and pathways were developed, but no one showed prominent results against cancer. Meanwhile, nanoparticles have shown good results against cancer. Therefore, in the given study, citrate mediated synthesized gold nanoparticles (CtGNPs) with immobilized survivin antibodies (SvGNPs) were bioconjugated to the substantially potent drug abiraterone (AbSvGNPs) to develop as a combinatorial therapeutic against prostate cancer. The AbSvGNPs are made up of CtGNPs, survivin antibodies, and abiraterone. The selected drug abiraterone (Abira) possesses exceptionally good activity against prostate cancer, but cancer cells develop resistance against this drug and it also poses several severe side effects. Meanwhile, survivin antibodies were used to deliver AbSvGNPs specifically into cancer cells by considering survivin, an anti-apoptotic overexpressed protein in cancer cells, as a marker. The survivin antibodies have also been used to inhibit cancer cells as an immunotherapeutic agent. Similarly, CtGNPs were discovered to inhibit cancer cell proliferation via several transduction pathways. The given bioconjugated nanoparticles (AbSvGNPs) were found to be substantially effective against prostate cancer with an IC50 of 11.8 and 7.3 μM against DU145 and PC-3 cells, respectively. However, it was found safe against NRK and showed less than 25% cytotoxicity up to 20μM concentration. The as-synthesized nanoparticles CtGNPs, SvGNPs, and AbSvGNPs were characterized by several physical techniques to confirm their synthesis, whereas the immobilization of survivin antibodies and bioconjugation of Abira was confirmed by UV-visible spectroscopy, DLS, TEM, FTIR, and zeta-potential. The anticancer potential of AbSvGNPs was determined by MTT, DAPI, ROS, MITO, TUNEL ASSAY, and caspase-3 activity against DU145 and PC3 cells.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abduaziz University, Al-kharj, Saudi Arabia
| | - Imran Uddin
- Department of Physics, SRM University-AP, Amaravati, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
AR independent anticancer potential of enza against prostate cancer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Xie J, Yang F, Shi H, Yan J, Shen H, Yu S, Gan N, Feng B, Wang L. Protein FT-IR amide bands are beneficial to bacterial typing. Int J Biol Macromol 2022; 207:358-364. [PMID: 35245578 DOI: 10.1016/j.ijbiomac.2022.02.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022]
Abstract
Bacterial FT-IR signals are extremely specific and highly reproducible, making FT-IR an efficient tool for bacterial typing at the subspecies level. The polysaccharide and nucleic acid FT-IR regions (1200-900 cm-1) are recommended as a precise and reproducible pattern for bacterial typing. However, proteins are the major macromolecules present in bacteria, and the FT-IR spectral region of proteins (1800-1300 cm-1) is conceivably an important factor in bacterial typing. In this study, we investigated the influence of water on bacterial protein amide bands by comparing spectra obtained with and without FT-IR system dehydration. Eight Escherichia coli, ten Klebsiella pneumoniae, and eleven Staphylococcus aureus strains were typed by FT-IR under different conditions in a blinded experimental setup. Hierarchical clustering analysis (HCA) showed that, when protein signals were included (1800-900 cm-1), the typing accuracies for select E. coli, K. pn and S. aureus strains without system dehydration were 50%, 30% and 18.2%, respectively. However, the accuracies greatly improved to 100%, 90% and 90.9% when the FT-IR system was dehydrated. These results indicate that the FT-IR signals of protein amide bands are beneficial for bacterial typing.
Collapse
Affiliation(s)
- Jinghang Xie
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Haimei Shi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jintao Yan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hao Shen
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ning Gan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Feng
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| |
Collapse
|
8
|
Yang S, Zhang Q, Yang H, Shi H, Dong A, Wang L, Yu S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int J Biol Macromol 2022; 206:175-187. [PMID: 35217087 DOI: 10.1016/j.ijbiomac.2022.02.104] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Infrared (IR) spectroscopy is a highly sensitive technique that provides complete information on chemical compositions. The IR spectra of proteins or peptides give rise to nine characteristic IR absorption bands. The amide I bands are the most prominent and sensitive vibrational bands and widely used to predict protein secondary structures. The interference of H2O absorbance is the greatest challenge for IR protein secondary structure prediction. Much effort has been made to reduce/eliminate the interference of H2O, simplify operation steps, and increase prediction accuracy. Progress in sampling and equipment has rendered the Fourier transform infrared (FTIR) technique suitable for determining the protein secondary structure in broader concentration ranges, greatly simplifying the operating steps. This review highlights the recent progress in sample preparation, data analysis, and equipment development of FTIR in A/T mode, with a focus on recent applications of FTIR spectroscopy in the prediction of protein secondary structure. This review also provides a brief introduction of the progress in ATR-FTIR for predicting protein secondary structure and discusses some combined IR methods, such as AFM-based IR spectroscopy, that are used to analyze protein structural dynamics and protein aggregation.
Collapse
Affiliation(s)
- Shouning Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | | | - Huayan Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haimei Shi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Aichun Dong
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, USA.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
9
|
Pinto Corujo M, Olamoyesan A, Tukova A, Ang D, Goormaghtigh E, Peterson J, Sharov V, Chmel N, Rodger A. SOMSpec as a General Purpose Validated Self-Organising Map Tool for Rapid Protein Secondary Structure Prediction From Infrared Absorbance Data. Front Chem 2022; 9:784625. [PMID: 35155377 PMCID: PMC8830495 DOI: 10.3389/fchem.2021.784625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
A protein's structure is the key to its function. As protein structure can vary with environment, it is important to be able to determine it over a wide range of concentrations, temperatures, formulation vehicles, and states. Robust reproducible validated methods are required for applications including batch-batch comparisons of biopharmaceutical products. Circular dichroism is widely used for this purpose, but an alternative is required for concentrations above 10 mg/mL or for solutions with chiral buffer components that absorb far UV light. Infrared (IR) protein absorbance spectra of the Amide I region (1,600-1700 cm-1) contain information about secondary structure and require higher concentrations than circular dichroism often with complementary spectral windows. In this paper, we consider a number of approaches to extract structural information from a protein infrared spectrum and determine their reliability for regulatory and research purpose. In particular, we compare direct and second derivative band-fitting with a self-organising map (SOM) approach applied to a number of different reference sets. The self-organising map (SOM) approach proved significantly more accurate than the band-fitting approaches for solution spectra. As there is no validated benchmark method available for infrared structure fitting, SOMSpec was implemented in a leave-one-out validation (LOOV) approach for solid-state transmission and thin-film attenuated total reflectance (ATR) reference sets. We then tested SOMSpec and the thin-film ATR reference set against 68 solution spectra and found the average prediction error for helix (α + 310) and β-sheet was less than 6% for proteins with less than 40% helix. This is quantitatively better than other available approaches. The visual output format of SOMSpec aids identification of poor predictions. We also demonstrated how to convert aqueous ATR spectra to and from transmission spectra for structure fitting. Fourier self-deconvolution did not improve the average structure predictions.
