1
|
Götze S, Saborowski R, Martínez-Cruz O, Muhlia-Almazán A, Sánchez-Paz A. Proteasome properties of hemocytes differ between the whiteleg shrimp Penaeus vannamei and the brown shrimp Crangon crangon (Crustacea, Decapoda). Cell Stress Chaperones 2017; 22:879-891. [PMID: 28646424 PMCID: PMC5655376 DOI: 10.1007/s12192-017-0819-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022] Open
Abstract
Crustaceans are intensively farmed in aquaculture facilities where they are vulnerable to parasites, bacteria, or viruses, often severely compromising the rearing success. The ubiquitin-proteasome system (UPS) is crucial for the maintenance of cellular integrity. Analogous to higher vertebrates, the UPS of crustaceans may also play an important role in stress resistance and pathogen defense. We studied the general properties of the proteasome system in the hemocytes of the whiteleg shrimp, Penaeus vannamei, and the European brown shrimp Crangon crangon. The 20S proteasome was the predominant proteasome population in the hemocytes of both species. The specific activities of the trypsin-like (Try-like), chymotrypsin-like (Chy-like), and caspase-like (Cas-like) enzymes of the shrimp proteasome differed between species. P. vannamei exhibited a higher ratio of Try-like to Chy-like activities and Cas-like to Chy-like activities than C. crangon. Notably, the Chy-like activity of P. vannamei showed substrate or product inhibition at concentrations of more than 25 mmol L-1. The K M values ranged from 0.072 mmol L-1 for the Try-like activity of P. vannamei to 0.309 mmol L-1 for the Cas-like activity of C. crangon. Inhibition of the proteasome of P. vannamei by proteasome inhibitors was stronger than in C. crangon. The pH profiles were similar in both species. The Try-like, Chy-like, and Cas-like sites showed the highest activities between pH 7.5 and 8.5. The proteasomes of both species were sensitive against repeated freezing and thawing losing ~80-90% of activity. This study forms the basis for future investigations on the shrimp response against infectious diseases, and the role of the UPS therein.
Collapse
Affiliation(s)
- Sandra Götze
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, PO Box 120161, 27515, Bremerhaven, Germany
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, PO Box 120161, 27515, Bremerhaven, Germany.
| | - Oliviert Martínez-Cruz
- Bioenergetics and Molecular Genetics Lab, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, PO Box 1735, 83000, Hermosillo, Sonora, Mexico
| | - Adriana Muhlia-Almazán
- Bioenergetics and Molecular Genetics Lab, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, PO Box 1735, 83000, Hermosillo, Sonora, Mexico
| | - Arturo Sánchez-Paz
- Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle Hermosa, 101. Col. Los Angeles, 83106, Hermosillo, Sonora, Mexico.
| |
Collapse
|
2
|
Chen JJ, Lin F, Qin ZH. The roles of the proteasome pathway in signal transduction and neurodegenerative diseases. Neurosci Bull 2008; 24:183-94. [PMID: 18500392 DOI: 10.1007/s12264-008-0183-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | | | | |
Collapse
|
3
|
Hunter JM, Lesort M, Johnson GVW. Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease. J Neurosci Res 2007; 85:1774-88. [PMID: 17455294 DOI: 10.1002/jnr.21287] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disease caused by an abnormally expanded CAG repeat in the HD gene. Ubiquitylated aggregates containing mutant huntingtin protein in neurons are hallmarks of HD. Misfolded mutant huntingtin monomers, oligomers, or aggregates may be a result of, and cause, ubiquitin- proteasome dysfunction. To investigate the ubiquitin-proteasome system we designed a series of firefly luciferase reporters targeted selectively to different points along this pathway. These reporters were used to monitor ubiquitin-proteasome system function in a striatal cell culture model of HD. Ubiquitylation processes were not reduced in mutant huntingtin cells but recognition or degradation of ubiquitylated substrates was decreased. We also found mutant huntingtin expressing cells had slight but significant decreases in chymotrypsin-like and caspase-like activities, and an unexpected increase in trypsin-like activity of the proteasome core. General proteasome core inhibitors, as well as selective caspase-like activity inhibitors, were less effective in mutant cells. Finally, treatment with 3-nitropropionic acid, a succinate dehydrogenase inhibitor, had opposite effects on the ubiquitin-proteasome system with activation in wild-type and decreased activity in mutant huntingtin expressing cells. The results of these experiments show clearly selective disruption of the ubiquitin-proteasome system in this cell culture model of HD. The high throughput tools that we have designed and optimized will also be useful in identifying compounds that alter ubiquitin-proteasome system function and to investigate other neurodegenerative diseases such Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jesse M Hunter
- Department of Cell Biology, and Department of Psychiatry, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
4
|
Luciani F, Keşmir C, Mishto M, Or-Guil M, de Boer RJ. A mathematical model of protein degradation by the proteasome. Biophys J 2005; 88:2422-32. [PMID: 15665121 PMCID: PMC1305341 DOI: 10.1529/biophysj.104.049221] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome is the major protease for intracellular protein degradation. The influx rate of protein substrates and the exit rate of the fragments/products are regulated by the size of the axial channels. Opening the channels is known to increase the overall degradation rate and to change the length distribution of fragments. We develop a mathematical model with a flux that depends on the gate size and a phenomenological cleavage mechanism. The model has Michaelis-Menten kinetics with a V(max) that is inversely related to the length of the substrate, as observed in the in vitro experiments. We study the distribution of fragment lengths assuming that proteasomal cleavage takes place at a preferred distance from the ends of a protein fragment, and find multipeaked fragment length distributions similar to those found experimentally. Opening the gates in the model increases the degradation rate, increases the average length of the fragments, and increases the peak in the distribution around a length of 8-10 amino acids. This behavior is also observed in immunoproteasomes equipped with PA28. Finally, we study the effect of re-entry of processed fragments in the degradation kinetics and conclude that re-entry is only expected to affect the cleavage dynamics when short fragments enter the proteasome much faster than the original substrate. In summary, the model proposed in this study captures the known characteristics of proteasomal degradation, and can therefore help to quantify MHC class I antigen processing and presentation.
Collapse
Affiliation(s)
- Fabio Luciani
- Institute for Theoretical Biology, Humboldt University-Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
5
|
Reshetnyak YK, Kitson RP, Lu M, Goldfarb RH. Conformational and enzymatic changes of 20S proteasome of rat natural killer cells induced by mono- and divalent cations. J Struct Biol 2004; 145:263-71. [PMID: 14960377 DOI: 10.1016/j.jsb.2003.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 10/16/2003] [Indexed: 11/19/2022]
Abstract
We have been investigated the relation between activation of "neutral" and "acidic" chymotrypsin-like (ChT-L) activity and conformational changes in the 20S proteasome complex from the rat natural killer (NK) cells induced by SDS, mono- and divalent cations. The conformational changes were monitored by tryptophan fluorescence and light scattering. It was revealed that the changes in the maximum position and contribution of the short-wavelength spectral component correlated with the alteration of ChT-L activity of the proteasome. Statistical analysis was applied to assign the fluorescence components with tryptophan residues based on the classification of calculated structural parameters of the environment of tryptophan fluorophores in protein. It was proposed that the emission of W13 from alpha6-subunit located near the cluster of highly conserved proteasome residues is mostly sensitive to the activation of the enzyme. We concluded that the expression of maximal ChT-L activity of 20S proteasome is associated with the conformational changes occurs in this cluster that lead to the proteasome open conformation, allowing substrate access into the proteolytic chamber.
Collapse
Affiliation(s)
- Yana K Reshetnyak
- Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
6
|
The bovine lung 20S proteasome binding to reversible inhibitors: modulation by sodium ion. FEBS Lett 2003; 547:7-10. [PMID: 12860377 DOI: 10.1016/s0014-5793(03)00660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of sodium ion on the inhibition exerted by Cbz-Leu-Leu-Leu-CHO on the chymotrypsin-like activity of the 20S proteasome isolated from bovine lung was investigated. The experimental data were analyzed using a standard linkage formalism. The calculated equilibrium affinity constants for the sodium ion binding to the free-enzyme and the inhibitor-bound enzyme are compatible to other well-characterized ion-involving heterotropic systems. The functional interdependence between the binding events played by the inhibitor and the sodium ion conforms to a heterotropic modulatory mechanism.
Collapse
|
7
|
Holtz KM, Rice AM, Sartorelli AC. Lithium chloride inactivates the 20S proteasome from WEHI-3B D+ leukemia cells. Biochem Biophys Res Commun 2003; 303:1058-64. [PMID: 12684043 DOI: 10.1016/s0006-291x(03)00473-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
LiCl interacts synergistically with all-trans-retinoic acid, promoting the terminal differentiation of WEHI-3B D(+) cells, a phenomenon partially due to the ability of the monovalent lithium cation to inhibit the proteasome-dependent degradation of retinoic acid receptor alpha protein. In this report, the 20S proteasome was purified from WEHI-3B D(+) cells and the effects of LiCl on chymotrypsin-like (Chtl) activity and peptidyl-glutamyl peptide hydrolyzing (PGPH) activity were determined. LiCl functions to inactivate both proteasomal activities in a time-dependent manner, without affecting non-proteasomal proteases. The half-lives for inactivation of Chtl and PGPH hydrolyzing activities were approximately 23 and 36min, respectively, at 10mM LiCl. Both SDS and peptide substrate increased the rate of inactivation. Partial enzymatic activity was recovered after dialysis in the absence of SDS, indicating that the off-rate for lithium was extremely slow. The findings suggest that the inactivation of Chtl and PGPH activities by LiCl occurs through a proteasomal conformational change.
Collapse
Affiliation(s)
- Kathleen M Holtz
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
8
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
9
|
Yokoi K, Kakikawa M, Kimoto H, Watanabe K, Yasukawa H, Yamakawa A, Taketo A, Kodaira KI. Genetic and biochemical characterization of glutamyl endopeptidase of Staphylococcus warneri M. Gene 2001; 281:115-22. [PMID: 11750133 DOI: 10.1016/s0378-1119(01)00782-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A Staphylococcus warneri strain M, newly isolated from processed seafood (smoked Watasenia scintillans), produced an extracellular protease. The protease, designated to as m-PROM (the mature form of PROM), selectively cleaved the carbonyl side of glutamic acid residues in beta-casein. Sequence of N-terminal 27 amino acids of m-PROM, RANVILPNNDRHQINDTTLGHYAPVTF, was found to be similar to those of other glutamyl endopeptidases, V8 protease (Staphylococcus aureus strain V8) and SPase (S. aureus ATCC 12600). To determine the complete primary structure and precursor of PROM, its gene (proM) was cloned and sequenced. The gene proM was found to encode for a protein of 316 amino acids. The amino acid residues from 64 to 90 completely coincided with the N-terminal 27 amino acids of the m-PROM, suggesting that the N-terminal 63 amino acids region of p-PROM (the precursor form of PROM) might be processed posttranslationally. Moreover, the whole amino acid sequence deduced from the primary structure of proM shows significant similarity to those of other glutamyl endopeptidases, V8 protease and SPase. These results suggested that PROM belongs to the glutamyl endopeptidase class. PROM, however, differs from V8 and SPase proteases in the processing site and the C-terminal region.
Collapse
Affiliation(s)
- K Yokoi
- Molecular Biology Group, Faculty of Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lu X, Michaud C, Orlowski M. Heat shock protein-90 and the catalytic activities of the 20 S proteasome (multicatalytic proteinase complex). Arch Biochem Biophys 2001; 387:163-71. [PMID: 11368178 DOI: 10.1006/abbi.2001.2270] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of heat shock protein 90 (Hsp-90) and several other proteins on the catalytic activities of the 20 S proteasome (MPC) was examined. The chymotrypsin-like (ChT-L) and peptidylglutamyl-peptide hydrolyzing (PGPH) activities of the pituitary MPC were inhibited by Hsp-90 with IC50 values of 8 and 28 nM, respectively. Bovine serum albumin and two other proteins tested inhibited the same activities with much higher IC50 values. The trypsin-like and branched-chain amino-acid-preferring activities were not affected by any of the proteins. None of the activities of the bovine spleen MPC, an enzyme form in which the X, Y, and Z subunits are virtually completely replaced by the LMP2, LMP7, and LMP10 subunits, was affected by either Hsp-90 or the other proteins tested. Hsp-90 inhibited the degradation of the oxidized B-chain of insulin by the pituitary MPC but not by its spleen counterpart. The PA28 activator (11 S regulator; REG) of the proteasome abolished the inhibitory effect of Hsp-90 and other proteins on the ChT-L and PGPH activities of the pituitary MPC. It is suggested that Hsp-90 induces conformational changes that affect the ChT-L and PGPH activities expressed by the X and Y subunits, respectively, but does not affect the activities expressed by LMP subunits.
Collapse
Affiliation(s)
- X Lu
- Department of Pharmacology, Mount Sinai School of Medicine of the City, University of New York, New York 10029, USA
| | | | | |
Collapse
|
11
|
Myung J, Kim KB, Lindsten K, Dantuma NP, Crews CM. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol Cell 2001; 7:411-20. [PMID: 11239469 DOI: 10.1016/s1097-2765(01)00188-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The chymotrypsin-like (CT-L) activity of the proteasome is downregulated by substrates of the peptidyl-glutamyl peptide hydrolyzing (PGPH) activity. To investigate the nature of such interactions, we synthesized selective alpha',beta'-epoxyketone inhibitors of the PGPH activity. In cellular proliferation and protein degradation assays, these inhibitors revealed that selective PGPH inhibition was insufficient to inhibit protein degradation, indicating that the CT-L and PGPH sites function independently. We also demonstrated that CT-L inhibition by a PGPH substrate does not require the occupancy of the PGPH site or hydrolysis of the PGPH substrate. Thus, these results support a model in which a substrate of one subunit regulates the activity of another via binding to a noncatalytic site(s) rather than through binding to an active site.