Collapse
Affiliation(s)
- Marco Pinto Corujo
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Adewale Olamoyesan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anastasiia Tukova
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dale Ang
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Nikola Chmel
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Alison Rodger
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
10
|
An Insulin-like Growth Factor-1 Conjugated Bombyx mori Silk Fibroin Film for Diabetic Wound Healing: Fabrication, Physicochemical Property Characterization, and Dosage Optimization In Vitro and In Vivo. Pharmaceutics 2021; 13:pharmaceutics13091459. [PMID: 34575535 PMCID: PMC8468198 DOI: 10.3390/pharmaceutics13091459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
This study aimed to develop a silk fibroin (SF)-film for the treatment of chronic diabetic wounds. Silk fibroin was purified through a newly developed heating degumming (HD) process and casted on a hydrophobic surface to form SF-films. The process allowed the fabricated film to achieve a 42% increase in transparency and a 32% higher proliferation rate for BALB/3T3 fibroblasts compared to that obtained by conventional alkaline degumming treatment. Fourier transform infrared analysis demonstrated that secondary structure was retained in both HD- and alkaline degumming-derived SF preparations, although the crystallinity of beta-sheet in SF-film after the HD processing was slightly increased. This study also investigated whether conjugating insulin-like growth factor-1 (IGF-1) would promote diabetic wound healing and what the optimal dosage is. Using BALB/3T3 cells grown in hyperglycemic medium as a model, it was demonstrated that the optimal IGF-1 dosage to promote the cell growth was approximately 0.65 pmol. Further analysis of wound healing in a diabetic mouse model indicated that SF-film loaded with 3.25 pmol of IGF-1 showed significantly superior wound closure, a 13% increase at the 13th day after treatment relative to treatment with 65 pmol of free IGF-1. Improvement in diabetic wound healing was exerted synergistically by SF-film and IGF-1, as reflected by parameters including levels of re-epithelialization, epithelial tissue area, and angiogenesis. Finally, IGF-1 increased the epithelial tissue area and micro-vessel formation in a dose-dependent manner in a low dosage range (3.25 pmol) when loaded to SF-films. Together, these results strongly suggest that SF-film produced using HD and loaded with a low dosage of IGF-1 is a promising dressing for diabetic wound therapy.
Collapse
|
11
|
Amino Acid Substitutions in the Non-Ordered Ω-Loop 70–85 Affect Electron Transfer Function and Secondary Structure of Mitochondrial Cytochrome c. CRYSTALS 2021. [DOI: 10.3390/cryst11080973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The secondary structure of horse cytochrome c with mutations in the P76GTKMIFA83 site of the Ω-loop, exhibiting reduced efficiency of electron transfer, were studied. CD spectroscopy studies showed that the ordering of mutant structure increases by 3–6% compared to that of the WT molecules due to the higher content of β-structural elements. The IR spectroscopy data are consistent with the CD results and demonstrate that some α-helical elements change into β-structures, and the amount of the non-structured elements is decreased. The analysis of the 1H-NMR spectra demonstrated that cytochrome c mutants have a well-determined secondary structure with some specific features related to changes in the heme microenvironment. The observed changes in the structure of cytochrome c mutants are likely to be responsible for the decrease in the conformational mobility of the P76GTKMIFA83 sequence carrying mutations and for the decline in succinate:cytochrome c-reductase and cytochrome c-oxidase activities in the mitoplast system in the presence of these cytochromes c. We suggest that the decreased efficiency of the electron transfer of the studied cytochromes c may arise due to: (1) the change in the protein conformation in sites responsible for the interaction of cytochrome c with complexes III and IV and (2) the change in the heme conformation that deteriorates its optimal orientation towards donor and acceptor in complexes III and IV therefore slows down electron transfer. The results obtained are consistent with the previously proposed model of mitochondrial cytochrome c functioning associated with the deterministic mobility of protein globule parts.
Collapse
|
12
|
El Khoury Y, Le Breton G, Cunha AV, Jansen TLC, van Wilderen LJGW, Bredenbeck J. Lessons from combined experimental and theoretical examination of the FTIR and 2D-IR spectroelectrochemistry of the amide I region of cytochrome c. J Chem Phys 2021; 154:124201. [PMID: 33810651 DOI: 10.1063/5.0039969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Amide I difference spectroscopy is widely used to investigate protein function and structure changes. In this article, we show that the common approach of assigning features in amide I difference signals to distinct secondary structure elements in many cases may not be justified. Evidence comes from Fourier transform infrared (FTIR) and 2D-IR spectroelectrochemistry of the protein cytochrome c in the amide I range, in combination with computational spectroscopy based on molecular dynamics (MD) simulations. This combination reveals that each secondary structure unit, such as an alpha-helix or a beta-sheet, exhibits broad overlapping contributions, usually spanning a large part of the amide I region, which in the case of difference absorption experiments (such as in FTIR spectroelectrochemistry) may lead to intensity-compensating and even sign-changing contributions. We use cytochrome c as the test case, as this small electron-transferring redox-active protein contains different kinds of secondary structure units. Upon switching its redox-state, the protein exhibits a different charge distribution while largely retaining its structural scaffold. Our theoretical analysis suggests that the change in charge distribution contributes to the spectral changes and that structural changes are small. However, in order to confidently interpret FTIR amide I difference signals in cytochrome c and proteins in general, MD simulations in combination with additional experimental approaches such as isotope labeling, the insertion of infrared labels to selectively probe local structural elements will be required. In case these data are not available, a critical assessment of previous interpretations of protein amide I 1D- and 2D-IR difference spectroscopy data is warranted.