Collapse
Affiliation(s)
- J Myung
- Department of Molecular, Cellular, and Developmental Biology, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
12
|
Orlowski M, Wilk S. Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 2000; 383:1-16. [PMID: 11097171 DOI: 10.1006/abbi.2000.2036] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome, a multisubunit, multicatalytic proteinase complex, is attracting growing attention as the main intracellular, extralysosomal, proteolytic system involved in ubiquitin-(Ub) dependent and Ub-independent intracellular proteolysis. Its involvement in the mitotic cycle, and control of the half-life of most cellular proteins, functions absolutely necessary for cell growth and viability, make it an attractive target for researchers of intracellular metabolism and an important target for pharmacological intervention. The proteasome belongs to a new mechanistic class of proteases, the N-terminal nucleophile hydrolases, where the N-terminal threonine residue functions as the nucleophile. This minireview focuses on the three classical catalytic activities of the proteasome, designated chymotrypsin-like, trypsin-like, and peptidyl-glutamyl-peptide hydrolyzing in eukaryotes and also the activities of the more simple Archaebacteria and Eubacteria proteasomes. Other catalytic activities of the proteasome and their possible origin are also examined. The specificity of the catalytic components toward synthetic substrates, natural peptides, and proteins and their relationship to the catalytic centers are reviewed. Some unanswered questions and future research directions are suggested.
Collapse
Affiliation(s)
- M Orlowski
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
13
|
Abstract
Proteasomes are multicatalytic proteinase complexes which play a central role in intracellular protein degradation. They catalyse key events in cell cycle regulation and in the activation of the transcription factor NFkappaB. Proteasome inhibitors have been useful for the characterization of proteasome catalytic components and in the elucidation of proteasome functions in animal cells. Potent small peptide inhibitors of proteasomes also represent a novel approach to the treatment of inflammatory diseases (which involve activation of NFkappaB) and cancer. Such compounds have recently been shown to be effective in a variety of animal models, and at least one is currently in use in clinical trials.
Collapse
Affiliation(s)
- A J Rivett
- Department of Biochemistry, University of Bristol, School of Medical Sciences, UK.
| | | |
Collapse
|
14
|
Schmidtke G, Emch S, Groettrup M, Holzhutter HG. Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome. J Biol Chem 2000; 275:22056-63. [PMID: 10806206 DOI: 10.1074/jbc.m002513200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 20 S proteasome is an endoprotease complex that preferentially cleaves peptides C-terminal of hydrophobic, basic, and acidic residues. Recently, we showed that these specific activities, classified as chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide-hydrolyzing (PGPH) activity, are differently affected by Ritonavir, an inhibitor of human immunodeficiency virus-1 protease. Ritonavir competitively inhibited the chymotrypsin-like activity, whereas the trypsin-like activity was enhanced. Here we demonstrate that the Ritonavir-mediated up-regulation of the trypsin-like activity is not affected by specific active site inhibitors of the chymo-trypsin-like and PGPH activity. Moreover, we show that the mutual regulation of chymotrypsin-like and PGPH activities by their substrates as described previously by a "cyclical bite-chew" model is not affected by selective inhibitors of the respective active sites. These data challenge the bite-chew model and suggest that effectors of proteasome activity can act by binding to non-catalytic sites. Accordingly, we propose a kinetic "two-site modifier" model that assumes that the substrate (or effector) may bind to an active site as well as to a second non-catalytic modifier site. This model appears to be valid as it describes the complex kinetic effects of Ritonavir very well. Since Ritonavir partially inhibits major histocompatibility complex class I restricted antigen presentation, the postulated modifier site may be required to coordinate the active centers of the proteasome for the production of class I peptide ligands.
Collapse
Affiliation(s)
- G Schmidtke
- Research Department, Cantonal Hospital St. Gall, CH-9007 St. Gallen, Switzerland
| | | | | | | |
Collapse
|
15
|
Abstract
The ubiquitin (Ub)-proteasome pathway is the major nonlysosomal pathway of proteolysis in human cells and accounts for the degradation of most short-lived, misfolded or damaged proteins. This pathway is important in the regulation of a number of key biological regulatory mechanisms. Proteins are usually targeted for proteasome-mediated degradation by polyubiquitinylation, the covalent addition of multiple units of the 76 amino acid protein Ub, which are ligated to 1-amino groups of lysine residues in the substrate. Polyubiquitinylated proteins are degraded by the 26S proteasome, a large, ATP-dependent multicatalytic protease complex, which also regenerates monomeric Ub. The targets of this pathway include key regulators of cell proliferation and cell death. An alternative form of the proteasome, termed the immunoproteasome, also has important functions in the generation of peptides for presentation by MHC class I molecules. In recent years there has been a great deal of interest in the possibility that proteasome inhibitors, through elevation of the levels of proteasome targets, might prove useful as a novel class of anti-cancer drugs. Here we review the progress made to date in this area and highlight the potential advantages and weaknesses of this approach.
Collapse
Affiliation(s)
- R Z Murray
- Imperial Cancer Research Fund Molecular Oncology Laboratory, University of Oxford Institute of Molecular Medicine, John Radcliffe Hospital, UK
| | | |
Collapse
|
16
|
Kisselev AF, Akopian TN, Castillo V, Goldberg AL. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell 1999; 4:395-402. [PMID: 10518220 DOI: 10.1016/s1097-2765(00)80341-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In eukaryotes, the 20S proteasome contains two chymotrypsin-like, two trypsin-like, and two active sites shown here to have caspase-like specificity. We report that certain sites allosterically regulate each other's activities. Substrates of a chymotrypsin-like site stimulate dramatically the caspase-like activity and also activate the other chymotrypsin-like site. Moreover, substrates of the caspase-like sites inhibit allosterically the chymotrypsin-like activity (the rate-limiting one in protein breakdown) and thus can reduce the degradation of proteins by 26S proteasomes. These allosteric effects suggest an ordered, cyclical mechanism for protein degradation. We propose that the chymotrypsin-like site initially cleaves ("bites") the polypeptide, thereby stimulating the caspase-like sites. Their activation accelerates further cleavage ("chewing") of the fragments, while the chymotrypsin-like activity is temporarily inhibited. When further caspase-like cleavages are impossible, the chymotryptic site is reactivated and the cycle repeated.
Collapse
Affiliation(s)
- A F Kisselev
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
17
|
Andersson M, Sjöstrand J, Karlsson JO. Differential inhibition of three peptidase activities of the proteasome in human lens epithelium by heat and oxidation. Exp Eye Res 1999; 69:129-38. [PMID: 10375457 DOI: 10.1006/exer.1999.0688] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome is a large protease complex that is thought to be responsible for proteolytic removal of damaged proteins. We have previously shown that the level of proteolytic activity due to the proteasome is lower in lens epithelium from human cataractous lenses compared to the activity in epithelium from clear donor lenses. This study aimed to characterize the three main peptidase activities of the proteasome in human lens epithelium with respect to kinetic properties and sensitivity to heat and oxidation. Human lens epithelia were obtained from cataract surgery and analysis performed on pools of epithelial cell cytoplasm. Using the fluorogenic peptide substrates Suc-Leu-Leu-Val-Tyr-AMC (LLVY), Boc-Val-Gly-Arg-AMC (VGR) and Z-Leu-Leu-Glu-betaNA (LLE), Km-values of 56, 678 and 108 micrometers were obtained. All peptidase activities were inhibited by lactacystin, a specific proteasome inhibitor, but at very different rates; with LLVY-hydrolysing activity being the most sensitive (Ki50%=0.15 micrometers). Thermostability was investigated by performing the proteolytic assay at 20 degrees, 37 degrees and 53 degrees C. The trypsin-like activity, as measured by VGR, was completely stable at 53 degrees C for at least 24 hr whereas hydrolysis of LLVY and LLE declined after a few hours at 37 degrees C. Oxidative inhibition was induced by incubation of the samples in 0.5 m m H2O2for 1 or 24 hr. One hour exposure to H2O2caused moderate inhibition of all peptidase activities. The activity could be partially restored by adding 1 m m dithiotreitol, indicating the dependency on intact SH-groups. After 24 hr, peptidase activities were decreased to 25% (LLVY), 73% (VGR) and 44% (LLE) of corresponding control. This inhibition was irreversible for VGR and LLE, but could be partly prevented by the presence of heat shock protein 90 (LLVY and VGR) or alpha-crystallin (LLVY). These data show that the peptidase activities of the human lens proteasome can be modulated by metabolites, such as reactive oxygen species, and by endogenous proteins such as alpha-crystallin and heat shock protein 90.
Collapse
Affiliation(s)
- M Andersson
- Institute of Clinical Neuroscience, Department of Ophthalmology, Göteborg, Sweden
| | | | | |
Collapse
|
18
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
19
|
Reidlinger J, Pike AM, Savory PJ, Murray RZ, Rivett AJ. Catalytic properties of 26 S and 20 S proteasomes and radiolabeling of MB1, LMP7, and C7 subunits associated with trypsin-like and chymotrypsin-like activities. J Biol Chem 1997; 272:24899-905. [PMID: 9312091 DOI: 10.1074/jbc.272.40.24899] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
20 and 26 S proteasomes were isolated from rat liver. The procedure developed for the 26 S proteasome resulted in greatly improved yields compared with previously published methods. A comparison of the kinetic properties of 20 and 26 S proteasomes showed significant differences in the kinetic characteristics with certain substrates and differences in the effects of a protein substrate on peptidase activity. Observed differences in the kinetics of peptidylglutamyl peptide hydrolase activity suggest that the 26 S complex cannot undergo the conformational changes of 20 S proteasomes at high concentrations of the substrate benzyloxycarbonyl (Z) -Leu-Leu-Glu-beta-naphthylamide. Various inhibitors that differentially affect the trypsin-like and chymotrypsin-like activities have been identified. Ala-Ala-Phe-chloromethyl (CH2Cl) inhibits chymotrypsin-like activity assayed with succinyl (Suc) -Leu-Leu-Val-Tyr-AMC, but surprisingly not hydrolysis of Ala-Ala-Phe-7-amido4-methylcoumarin (AMC). Tyr-Gly-Arg-CH2Cl inhibits Suc-Leu-Leu-Val-Tyr-AMC hydrolysis as well as trypsin-like activity measured with t-butoxycarbonyl (Boc) -Leu-Ser-Thr-Arg-AMC, while Z-Phe-Gly-Tyr-diazomethyl (CHN2) was found to inhibit only the two chymotrypsin-like activities. Radiolabeled forms of peptidyl chloromethane and peptidyl diazomethane inhibitors, [3H]acetyl-Ala-Ala-Phe-CH2Cl, [3H]acetyl- and radioiodinated Tyr-Gly-Arg-CH2Cl, and Z-Phe-Gly-Tyr-(125I-CHN2), have been used to identify catalytic components associated with each of the three peptidase activities. In each case, incorporation of the label could be blocked by prior treatment of the proteasomes with known active site-directed inhibitors, calpain inhibitor 1 or 3, 4-dichloroisocoumarin. Subunits of labeled proteasomes were separated either by reverse phase-HPLC and SDS-polyacrylamide gel electrophoresis or by two-dimensional polyacrylamide gel electrophoresis followed by autoradiography/fluorography and immunoblotting with subunit-specific antibodies. In each case, label was found to be incorporated into subunits C7, MB1, and LMP7 but in different relative amounts depending on the inhibitor used, consistent with the observed effects on the different peptidase activities. The results strongly suggest a relationship between trypsin-like activity and chymotrypsin-like activity. They also help to relate the different subunits of the complex to the assayed multicatalytic endopeptidase activities.
Collapse
Affiliation(s)
- J Reidlinger
- Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Klinkradt S, Naudé RJ, Muramoto K, Oelofsen W. Purification and characterization of proteasome from ostrich liver. Int J Biochem Cell Biol 1997; 29:611-22. [PMID: 9363639 DOI: 10.1016/s1357-2725(96)00143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The proteasome (EC 3.4.99.46) is a high molecular mass (approximately 700 kDa) multisubunit enzyme complex which is the focus of worldwide research in order to identify the structure, mechanism of action and specificity of the complex. The purpose of the present study was to investigate the tryptic, chymotryptic and peptidylglutamyl-peptide hydrolysing (PGPH) activities of ostrich liver proteasome. The proteasome was purified from ostrich liver by employing ammonium sulphate fractionation, followed by three sequential chromatographic steps on Toyopearl Super Q-650 S, Sephadex G-150 and phenyl-Toyopearl columns. Temperature and pH optima were examined and the effect of inhibitors, detergents, fatty acids and cations on the peptidase activities was determined. Ostrich proteasome exhibited a relative M(r) of approximately 665,000 using non-denaturing gradient PAGE and dissociated into the characteristic "ladder" associated with the proteasome subunits during SDS-PAGE. The pH optima for the peptidase activities were found to be slightly alkaline (tryptic activity) and neutral (chymotryptic-like and PGPH activities). Ostrich liver proteasome was found to be activated in terms of the PGPH activity by fatty acids and SDS, whereas the chymotryptic and tryptic-like activities were differentially inhibited. Ostrich proteasome, in its inhibition by monovalent cations, was similar to the proteasomes extracted from other sources. The specificity of the proteasome appears to be very broad, although it lacks aminopeptidase activity. The yield compared favourably with similar extraction procedures which have been reported. On the basis of the physicochemical and kinetic properties which ostrich liver proteasome exhibited, it can be safely concluded that it corresponds well with the proteasomes isolated from many other sources.