Collapse
Affiliation(s)
- Youssef El Khoury
- Institut für Biophysik, Johann-Wolfgang-Goethe-Universität, Max-von-Laue-Strasse. 1, 60438 Frankfurt am Main, Germany
| | - Guillaume Le Breton
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ana V Cunha
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luuk J G W van Wilderen
- Institut für Biophysik, Johann-Wolfgang-Goethe-Universität, Max-von-Laue-Strasse. 1, 60438 Frankfurt am Main, Germany
| | - Jens Bredenbeck
- Institut für Biophysik, Johann-Wolfgang-Goethe-Universität, Max-von-Laue-Strasse. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Luna-Valdez J, Balandrán-Quintana R, Azamar-Barrios J, Mendoza-Wilson A, Ramos-Clamont Montfort G. A spectroscopic approach to determine the formation mechanism of biopolymer particles from wheat bran proteins. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Hydrothermal Effect on Mechanical Properties of Nephila pilipes Spidroin. Polymers (Basel) 2020; 12:polym12051013. [PMID: 32365504 PMCID: PMC7284706 DOI: 10.3390/polym12051013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022] Open
Abstract
The superlative mechanical properties of spider silk and its conspicuous variations have instigated significant interest over the past few years. However, current attempts to synthetically spin spider silk fibers often yield an inferior physical performance, owing to the improper molecular interactions of silk proteins. Considering this, herein, a post-treatment process to reorganize molecular structures and improve the physical strength of spider silk is reported. The major ampullate dragline silk from Nephila pilipes with a high β-sheet content and an adequate tensile strength was utilized as the study material, while that from Cyrtophora moluccensis was regarded as a reference. Our results indicated that the hydrothermal post-treatment (50-70 °C) of natural spider silk could effectively induce the alternation of secondary structures (random coil to β-sheet) and increase the overall tensile strength of the silk. Such advantageous post-treatment strategy when applied to regenerated spider silk also leads to an increment in the strength by ~2.5-3.0 folds, recapitulating ~90% of the strength of native spider silk. Overall, this study provides a facile and effective post-spinning means for enhancing the molecular structures and mechanical properties of as-spun silk threads, both natural and regenerated.
Collapse
|
15
|
Effects of high hydrostatic pressure combined with heat treatment on the antigenicity and conformation of β-conglycinin. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Effect of adiphenine hydrochloride on the structure of bovine serum albumin: Spectroscopic and docking study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Insights into the behavior of six rationally designed peptides based on Escherichia coli's OmpA at the water-dodecane interface. PLoS One 2019; 14:e0223670. [PMID: 31600354 PMCID: PMC6786535 DOI: 10.1371/journal.pone.0223670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022] Open
Abstract
The Escherichia coli's membrane protein OmpA has been identified as a potential biosurfactant due to their amphiphilic nature, and their capacity to stabilize emulsions of dodecane in water. In this study, the influence of surfactant type, concentration, preservation time and droplet size on the crystallization of n-dodecane and water, in oil-in-water emulsions stabilized with six rationally designed Escherichia coli's OmpA-based peptides was investigated. A differential scanning calorimetry (DSC) protocol was established using emulsions stabilized with Tween 20® and Tween 80®. A relationship between the surfactant concentration and the crystallization temperatures of n-dodecane and water was observed, where the crystallization temperatures seem to be dependent on the preservation time. A deconvolution analysis shows that the peak morphology possibly depends on the interactions at the interface because the enthalpic contributions of each Gaussian peak remained similar in emulsions stabilized with the same peptide. Adsorption results show that the main driver for adsorption and thus stabilization of emulsions is polar interactions (e.g. H-bonding) through the hydrophilic parts of the peptides. Those peptides with a preponderance of polar interaction groups distribution (i.e. NH2, COOH, imidazole) showed the highest interfacial activity under favorable pH conditions. This suggests that custom-made peptides whose hydrophilic/hydrophobic regions can be fine-tuned depending on the application can be easily produced with the additional advantage of their biodegradable nature.
Collapse
|
18
|
Iram S, Zahera M, Wahid I, Baker A, Raish M, Khan A, Ali N, Ahmad S, Khan MS. Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Sci Rep 2019; 9:13826. [PMID: 31554850 PMCID: PMC6761153 DOI: 10.1038/s41598-019-50215-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Enzymatic gold nanoparticles (B-GNPs) have been synthesized using a natural anticancer agent bromelain (a cysteine protease) and these nanoparticles were used to bioconjugate Cisplatin (highly effective against osteosarcoma and lung cancer). Cisplatin bioconjugated bromelain encapsulated gold nanoparticles (B-C-GNPs) were found profoundly potent against same cancers at much lower concentration with minimum side effects due to the synergistic effect of bromelain. The B-C-GNPs have been observed to inhibit the proliferation of osteosarcoma cell lines Saos-2 and MG-63 with IC50 estimation of 4.51 µg/ml and 3.21 µg/ml, respectively, and against small lung cancer cell line A-549 with IC50 2.5 µg/ml which is lower than IC50 of cisplatin against same cell lines. The B-GNPs/B-C-GNPs were characterized by TEM, UV-Visible spectroscopy, Zeta potential and DLS to confirm the production, purity, crystalline nature, stability of nanoemulsion, size and shape distribution. The change in 2D and 3D conformation of bromelain after encapsulation was studied by Circular Dichroism and Fluorometry, respectively. It was found that after encapsulation, a 19.4% loss in secondary structure was observed, but tertiary structure was not altered significantly and this loss improved the anticancer activity. The confirmation of bioconjugation of cisplatin with B-GNPs was done by UV-Visible spectroscopy, TEM, FTIR, 2D 1H NMR DOSY and ICP-MS. Further, it was found that almost ~4 cisplatin molecules bound with each B-GNPs nanoparticle.
Collapse
Affiliation(s)
- Sana Iram
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Manaal Zahera
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Iram Wahid
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Raish
- Department Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Altaf Khan
- Department Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saheem Ahmad
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
19
|
Usoltsev D, Sitnikova V, Kajava A, Uspenskaya M. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions. Biomolecules 2019; 9:biom9080359. [PMID: 31409012 PMCID: PMC6723850 DOI: 10.3390/biom9080359] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in blood plasma. HSA is involved in the transport of hormones, fatty acids, and some other compounds, maintenance of blood pH, osmotic pressure, and many other functions. Although this protein is well studied, data about its conformational changes upon different denaturation factors are fragmentary and sometimes contradictory. This is especially true for FTIR spectroscopy data interpretation. Here, the effect of various denaturing agents on the structural state of HSA by using FTIR spectroscopy in the aqueous solutions was systematically studied. Our data suggest that the second derivative deconvolution method provides the most consistent interpretation of the obtained IR spectra. The secondary structure changes of HSA were studied depending on the concentration of the denaturing agent during acid, alkaline, and thermal denaturation. In general, the denaturation of HSA in different conditions is accompanied by a decrease in α-helical conformation and an increase in random coil conformation and the intermolecular β-strands. Meantime, some variation in the conformational changes depending on the type of the denaturation agent were also observed. The increase of β-structural conformation suggests that HSA may form amyloid-like aggregates upon the denaturation.
Collapse
Affiliation(s)
- Dmitrii Usoltsev
- Department of Applied Optics, ITMO University, 49 Kronverksky Pr., St.-Petersburg 197101, Russia
| | - Vera Sitnikova
- Department of Applied Optics, ITMO University, 49 Kronverksky Pr., St.-Petersburg 197101, Russia.
- International Research Institute of Bioengineering, ITMO University, 49 Kronverksky Pr., 197101 St.-Petersburg, Russia.
| | - Andrey Kajava
- International Research Institute of Bioengineering, ITMO University, 49 Kronverksky Pr., 197101 St.-Petersburg, Russia
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Universit Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Mayya Uspenskaya
- Department of Applied Optics, ITMO University, 49 Kronverksky Pr., St.-Petersburg 197101, Russia
- International Research Institute of Bioengineering, ITMO University, 49 Kronverksky Pr., 197101 St.-Petersburg, Russia
| |
Collapse
|
20
|
Saad-El-Din AA, El-Tanahy ZH, El-Sayed SN, Anees LM, Farroh HA. Combined effect of arsenic trioxide and radiation on physical properties of hemoglobin biopolymer. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aisha A. Saad-El-Din
- Biophys., Lab. Rad. Phys. Dep., National Center of Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Zinab H. El-Tanahy
- Nucl. Phys. Dep., Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Suzan N. El-Sayed
- Solid Stat. Phys. Dep., Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Laila M. Anees
- Health Res. Dep., National Center of Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Hoda A. Farroh
- Health Res. Dep., National Center of Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| |
Collapse
|
21
|
Qi G, Li H, Zhang Y, Li C, Xu S, Wang M, Jin Y. Smart Plasmonic Nanorobot for Real-Time Monitoring Cytochrome c Release and Cell Acidification in Apoptosis during Electrostimulation. Anal Chem 2018; 91:1408-1415. [PMID: 30457829 DOI: 10.1021/acs.analchem.8b04027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome c (Cyt c) release and cellular pH change are two important mediators of apoptosis. Effective methods to regulate or monitor such two events are therefore highly desired for apoptosis research and cancer cell therapy. Herein, we exploited electrostimulation to regulate cellular Cyt c release and apoptosis process, and by designing and preparing a smart and efficient plasmonic nanorobot (with surface-modified Cyt c-specific aptamer and 4-mercaptobenzoic acid) that is capable of Cyt c capture and self-sensing, we achieved real-time SERS monitoring of dynamic Cyt c release and simultaneous cell acidification in apoptosis during electrostimulation. Distinctly different molecular stress responses in the two events for cancerous MCF-7 and HeLa cells and normal L929 cells were identified and revealed. The method and results are valuable and promising for apoptosis and Cyt c-mediated biology studies.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Chuanping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , 2699 Qianjin Avenue , Changchun 130012 , P. R. China
| | - Minmin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China
| |
Collapse
|
22
|
Borzooeian Z, Taslim ME, Rezvani S, Borzooeian G. A high precision length-based carbon nanotube ladder. RSC Adv 2018; 8:36049-36055. [PMID: 35558502 PMCID: PMC9088388 DOI: 10.1039/c8ra05482g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/03/2018] [Indexed: 11/21/2022] Open
Abstract
Today, carbon nanotubes manufacturers as well as users such as molecular electronics, nanomedicine, nano-biotechnology and similar industries are facing a major challenge: lack of length uniformity of carbon nanotubes in mass production. An effective solution to this major issue is the use of a length-based ladder. We are, for the first time, presenting such a valuable tool to determine the length purity. Our length-based carbon nanotubes ladder, containing a series of carbon nanotubes markers with different lengths, is made based on three combined techniques - bio-conjugation, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and silver staining. Creating an indicator using conjugation of a biomolecule with carbon nanotubes to make a carbon nanotubes ladder is a novel idea and a significant step forward for length-based carbon nanotubes separation. The very sensitive silver staining technique allows a precise visualization and quantification of the gel. This ladder with a pending patent by Northeastern University is an effective quality control tool when bulk quantities of nanotubes with a desirable length are manufactured.