Collapse
Affiliation(s)
- S Klinkradt
- Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa
| | | | | | | |
Collapse
|
21
|
Djaballah H. Antigen processing by proteasomes: insights into the molecular basis of crypticity. Mol Biol Rep 1997; 24:63-7. [PMID: 9228283 DOI: 10.1023/a:1006808824631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eight to eleven amino acid residues are the sizes of predominant peptides found to be associated with MHC class I molecules. Proteasomes have been implicated in antigen processing and generation of such peptides. Advanced methodologies in peptide elution together with sequence determination have led to the characterisation of MHC class I binding motifs. More recently, screening of random peptide phage display libraries and synthetic combinatorial peptide libraries have also been successfully used. This has led to the development and use of predictive algorithms to screen antigens for potential CTL epitopes. Not all predicted epitopes will be generated in vivo and the emerging picture suggests differential presentation of predicted CTL epitopes ranging from cryptic to immunodominant. The scope of this review is to discuss antigen processing by proteasomes, and to put forward a hypothesis that the molecular basis of immunogenicity can be a function of proteasomal processing. This may explain how pathogens and tumours are able to escape immunosurveillance by altering sequences required by proteasomes for epitope generation.
Collapse
Affiliation(s)
- H Djaballah
- MRC Transplantation Biology Group, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
| |
Collapse
|
22
|
Abstract
Increases of oxidatively modified protein in the cell have been associated with the aging process. Such an accumulation of damaged protein may be the result of increase in the rate of protein oxidation and/or decrease in the rate of degradation of oxidized protein. The multicatalytic proteinase or proteasome is known to be the major proteolytic system involved in the removal of oxidized protein. We have reported that, after isolation of the 20S proteasome from the liver of young and old male Fischer 344 rat, out of the three peptidase activities (chymotrypsin-like, trypsin-like and peptidyl-glutamyl peptide hydrolase) we assayed with fluorogenic peptides, the peptidyl-glutamyl peptide hydrolase activity was declining with age to a value approximately 50% of that observed for protease purified from young rats. The proteasome was subjected to metal catalyzed oxidation to determine the susceptibility of the different peptidase activities to oxidative inactivation. Both trypsin-like and peptidyl-glutamyl peptide hydrolase activities were found sensitive to oxidation. Treatment of the proteasome with 4-hydroxy-2-nonenal, a major lipid peroxidation product, was also found to inactivate the trypsin-like activity. However, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation in proteasome preparations contaminated with HSP 90, a protein that often copurifies with the proteasome. Upon addition of HSP 90 to pure 20S active proteasome, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation and from inactivation by treatment with 4-hydroxy-2-nonenal. These results suggest a possible intervention of HSP 90 in response to oxidative stress in preventing the inactivation of the proteasome by oxidative damage.
Collapse
Affiliation(s)
- M Conconi
- Unité de Biochimie Cellulaire, Institut Pasteur, Paris, France
| | | |
Collapse
|
23
|
Hua S, To WY, Nguyen TT, Wong ML, Wang CC. Purification and characterization of proteasomes from Trypanosoma brucei. Mol Biochem Parasitol 1996; 78:33-46. [PMID: 8813675 DOI: 10.1016/s0166-6851(96)02599-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteasomes are multisubunit proteases that exist universally among eukaryotes. They have multiple proteolytic activities, and are believed to have important roles in regulating cell cycle, selective intracellular proteolysis, and antigen presentation. To determine the possible role that proteasomes may play in controlling the life cycle of African trypanosomes, we have isolated proteasomes from the bloodstream and the insect (procyclic) forms of Trypanosoma brucei by DEAE-cellulose chromatography and glycerol gradient fractionation in the presence of ATP. No 26 S proteasome homologs was identified in T. brucei under these experimental conditions. The proteasomes isolated from these two forms of T. brucei are very similar to the rat blood cell 20 S proteasome in their general appearance under the electron microscope. The profile of trypanosome proteasome subunits in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has eight visible protein bands with molecular weights ranging from 23 to 34 kDa, and cross-reacted very poorly with the anti-human 20 S proteasome antibodies on immunoblots. Two-dimensional gel electrophoresis of the parasite proteasomes shows a similar number of major subunits with pI's ranging from 4.5 to 7. Using a variety of fluorogenic peptides as substrates, the trypanosome proteasomes exhibited unusually high trypsin-like, but somewhat lower chymotrypsin-like activities, as compared to the rat 20 S proteasome. These proteolytic activities were, however, insensitive to phenylmethylsulfonyl fluoride (PMSF), tosyl-phenylalanine chloromethylketone (TPCK), tosyl-lysine chloromethylketone (TLCK) and trans-epoxy succinyl-L-leucylamido-(4 guanidino) butane (E-64), but the trypsin-like activity of trypanosome proteasomes was inhibited by leupeptin, an aldehyde known to inhibit the trypsin-like activity of mammalian proteasomes, thus ruling out possible contamination by other serine or cysteine proteases. Some quantitative differences in the substrate specificities between the proteasomes from bloodstream and procyclic forms were indicated, which may play a role in determining the differential protein turnovers at two different stages of development of T. brucei.
Collapse
Affiliation(s)
- S Hua
- Department of Pharmaceutical Chemistry, University of California at San Francisco 94143-0446, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Proteasome subunits are encoded by members of the same gene family and can be divided into two groups based on their similarity to the alpha and beta subunits of the simpler proteasome isolated from Thermoplasma acidophilum. RN3 is the beta-type subunit, N3, of rat proteasomes which has been implicated in the peptidylglutamyl-peptide hydrolase activity of the proteinase complex. We have expressed recombinant RN3 protein in Escherichia coli in order to raise subunit-specific polyclonal antibodies. Identification of the position of RN3 on two-dimensional PAGE gels of purified rat liver proteasomes showed a single protein spot of molecular mass 24 kDa and of pI value of about 5. This protein has a free N-terminus, having undergone post-translational processing. After immunoprecipitation from [35S]methionine-labelled human embryo lung L-132 cells using anti-RN3 antibodies, two radiolabelled spots were observed on two-dimensional PAGE gels, one corresponding to the mature N3, the other of molecular mass 28.5 kDa and pI value around 5, which was probably the unprocessed form of N3. However, the latter protein had a higher molecular mass (31 kDa) than was predicted from the sequence of previously cloned cDNA. Therefore rapid amplification of cDNA ends ("RACE') was carried out to determine the full sequence. The lack of detectable RN3 precursor in purified rat liver proteasomes suggests that the processing probably accompanies assembly of the complex. The half-life of the processing was determined to be 31 min in growing L-132 cells. The unprocessed form of N3 was not observed after immunoprecipitation of 35S-labelled complexes with anti-proteasome antibodies. There was no evidence to suggest that unprocessed N3 is found in precursor complexes which have been implicated in the assembly of some other unprocessed beta-type subunits. Interestingly also, the site of cleavage of N3 (ITR decreases TQN) differs significantly from those of other processed animal beta-type proteasome subunits [(H/T)G decreases TT(T/L)], many of which resemble more closely the cleavage site of the Thermoplasma acidophilum beta subunit.