Collapse
Affiliation(s)
- Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern UniversityBostonMAUSA
| | - Mohammad E. Taslim
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern UniversityBostonMAUSA
| | - Saina Rezvani
- Department of Computer Science, Worcester Polytechnic InstituteWorcesterMAUSA
| | | |
Collapse
|
23
|
Dynamics of cytochrome c in surface active ionic liquid: A study of preferential interactions towards denaturation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Nakka PP, Li K, Forciniti D. Effect of Differences in the Primary Structure of the A-Chain on the Aggregation of Insulin Fragments. ACS OMEGA 2018; 3:9636-9647. [PMID: 31459094 PMCID: PMC6645046 DOI: 10.1021/acsomega.8b00500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/08/2018] [Indexed: 06/10/2023]
Abstract
Bovine and human insulin have similar primary structures. In this article, the region of the insulin A-chain of bovine and human insulin where the amino acid composition is different was studied. Bovine insulin fragment (BIF) and human insulin fragment (HIF) were synthesized in solid-phase peptide synthesis. The effects of pH, temperature, urea, ionic strength, and stirring on the formation of fibrils were studied using a fractional factorial resolution III experimental design. Fibrillation was monitored by fluorescence and infrared spectroscopy and optical microscopy. Both fragments formed fibrils at pH 1.6 and a temperature of 60 °C. The lag time and apparent aggregation growth rate constant were determined using a two-parameter kinetic model. It was found that the bovine insulin fragment has a shorter lag time than the human insulin one, whereas the exponential phase rate was faster for HIF than for BIF. An increase in β-sheets content with time was observed in both fragments. The increase in β-sheets was preceded by an initial decrease in α-helices followed by an intermediate increase during the transition from the lag phase to elongation phase. Temperature and ionic strength are among the most important experimental factors during the lag phase, whereas ionic strength is replaced by pH during the elongation phase for both the fragments. Congo red binding confirmed the presence of ringlike oligomer structures rich in antiparallel β-sheets, which tend to form fibrils rich in parallel β-sheets.
Collapse
Affiliation(s)
- Paul P. Nakka
- Kielhorn Research Laboratory, Chemical
and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Ke Li
- Kielhorn Research Laboratory, Chemical
and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Daniel Forciniti
- Kielhorn Research Laboratory, Chemical
and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
25
|
Borzooeian Z, Taslim ME, Ghasemi O, Rezvani S, Borzooeian G, Nourbakhsh A. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining. PLoS One 2018; 13:e0197972. [PMID: 29939999 PMCID: PMC6016930 DOI: 10.1371/journal.pone.0197972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/13/2018] [Indexed: 11/20/2022] Open
Abstract
Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.
Collapse
Affiliation(s)
- Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Mohammad E. Taslim
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Omid Ghasemi
- Merrimack Pharmaceuticals Inc, Cambridge, MA, United States of America
| | - Saina Rezvani
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Giti Borzooeian
- Department of Biology, Payamnoor, University of Esfahan, Esfahan, Iran
| | - Amirhasan Nourbakhsh
- Department of Electrical Engineering Computer Science, Massachusetts Institute of Technology, Boston, MA, United States of America
| |
Collapse
|
26
|
Singh UK, Patel R. Dynamics of Ionic Liquid-Assisted Refolding of Denatured Cytochrome c: A Study of Preferential Interactions toward Renaturation. Mol Pharm 2018; 15:2684-2697. [PMID: 29767978 DOI: 10.1021/acs.molpharmaceut.8b00212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vitro refolding of denatured protein and the influence of the alkyl chain on the refolding of a protein were tested using long chain imidazolium chloride salts, 1-methyl-3-octylimidazolium chloride [C8mim][Cl], and 1-decyl-3-methylimidazolium chloride [C10mim][Cl]. The horse heart cytochrome c (h-cyt c) was denatured by urea and guanidinium hydrochloride (GdnHCl), as well as by base-induced denaturation at pH 13, to provide a broad overview of the overall refolding behavior. The variation in the alkyl chain of the ionic liquids (ILs) showed a profound effect on the refolding of denatured h-cyt c. The ligand-induced refolding was correlated to understand the mechanism of the conformational stability of proteins in aqueous solutions of ILs. The results showed that the long chain ILs having the [C8mim]+ and [C10mim]+ cations promote the refolding of alkali-denatured h-cyt c. The IL having the [C10mim]+ cation efficiently refolded the alkali-denatured h-cyt c with the formation of the MG state, whereas the IL having the [C8mim]+ cation, which is known to be compatible for protein stability, shows slight refolding and forms a different transition state. The lifetime results show successful refolding of alkaline-denatured h-cyt c by both of the ILs, however, more refolding was observed in the case of [C10mim][Cl], and this was correlated with the fast and medium lifetimes (τ1 and τ2) obtained, which show an increase accompanied by an increase in secondary structure. The hydrophobic interactions plays an important role in the refolding of chemically and alkali-denatured h-cyt c by long chain imidazolium ILs. The formation of the MG state by [C10mim][Cl] was also confirmed, as some regular structure exists far below the CMC of IL. The overall results suggested that the [C10mim]+ cation bound to the unfolded h-cyt c triggers its refolding by electrostatic and hydrophobic interactions that stabilize the MG state.
Collapse
Affiliation(s)
- Upendra Kumar Singh
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi 110025 , India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi 110025 , India
| |
Collapse
|
27
|
Graft copolymerization by ionization radiation, characterization, and enzymatic activity of temperature-responsive SR- g -PNVCL loaded with lysozyme. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Melin F, Schoepp-Cothenet B, Abdulkarim S, Noor MR, Soulimane T, Hellwig P. Electrochemical study of an electron shuttle diheme protein: The cytochrome c from T. thermophilus. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Zhang B, Tao H, Niu X, Li S, Chen HQ. Lysozyme distribution, structural identification, and in vitro release of starch-based microgel-lysozyme complexes. Food Chem 2017; 227:137-141. [DOI: 10.1016/j.foodchem.2017.01.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/16/2016] [Accepted: 01/15/2017] [Indexed: 02/04/2023]
|
30
|
Wang X, Wang M, Lei R, Zhu SF, Zhao Y, Chen C. Chiral Surface of Nanoparticles Determines the Orientation of Adsorbed Transferrin and Its Interaction with Receptors. ACS NANO 2017; 11:4606-4616. [PMID: 28460159 DOI: 10.1021/acsnano.7b00200] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
When nanoparticles are exposed to a physiological environment, a "protein corona" is formed that greatly determines their biological fate. Adsorption of proteins could be influenced by chiral surfaces of nanoparticles; however, very few quantitative studies are available on the interaction of protein with the chiral surface of nanoparticles, and the underlying mechanism remains largely unresolved. We have developed a strategy to quantitatively analyze the adsorption and conformational features of transferrin on gold nanoparticles that are functionalized with d, l, and racemic penicillamine. We used a quartz microbalance platform to monitor the interaction of the adsorbed transferrin with transferrin receptors in HEK cell-derived liposomes. Results show that the chiral surface of nanoparticle determines the orientation and conformation of transferrin, which subsequently affects the interaction and recognition of transferrin with its receptor on the cellular membrane. Transferrin is widely used as a tumor-targeting ligand in cancer treatment and diagnosis since the transferrin receptor is overexpressed on the cell membrane of various types of cancer cells. Thus, the present results will help to expand the knowledge on biological identity of nanoparticles with chiral surfaces in a physiological environment and provide an insight into the rational design of therapeutic nanoparticles.
Collapse
Affiliation(s)
- Xinyi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190, China
- College of Science, Shenyang Agricultural University , Shenyang 110866, China
| | - Mingzhe Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190, China
| | - Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine , Beijing 100029, China
| | - Shui Fang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine , Beijing 100029, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
31
|
Zhang J, Zhang X, Zhang F, Yu S. Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy. Anal Bioanal Chem 2017; 409:4459-4465. [PMID: 28526999 DOI: 10.1007/s00216-017-0390-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/23/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy is one of the widely used vibrational spectroscopic methods in protein structural analysis. The protein solution sample loaded in demountable CaF2 liquid cell presents a challenge and is limited to high concentrations. Some researchers attempted the simpler solid-film sampling method for the collection of protein FTIR spectra. In this study, the solid-film sampling FTIR method was studied in detail. The secondary structure components of some globular proteins were determined by this sampling method, and the results were consistent with those data determined by the traditional solution sampling FTIR method and X-ray crystallography, indicating that this sampling method is feasible and efficient for the structural characterization of proteins. Furthermore, much lower protein concentrations (~0.5 mg/mL) were needed to obtain high-quality FTIR spectra, which expands the application of FTIR spectroscopy to almost the same concentration range used for circular dichroism and fluorescence spectroscopy, making comparisons among three commonly used techniques possible in protein studies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Junting Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaoning Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Zhejiang BioHarmonious SciTech. Co. LTD., Hangzhou, Zhejiang, 310018, China
| | - Shaoning Yu
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
32
|
Zeng L, Wu L, Liu L, Jiang X. Analyzing Structural Properties of Heterogeneous Cardiolipin-Bound Cytochrome C and Their Regulation by Surface-Enhanced Infrared Absorption Spectroscopy. Anal Chem 2016; 88:11727-11733. [DOI: 10.1021/acs.analchem.6b03360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lie Wu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Li Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiue Jiang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
33
|
Narayanan S, Gokuldas M. Influence of organic solvents on the structural and thermal characteristics of silk protein from the web of Orthaga exvinacea Hampson ( Lepidoptera: Pyralidae). J Chem Biol 2016; 9:121-125. [PMID: 27698949 DOI: 10.1007/s12154-016-0158-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/12/2016] [Indexed: 11/30/2022] Open
Abstract
The silk protein from the web of Orthaga exvinacea was isolated, purified, and casted into films. This film was treated separately with methanol, acetone, ethyl acetate, and isopropyl alcohol in 50 % concentration for about 30 min. The treated films were thus dried in a desiccator and subjected to FTIR and TG-DTA analysis. The structural studies revealed that the organic solvents induce conformatory changes in the protein film, especially the most sensitive amide I (1650 cm-1) band. This band had shifted to lower wavenumber (1633-1636 cm-1). Furthermore, the conformatory characteristics associated with amide I band also changed from random coil to β-sheet. Generally, β-sheet contributes strength to the protein film. Among the treated films, film treated with acetone showed much thermal stability. Moreover, the film treated with methanol had shown two different temperatures of maximum degradation. It is concluded that in addition to β-sheet content, various other factors such as various processing conditions and structural organization of protein may influence the stability of the films.
Collapse
Affiliation(s)
- Sajitha Narayanan
- Insect Physiology and Biochemistry Laboratory, Department of Zoology, University of Calicut, Kerala, India 673 635
| | - Mankadath Gokuldas
- Insect Physiology and Biochemistry Laboratory, Department of Zoology, University of Calicut, Kerala, India 673 635
| |
Collapse
|
34
|
Savadkoohi S, Bannikova A, Mantri N, Kasapis S. Structural modification in condensed soy glycinin systems following application of high pressure. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2014.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
|
36
|
Patel R, Mir MUH, Maurya JK, Singh UK, Maurya N, Parray MUD, Khan AB, Ali A. Spectroscopic and molecular modelling analysis of the interaction between ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy)dichloride and bovine serum albumin. LUMINESCENCE 2015; 30:1233-41. [DOI: 10.1002/bio.2886] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/12/2014] [Accepted: 01/28/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi
| | - Muzaffar Ul Hassan Mir
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi
| | - Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi
| | - Upendra Kumar Singh
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi
| | - Mehraj ud din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi
| | - Abbul Bashar Khan
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); New Delhi
| | - Anwar Ali
- Department of Chemistry; Jamia Millia Islamia (A Central University); New Delhi India
| |
Collapse
|
37
|
Saguer E, Alvarez P, Fort N, Espigulé E, Parés D, Toldrà M, Carretero C. Heat-Induced Gelation Mechanism of Blood Plasma Modulated by Cysteine. J Food Sci 2015; 80:C515-21. [DOI: 10.1111/1750-3841.12805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 11/30/2022]
Affiliation(s)
- E. Saguer
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - P. Alvarez
- The Nutrition and Functional Foods Inst. (INAF), Laval Univ, Quebec, Canada G1V 0A6 and the Dept. of Food Science and Nutrition, 2425 rue de l'Agriculture; Laval Univ; Quebec Canada G1V 0A6
| | - N. Fort
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - E. Espigulé
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - D. Parés
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - M. Toldrà
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - C. Carretero
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| |
Collapse
|
38
|
Yang H, Yang S, Kong J, Dong A, Yu S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc 2015; 10:382-96. [PMID: 25654756 DOI: 10.1038/nprot.2015.024] [Citation(s) in RCA: 734] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fourier transform IR (FTIR) spectroscopy is a nondestructive technique for structural characterization of proteins and polypeptides. The IR spectral data of polymers are usually interpreted in terms of the vibrations of a structural repeat. The repeat units in proteins give rise to nine characteristic IR absorption bands (amides A, B and I-VII). Amide I bands (1,700-1,600 cm(-1)) are the most prominent and sensitive vibrational bands of the protein backbone, and they relate to protein secondary structural components. In this protocol, we have detailed the principles that underlie the determination of protein secondary structure by FTIR spectroscopy, as well as the basic steps involved in protein sample preparation, instrument operation, FTIR spectra collection and spectra analysis in order to estimate protein secondary-structural components in aqueous (both H2O and deuterium oxide (D2O)) solution using algorithms, such as second-derivative, deconvolution and curve fitting. Small amounts of high-purity (>95%) proteins at high concentrations (>3 mg ml(-1)) are needed in this protocol; typically, the procedure can be completed in 1-2 d.