Collapse
Affiliation(s)
- S Thomson
- Department of Biochemistry, University of Leicester, U.K
| | | |
Collapse
|
25
|
Ehring B, Meyer TH, Eckerskorn C, Lottspeich F, Tampé R. Effects of major-histocompatibility-complex-encoded subunits on the peptidase and proteolytic activities of human 20S proteasomes. Cleavage of proteins and antigenic peptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:404-15. [PMID: 8631360 DOI: 10.1111/j.1432-1033.1996.00404.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The proteasome is responsible for the non-lysosomal degradation of misfolded, transient, or ubiquitin-tagged proteins. This fact and the identification of two major-histocompatibility-complex-(MHC)-encoded proteasomal subunits, LMP2/7, suggest an important role of the proteasome in antigen processing. Using purified 20S proteasomes from a wild-type and a LMP2/7-deletion T lymphoblastoid cell line, we analyzed the effect of LMP2/7 on the peptidase and proteolytic activities of the complex in the context of various purification and activation methods. The incorporation of LMP2/7 alters the peptidase activity against fluorogenic substrates, but these effects are not reflected in the time-dependent degradation pattern of oxidized insulin B chain or of peptide epitopes of an antigenic protein. No effect of LMP2/7 on the degradation pattern of these substrates was observed by either reverse-phase chromatography, pool sequencing, or mass spectrometry. The 20S proteasome can cleave insulin B chain at nearly every position, showing that the P1 position alone does not determine the cleavage sites. The maximum of the length distribution of the end products, makes these ideal candidates for MHC display; yet we find that a natural epitope derived from human histone H3 is further degraded by 20S proteasomes. Alanine scans and substitutions with related amino acids of this epitope indicate that, as in insulin B chain, the cleavage sites are not determined by the P1 position alone.
Collapse
Affiliation(s)
- B Ehring
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
26
|
Eggers M, Boes-Fabian B, Ruppert T, Kloetzel PM, Koszinowski UH. The cleavage preference of the proteasome governs the yield of antigenic peptides. J Exp Med 1995; 182:1865-70. [PMID: 7500032 PMCID: PMC2192259 DOI: 10.1084/jem.182.6.1865] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Proteasomes degrade endogenous proteins in the cytosol. The potential contribution of the proteasome to the effect of flanking sequences on the presentation of an antigenic epitope presented by the major histocompatibility complex class I allele Ld was studied. Peptides generated in cells from minigenes coding for peptides of 17- and 19-amino acid length were compared with the in vitro 20S proteasome degradation products of the respective synthetic peptides. The quality of generated peptides was independent of ubiquitination. In vivo and in vitro processing products were indistinguishable with respect to peptide size and abundance. Altering the neighboring sequence substantially improved the yield of the final antigenic nonapeptide by 20S proteasome cleavage. These results suggest that, in addition to the presence of major histocompatibility complex class I allelic motifs, the cleavage preference of the proteasome can define the antigenic potential of a protein.
Collapse
Affiliation(s)
- M Eggers
- Abteilung Virologie, Ruprecht-Karls Universität Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Kopp F, Kristensen P, Hendil KB, Johnsen A, Sobek A, Dahlmann B. The human proteasome subunit HsN3 is located in the inner rings of the complex dimer. J Mol Biol 1995; 248:264-72. [PMID: 7537829 DOI: 10.1016/s0022-2836(95)80049-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Subunit HsN3 of the human proteasome is a beta-type subunit homologous to PRE4 from yeast, X1 beta from Xenopus and RN3 from the rat. Using electron microscopy, the binding sites of a monoclonal antibody with specificity for subunit HsN3 have been located in the two juxtaposed inner rings of the human proteasome. Subunit HsN3 was present in two copies, one in each ring, in accordance with our concept of two identical halves making up the complete human proteasome. The subunit is involved in the trypsin-like as well as the peptidylglutamyl-peptide cleavage activities.
Collapse
Affiliation(s)
- F Kopp
- Diabetes Forschungsinstitut, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995; 268:533-9. [PMID: 7725097 DOI: 10.1126/science.7725097] [Citation(s) in RCA: 1167] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structure of the proteasome from the archaebacterium Thermoplasma acidophilum has been elucidated by x-ray crystallographic analysis by means of isomorphous replacement and cyclic averaging. The atomic model was built and refined to a crystallographic R factor of 22.1 percent. The 673-kilodalton protease complex consists of 14 copies of two different subunits, alpha and beta, forming a barrel-shaped structure of four stacked rings. The two inner rings consist of seven beta subunits each, and the two outer rings consist of seven alpha subunits each. A narrow channel controls access to the three inner compartments. The alpha 7 beta 7 beta 7 alpha 7 subunit assembly has 72-point group symmetry. The structures of the alpha and beta subunits are similar, consisting of a core of two antiparallel beta sheets that is flanked by alpha helices on both sides. The binding of a peptide aldehyde inhibitor marks the active site in the central cavity at the amino termini of the beta subunits and suggests a novel proteolytic mechanism.
Collapse
Affiliation(s)
- J Löwe
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Dawson SP, Arnold JE, Mayer NJ, Reynolds SE, Billett MA, Gordon C, Colleaux L, Kloetzel PM, Tanaka K, Mayer RJ. Developmental changes of the 26 S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J Biol Chem 1995; 270:1850-8. [PMID: 7829521 DOI: 10.1074/jbc.270.4.1850] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
cDNA clone MS73 codes for an ATPase that is a regulatory subunit of the 26 S proteasome. Reverse transcriptase polymerase chain reaction analysis demonstrates that the expression of the gene dramatically increases in the pre-eclosion period. Western analyses show increases in other related. ATPases including MS73, MSS1, and mts2 but not TBP1. A similar increase in the 30-kDa subunit of the 20 S proteasome occurs. There are accompanying large changes in the peptidase activities of the 26 S proteasome. Relative to the 30-kDa subunit, there is no change in MSS1 and MS73, a 3-fold increase in mts2, and a 5-fold decline in TBP1. A large increase in the concentration of 26 S proteasomes together with extensive regulatory reprogramming may facilitate rapid muscular proteolysis.
Collapse
Affiliation(s)
- S P Dawson
- Department of Biochemistry, University of Nottingham Medical School, Queen's Medical Centre, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ustrell V, Pratt G, Rechsteiner M. Effects of interferon gamma and major histocompatibility complex-encoded subunits on peptidase activities of human multicatalytic proteases. Proc Natl Acad Sci U S A 1995; 92:584-8. [PMID: 7831334 PMCID: PMC42786 DOI: 10.1073/pnas.92.2.584] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have examined several peptidase activities of human multicatalytic protease (MCP) purified from the lymphoblastoid cell line 721.45 and a deletion mutant derivative, 721.174, lacking MCP subunits encoded in the major histocompatibility complex (MHC) class II region. Wild-type lymphoblast MCP hydrolyzed a specific peptide, glutaryl-Gly-Gly-Phe-4-methylcoumaryl-7-amide (-MCA), several times faster than the mutant enzyme did, suggesting that MHC-encoded subunits may provide this activity. Contrary to a recent report [Driscoll, J., Brown, M. G., Finley, D. & Monaco, J J. (1993) Nature (London) 365, 262-264], we did not detect significant aminopeptidase associated with lymphoblast MCPs. Our results also differ markedly from those of Gaczynska et al. [Gaczynska, M., Rock, K. L. & Goldberg, A L. (1993) Nature (London) 365, 264-267], who reported that gamma interferon (IFN-gamma) alters the peptidase activities of lymphoblast MCPs. We found that IFN-gamma did not produce significant differences in the peptidase activities of purified MCPs. Moreover, our measurements of Vmax and Km for succinyl-Leu-Leu-Val-Tyr-MCA hydrolysis differ 600-fold and 15-fold, respectively, from those reported by Gaczynska et al. On balance, the findings presented here do not support the idea that IFN-gamma induces major changes in the peptidase activity of purified MCPs.
Collapse
Affiliation(s)
- V Ustrell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132
| | | | | |
Collapse
|
31
|
Rivett AJ, Mason GG, Thomson S, Pike AM, Savory PJ, Murray RZ. Catalytic components of proteasomes and the regulation of proteinase activity. Mol Biol Rep 1995; 21:35-41. [PMID: 7565662 DOI: 10.1007/bf00990968] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The proteasome (multicatalytic proteinase complex) is a large multimeric complex which is found in the nucleus and cytoplasm of eukaryotic cells. It plays a major role in both ubiquitin-dependent and ubiquitin-independent nonlysosomal pathways of protein degradation. Proteasome subunits are encoded by members of the same gene family and can be divided into two groups based on their similarity to the alpha and beta subunits of the simpler proteasome isolated from Thermoplasma acidophilum. Proteasomes have a cylindrical structure composed of four rings of seven subunits. The 26S form of the proteasome, which is responsible for ubiquitin-dependent proteolysis, contains additional regulatory complexes. Eukaryotic proteasomes have multiple catalytic activities which are catalysed at distinct sites. Since proteasomes are unrelated to other known proteases, there are no clues as to which are the catalytic components from sequence alignments. It has been assumed from studies with yeast mutants that beta-type subunits play a catalytic role. Using a radiolabelled peptidyl chloromethane inhibitor of rat liver proteasomes we have directly identified RC7 as a catalytic component. Interestingly, mutants in Pre1, the yeast homologue of RC7, have already been reported to have defective chymotrypsin-like activity. These results taken together confirm a direct catalytic role for these beta-type subunits. Proteasome activities are sensitive to conformational changes and there are several ways in which proteasome function may be modulated in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A J Rivett
- Department of Biochemistry, University of Leicester, UK
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- J J Birktoft
- Roche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey 07110
| | | |
Collapse
|
33
|
Affiliation(s)
- A McMichael
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
34
|
Affiliation(s)
- A J Rivett
- Department of Biochemistry, University of Leicester, United Kingdom
| | | | | |
Collapse
|
35
|
Savory PJ, Djaballah H, Angliker H, Shaw E, Rivett AJ. Reaction of proteasomes with peptidylchloromethanes and peptidyldiazomethanes. Biochem J 1993; 296 ( Pt 3):601-5. [PMID: 8280057 PMCID: PMC1137740 DOI: 10.1042/bj2960601] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The multicatalytic endopeptidase complex (proteasome) has multiple distinct peptidase activities. These activities have often been referred to as 'chymotrypsin-like', 'trypsin-like' and 'peptidylglutamyl-peptide hydrolase' activities according to the type of residue in the P1 position, although it is now clear that mammalian proteasomes have at least five distinct catalytic sites. In the present study, potential affinity-labelling reagents (peptidylchloromethanes, peptidyldiazomethanes, a peptidylfluoromethane and peptidylsulphonium salts) containing hydrophobic, basic or acidic amino acid residues in the P1 position have been tested for inhibition of the different activities of the rat liver proteinase complex. The results show that individual peptidase activities of proteasomes can be inhibited by a variety of peptidylchloromethanes and peptidyldiazomethanes. Although the rate of inactivation of proteasomes by even the most effective peptidylchloromethanes and peptidyldiazomethanes are often quite slow (k(obs)/[I] in the range 0.1-10 M-1 x s-1) compared with the reaction of similar compounds with some other proteinases, the results provide useful information concerning the specificity of the distinct catalytic centres of proteasomes, and some selective affinity-labelling reagents have been identified. Tyr-Gly-Arg-chloromethane was found to be a useful inhibitor of trypsin-like activity. Inhibition of the other peptidase activities was often incomplete, even after repeated addition of inhibitor, and it proved to be difficult to predict the effect of different reagents. For example, Cbz-Tyr-Ala-Glu-chloromethane was found to inhibit 'chymotrypsin-like' activity (assayed with Ala-Ala-Phe-7-amino-4-methylcoumarin or succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin), while the best inhibitors of 'peptidylglutamyl-peptide hydrolase' activities (assayed with benzyloxycarbonyl-Leu-Leu-Glu beta-naphthylamide) were peptidyldiazomethanes containing hydrophobic amino acid residues. These results suggest that the original nomenclature of proteasome activities is misleading, because the residue in the P1 position is not the only determinant of specificity.
Collapse
Affiliation(s)
- P J Savory
- Department of Biochemistry, University of Leicester, U.K
| | | | | | | | | |
Collapse
|
36
|
Ruiz de Mena I, Mahillo E, Arribas J, Castaño JG. Kinetic mechanism of activation by cardiolipin (diphosphatidylglycerol) of the rat liver multicatalytic proteinase. Biochem J 1993; 296 ( Pt 1):93-7. [PMID: 8250860 PMCID: PMC1137659 DOI: 10.1042/bj2960093] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of phospholipids on the trypsin-like, chymotrypsin-like and peptidylglutamyl-peptide-hydrolysing activities of the so-called latent form of the rat liver multicatalytic proteinase was studied, assaying them with the following substrates: N-Cbz-ARR-4MNA (N-Cbz, N-benzyloxycarbonyl; 4MNA, 4-methoxy-beta-naphthylamide), N-Suc-LLVY-MCA (N-Suc, N-succinyl; MCA, methylcoumarin) and N-Cbz-LLE-beta-NA (beta-NA, beta-naphthylamide) respectively (amino acids are shown as their one-letter symbol). For the most part neither lysophospholipids nor phospholipids at 20 micrograms/ml have any effect on the activity of the enzyme (assayed at 50 microM peptide), except for phosphatidylserine, which activates 2-fold the hydrolysis of N-Suc-LLVY-MCA, and phosphatidylinositol, which inhibits by 20% the hydrolysis of N-Cbz-LLE-beta-NA. By contrast, cardiolipin (diphosphatidylglycerol) is a strong activator of the hydrolysis of N-Suc-LLVY-MCA (60-fold) and N-Cbz-LLE-beta-NA (30-fold), with half-maximal activation at concentrations of 0.15 micrograms/ml and 1.5 micrograms/ml respectively. The activation of N-Suc-LLVY-MCA hydrolysis is due to an increase of the affinity of the enzyme for the peptide and to an increase in the Vmax. (30-fold). The activation of N-Cbz-LLE-beta-NA hydrolysis is explained by suppressing the co-operativity for this substrate, producing hyperbolic kinetics with a Km of 60 microM and a 15-fold increase in the Vmax. of the enzyme. This activation by cardiolipin was completely suppressed by micromolar concentrations of fluophenazine, a drug known to inhibit other phospholipid-regulated process. Cardiolipin activation and the known activation by SDS are additive, either at suboptimal or optimal concentrations of both activators. Cardiolipin also activates the in vitro degradation of some proteins from metabolically labelled total cellular extracts by the latent multicatalytic proteinase. These results clearly show that cardiolipin is a natural positive modulator of the peptidase and proteolytic activities of the multicatalytic proteinase, probably acting through a binding site different from that of SDS.