Collapse
Affiliation(s)
- Huayan Yang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Shouning Yang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, China
| | - Aichun Dong
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, Colorado, USA
| | - Shaoning Yu
- Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Naiyer A, Hassan MI, Islam A, Sundd M, Ahmad F. Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques. J Biomol Struct Dyn 2015; 33:2267-84. [PMID: 25586676 DOI: 10.1080/07391102.2014.999354] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Almost all proteins fold via a number of partially structured intermediates such as molten globule (MG) and pre-molten globule states. Understanding the structure of these intermediates at atomic level is often a challenge, as these states are observed under extreme conditions of pH, temperature, and chemical denaturants. Furthermore, several other processes such as chemical modification, site-directed mutagenesis (or point mutation), and cleavage of covalent bond of natural proteins often lead to MG like partially unfolded conformation. However, the dynamic nature of proteins in these states makes them unsuitable for most structure determination at atomic level. Intermediate states studied so far have been characterized mostly by circular dichroism, fluorescence, viscosity, dynamic light scattering measurements, dye binding, infrared techniques, molecular dynamics simulations, etc. There is a limited amount of structural data available on these intermediate states by nuclear magnetic resonance (NMR) and hence there is a need to characterize these states at the molecular level. In this review, we present characterization of equilibrium intermediates by biophysical techniques with special reference to NMR.
Collapse
Affiliation(s)
- Abdullah Naiyer
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi - 110025 , India
| | | | | | | | | |
Collapse
|
40
|
Mutational analysis of residues in human arsenic (III) methyltransferase (hAS3MT) belonging to 5 Å around S-adenosylmethionine (SAM). Biochimie 2014; 107 Pt B:396-405. [DOI: 10.1016/j.biochi.2014.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/17/2014] [Indexed: 02/05/2023]
|
41
|
Kumari M, Maurya JK, Tasleem M, Singh P, Patel R. Probing HSA-ionic liquid interactions by spectroscopic and molecular docking methods. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:27-35. [DOI: 10.1016/j.jphotobiol.2014.05.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/19/2014] [Accepted: 05/12/2014] [Indexed: 01/08/2023]
|
42
|
Shervedani RK, Foroushani MS. Direct electrochemistry of cytochrome c immobilized on gold electrode surface via Zr(IV) ion glue and its activity for ascorbic acid. Bioelectrochemistry 2014; 98:53-63. [DOI: 10.1016/j.bioelechem.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
43
|
Relating the variation of secondary structure of gelatin at fish oil–water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability. Food Chem 2014; 143:484-91. [DOI: 10.1016/j.foodchem.2013.07.130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/08/2013] [Accepted: 07/29/2013] [Indexed: 11/22/2022]
|
44
|
Li S, Potana S, Keith DJ, Wang C, Leblanc RM. Isotope-edited FTIR in H2O: determination of the conformation of specific residues in a model α-helix peptide by 13C labeled carbonyls. Chem Commun (Camb) 2014; 50:3931-3. [DOI: 10.1039/c4cc00991f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Residues in human arsenic (+3 oxidation state) methyltransferase forming potential hydrogen bond network around S-adenosylmethionine. PLoS One 2013; 8:e76709. [PMID: 24124590 PMCID: PMC3790734 DOI: 10.1371/journal.pone.0076709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Residues Tyr59, Gly78, Ser79, Met103, Gln107, Ile136 and Glu137 in human arsenic (+3 oxidation state) methyltransferase (hAS3MT) were deduced to form a potential hydrogen bond network around S-adenosylmethionine (SAM) from the sequence alignment between Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM) and hAS3MT. Herein, seven mutants Y59A, G78A, S79A, M103A, Q107A, I136A and E137A were obtained. Their catalytic activities and conformations were characterized and models were built. Y59A and G78A were completely inactive. Only 7.0%, 10.6% and 13.8% inorganic arsenic (iAs) was transformed to monomethylated arsenicals (MMA) when M103A, Q107A and I136A were used as the enzyme. The Vmax (the maximal velocity of the reaction) values of M103A, Q107A, I136A and E137A were decreased to 8%, 22%, 15% and 50% of that of WT-hAS3MT, respectively. The KM(SAM) (the Michaelis constant for SAM) values of mutants M103A, I136A and E137A were 15.7, 8.9 and 5.1 fold higher than that of WT-hAS3MT, respectively, indicating that their affinities for SAM were weakened. The altered microenvironment of SAM and the reduced capacity of binding arsenic deduced from KM(As) (the Michaelis constant for iAs) value probably synergetically reduced the catalytic activity of Q107A. The catalytic activity of S79A was higher than that of WT despite of the higher KM(SAM), suggesting that Ser79 did not impact the catalytic activity of hAS3MT. In short, residues Tyr59 and Gly78 significantly influenced the catalytic activity of hAS3MT as well as Met103, Ile136 and Glu137 because they were closely associated with SAM-binding, while residue Gln107 did not affect SAM-binding regardless of affecting the catalytic activity of hAS3MT. Modeling and our experimental results suggest that the adenine ring of SAM is sandwiched between Ile136 and Met103, the amide group of SAM is hydrogen bonded to Gly78 in hAS3MT and SAM is bonded to Tyr59 with van der Waals, cation-π and hydrogen bonding contacts.