Collapse
Affiliation(s)
- I Ruiz de Mena
- Departamento de Bioquímica, Facultad de Medicina de la UAM, Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Djaballah H, Rowe AJ, Harding SE, Rivett AJ. The multicatalytic proteinase complex (proteasome): structure and conformational changes associated with changes in proteolytic activity. Biochem J 1993; 292 ( Pt 3):857-62. [PMID: 8318014 PMCID: PMC1134193 DOI: 10.1042/bj2920857] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The multicatalytic proteinase complex or proteasome is a high-molecular-mass multisubunit proteinase which is found in the nucleus and cytoplasm of eukaryotic cells. Electron microscopy of negatively stained rat liver proteinase preparations suggests that the particle has a hollow cylindrical shape (approximate width 11 nm and height 17 nm using methylamine tungstate as the negative stain) with a pseudo-helical arrangement of subunits rather than the directly stacked arrangement suggested previously. The side-on view has a 2-fold rotational symmetry, while end-on there appears to be six or seven subunits around the ring. This model is very different from that proposed by others for the proteinase from rat liver but resembles the structure of the simpler archaebacterial proteasome. The possibility of conformational changes associated with the addition of effectors of proteolytic activity has been investigated by sedimentation velocity analysis and dynamic light-scattering measurements. The results provide the first direct evidence for conformational changes associated with the observed positive co-operativity in one component of the peptidylglutamylpeptide hydrolase activity as well as with the stimulation of peptidylglutamylpeptide hydrolase activities by MnCl2. In the latter case, there appears to be a correlation between changes in the shape of the molecule and the effect on activity. KCl and low concentrations of SDS may also act by inducing conformational changes within the complex. Sedimentation-velocity measurements also provide evidence for the formation of intermediates during dissociation of the complex by urea, guanidinium chloride or sodium thiocyanate. Dissociation of the complex either by these agents or by treatment at low pH leads to inactivation of its proteolytic components. The results suggest that activation and inhibition of the various proteolytic activities may be mediated by measurable changes in size and shape of the molecules.
Collapse
Affiliation(s)
- H Djaballah
- Department of Biochemistry, University of Leicester, U.K
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- A J Rivett
- Department of Biochemistry, University of Leicester, U.K
| |
Collapse
|
39
|
Savory PJ, Rivett AJ. Leupeptin-binding site(s) in the mammalian multicatalytic proteinase complex. Biochem J 1993; 289 ( Pt 1):45-8. [PMID: 8424770 PMCID: PMC1132128 DOI: 10.1042/bj2890045] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The multicatalytic proteinase (MCP) complex is a major nonlysosomal proteinase which plays an important role in non-lysosomal pathways of protein degradation and which has recently been implicated in antigen processing. The mammalian MCP complex is composed of more than 20 different types of polypeptide, but it is not yet clear which of these components are responsible for its proteolytic activities. The complex has at least three distinct types of proteolytic activity. One of these, the so-called 'trypsin-like' activity, which involves cleavage on the carboxy side of basic amino acid residues, can be selectively and completely inhibited by peptidyl arginine aldehydes (such as leupeptin and antipain), and is also the most sensitive to inhibition by thiol-reactive reagents. In the present study N-[ethyl-1-14C]ethylmaleimide has been used to specifically label thiol groups protected by leupeptin binding. The results suggest that one or two polypeptide components within the complex can be protected against modification by N-ethylmaleimide. These components may be responsible for the 'trypsin-like' activity of the complex or may be adjacent to the catalytic component(s) and play an important role in substrate binding.
Collapse
Affiliation(s)
- P J Savory
- Department of Biochemistry, University of Leicester, U.K
| | | |
Collapse
|
40
|
Djaballah H, Harness JA, Savory PJ, Rivett AJ. Use of serine-protease inhibitors as probes for the different proteolytic activities of the rat liver multicatalytic proteinase complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:629-34. [PMID: 1425669 DOI: 10.1111/j.1432-1033.1992.tb17329.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The multicatalytic proteinase (MCP) complex catalyses cleavage of bonds on the carboxy-group side of basic, hydrophobic or acidic amino acid residues. Originally, it was proposed that the complex contained three distinct types of catalytic component. MCP from rat liver has been assayed for so-called trypsin-like activity with Boc-Leu-Ser-Thr-Arg-NH-Mec (Mec, 4-methylcoumarin; Boc, t-butoxycarbonyl), for chymotrypsin-like activity with Ala-Ala-Phe-NH-Mec and Suc-Leu-Leu-Val-Tyr-NH-MEc (Suc, succinyl), and peptidyl-glutamylpeptide hydrolase activity with Cbz-Leu-Leu-Glu-Nap (Nap, naphthylamide; Cbz, benzyloxycarbonyl). Results of these studies suggest that as many as five distinct components can be distinguished, one for the trypsin-like activity and two for each of the others. The activities were tested with a variety of serine-protease inhibitors, and other novel effectors have also been identified. The two most effective inhibitors were 4-(2-amino-ethyl)benzenesulphonyl fluoride, which selectivity inactivates the trypsin-like activity, and 3,4-dichloroisocoumarin which inhibits chymotrypsin-like activity and the second, cooperative component [Djaballah, H. & Rivett, A. J. (1992) Biochemistry 31, 4133-4141] of peptidylglutamylpeptide hydrolase activity. The three activities inhibited by 3,4-dichloroisocoumarin can easily be distinguished by the effects of chymostatin analogues, diisopropylfluorophosphate, guanidine/HCl and casein. The results support the view that the enzyme is a novel type of serine protease and suggest that it may contain at least five distinct catalytic components. Marked differences in the reactivities of the different catalytic sites with different reagents can be used to distinguish between them.
Collapse
Affiliation(s)
- H Djaballah
- Department of Biochemistry, University of Leicester, England
| | | | | | | |
Collapse
|