Collapse
|
46
|
Zou C, Larisika M, Nagy G, Srajer J, Oostenbrink C, Chen X, Knoll W, Liedberg B, Nowak C. Two-dimensional heterospectral correlation analysis of the redox-induced conformational transition in cytochrome c using surface-enhanced Raman and infrared absorption spectroscopies on a two-layer gold surface. J Phys Chem B 2013; 117:9606-14. [PMID: 23930980 PMCID: PMC3753128 DOI: 10.1021/jp404573q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
heme protein cytochrome c adsorbed to a two-layer
gold surface modified with a self-assembled monolayer of 2-mercaptoethanol
was analyzed using a two-dimensional (2D) heterospectral correlation
analysis that combined surface-enhanced infrared absorption spectroscopy
(SEIRAS) and surface-enhanced Raman spectroscopy (SERS). Stepwise
increasing electric potentials were applied to alter the redox state
of the protein and to induce conformational changes within the protein
backbone. We demonstrate herein that 2D heterospectral correlation
analysis is a particularly suitable and useful technique for the study
of heme-containing proteins as the two spectroscopies address different
portions of the protein. Thus, by correlating SERS and SEIRAS data
in a 2D plot, we can obtain a deeper understanding of the conformational
changes occurring at the redox center and in the supporting protein
backbone during the electron transfer process. The correlation analyses
are complemented by molecular dynamics calculations to explore the
intramolecular interactions.
Collapse
Affiliation(s)
- Changji Zou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
George P, Kasapis S, Bannikova A, Mantri N, Palmer M, Meurer B, Lundin L. Effect of high hydrostatic pressure on the structural properties and bioactivity of immunoglobulins extracted from whey protein. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Jain R, Kaur S, Kumar R. Guanidine hydrochloride-induced alkali molten globule model of horse ferrocytochrome c. J Biochem 2012; 153:161-77. [DOI: 10.1093/jb/mvs134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Zhang Y, Gao G, Qian Q, Cui D. Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. NANOSCALE RESEARCH LETTERS 2012; 7:475. [PMID: 22916797 PMCID: PMC3506472 DOI: 10.1186/1556-276x-7-475] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
We reported a one-pot, environmentally friendly method for biosynthesizing nanoscale Au-Ag alloy using chloroplasts as reducers and stabilizers. The prepared nanoscale Au-Ag alloy was characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). Fourier transform infrared spectroscopy (FTIR) analysis was further used to identify the possible biomolecules from chloroplasts that are responsible for the formation and stabilization of Au-Ag alloy. The FTIR results showed that chloroplast proteins bound to the nanoscale Au-Ag alloy through free amino groups. The bimetallic Au-Ag nanoparticles have only one plasmon band, indicating the formation of an alloy structure. HR-TEM images showed that the prepared Au-Ag alloy was spherical and 15 to 20 nm in diameter. The high crystallinity of the Au-Ag alloy was confirmed by SAED and XRD patterns. The prepared Au-Ag alloy was dispersed into multiwalled carbon nanotubes (MWNTs) to form a nanosensing film. The nanosensing film exhibited high electrocatalytic activity for 2-butanone oxidation at room temperature. The anodic peak current (Ip) has a linear relationship with the concentrations of 2-butanone over the range of 0.01% to 0.075% (v/v), when analyzed by cyclic voltammetry. The excellent electronic catalytic characteristics might be attributed to the synergistic electron transfer effects of Au-Ag alloy and MWNTs. It can reasonably be expected that this electrochemical biosensor provided a promising platform for developing a breath sensor to screen and pre-warn of early cancer, especially gastric cancer.
Collapse
Affiliation(s)
- Yixia Zhang
- Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Guo Gao
- Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Qirong Qian
- Department of Orthopaedics, Changzheng Hospital affiliated to Second Military Medical University, 451 Fengyang Road, Shanghai, 20003, People’s Republic of China
| | - Daxiang Cui
- Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
50
|
Zaragoza A, Teruel JA, Aranda FJ, Marqués A, Espuny MJ, Manresa Á, Ortiz A. Interaction of a Rhodococcus sp. trehalose lipid biosurfactant with model proteins: thermodynamic and structural changes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1381-90. [PMID: 22172005 DOI: 10.1021/la203879t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One major application of surfactants is to prevent aggregation during various processes of protein manipulation. In this work, a bacterial trehalose lipid (TL) with biosurfactant activity, secreted by Rhodococcus sp., has been identified and purified. The interactions of this glycolipid with selected model proteins have been studied by using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Bovine serum albumin (BSA) and cytochrome c (Cyt-c) have been chosen because of their quite different secondary structures: BSA contains essentially no β-sheets and an average 66% α-helix, whereas Cyt-c possesses up to 25% β-sheets and up to 45% α-helical structure. Differential scanning calorimetry shows that addition of TL to BSA at concentrations below the critical micelle concentration (cmc) shifts the thermal unfolding temperature to higher values. FTIR indicates that TL does not alter the secondary structure of native BSA, but the presence of TL protects the protein toward thermal denaturation, mainly by avoiding formation of β-aggregates. Studies on the intrinsic Trp fluorescence of BSA show that addition of TL to the native protein results in conformational changes. BSA unfolding upon thermal denaturation in the absence of TL makes the Trp residues less accessible to the quencher, as shown by a decrease in the value of Stern-Volmer dynamic quenching constant, whereas denaturation in the presence of the biosurfactant prevents unfolding, in agreement with FTIR results. In the case of Cyt-c, interaction with TL gives rise to a new thermal denaturation transition, as observed by DSC, at temperatures below that of the native protein, therefore facilitating thermal unfolding. Binding of TL to native BSA and Cyt-c, as determined by ITC, suggests a rather nonspecific interaction of the biosurfactant with both proteins. FTIR indicates that TL slightly modifies the secondary structure of native Cyt-c, but protein denaturation in the presence of TL results in a higher proportion of β-aggregates than in its absence (20% vs 3.9%). The study of Trp fluorescence upon TL addition to Cyt-c results in a completely opposite scenario to that described above for BSA. In this case, addition of TL considerably increases the value of the dynamic quenching constant, both in native and denatured protein; that is, the interaction with the glycolipid induces conformational changes which facilitate the exposure of Trp residues to the quencher. Considering the structures of both proteins, it could be derived that the characteristics of TL interactions, either promoting or avoiding thermal unfolding, are highly dependent on the protein secondary structure. Our results also suggest the rather unspecific nature of these interactions. These might well involve protein hydrophobic domains which, being buried into the protein native structures, become exposed upon thermal unfolding.
Collapse
Affiliation(s)
- Ana Zaragoza
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia , E-30100 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|