1
|
Sengupta K, Joyce JP, Decamps L, Kang L, Bjornsson R, Rüdiger O, DeBeer S. Investigating the Molybdenum Nitrogenase Mechanistic Cycle Using Spectroelectrochemistry. J Am Chem Soc 2025; 147:2099-2114. [PMID: 39746667 PMCID: PMC11744760 DOI: 10.1021/jacs.4c16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N2) to ammonia (NH3) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism. Our biohybrid system enabled electron transfer via a mild mediator, likely mimicking the natural electron flow through the P-cluster to FeMoco, the enzyme's active site. For the first time, we experimentally observed both terminal and bridging S-H stretching frequencies, resulting from the protonation of bridging sulfides in FeMoco during turnover conditions providing direct evidence of their role in catalysis. These experimental observations are further supported by QM/MM calculations. Additionally, we investigated CO inhibition, demonstrating both CO binding and unbinding dynamics under electrochemical conditions. These insights not only advance our understanding of the mechanistic cycle of molybdenum nitrogenase but also establish a foundation for studying alternative nitrogenases, including vanadium and iron nitrogenases.
Collapse
Affiliation(s)
- Kushal Sengupta
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Justin P. Joyce
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Laure Decamps
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Liqun Kang
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | | | - Olaf Rüdiger
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| |
Collapse
|
2
|
Bains W, Petkowski JJ, Seager S. Alternative Solvents for Life: Framework for Evaluation, Current Status, and Future Research. ASTROBIOLOGY 2024; 24:1231-1256. [PMID: 39623882 DOI: 10.1089/ast.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Life is a complex, dynamic chemical system that requires a dense fluid solvent in which to take place. A common assumption is that the most likely solvent for life is liquid water, and some researchers argue that water is the only plausible solvent. However, a persistent theme in astrobiological research postulates that other liquids might be cosmically common and could be solvents for the chemistry of life. In this article, we present a new framework for the analysis of candidate solvents for life, and we deploy this framework to review substances that have been suggested as solvent candidates. We categorize each solvent candidate through the following four criteria: occurrence, solvation, solute stability, and solvent chemical functionality. Our semiquantitative approach addresses all the requirements for a solvent not only from the point of view of its chemical properties but also from the standpoint of its biochemical function. Only the protonating solvents fulfill all the chemical requirements to be a solvent for life, and of those only water and concentrated sulfuric acid are also likely to be abundant in a rocky planetary context. Among the nonprotonating solvents, liquid CO2 stands out as a planetary solvent, and its potential as a solvent for life should be explored. We conclude with a discussion of whether it is possible for a biochemistry to change solvents as an adaptation to radical changes in a planet's environment. Our analysis provides the basis for prioritizing future experimental work to explore potential complex chemistry on other planets. Key Words: Habitability-Alternative solvents for life-Alternative biochemistry. Astrobiology 24, 1231-1256.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics & Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Mukherjee P, Dutta J, Roy M, Thakur TK, Mitra A. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55851-55894. [PMID: 39251536 DOI: 10.1007/s11356-024-34706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/17/2022] [Indexed: 09/11/2024]
Abstract
In recent times, increased geogenic and human-centric activities have caused significant heavy metal(loid) (HM) contamination of soil, adversely impacting environmental, plant, and human health. Phytoremediation is an evolving, cost-effective, environment-friendly, in situ technology that employs indigenous/exotic plant species as natural purifiers to remove toxic HM(s) from deteriorated ambient soil. Interestingly, the plant's rhizomicrobiome is pivotal in promoting overall plant nutrition, health, and phytoremediation. Certain secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) directly participate in HM bioremediation through chelation/mobilization/sequestration/bioadsorption/bioaccumulation, thus altering metal(loid) bioavailability for their uptake, accumulation, and translocation by plants. Moreover, the metallotolerance of the PGPR and the host plant is another critical factor for the successful phytoremediation of metal(loid)-polluted soil. Among the phytotechniques available for HM remediation, phytoextraction/phytoaccumulation (HM mobilization, uptake, and accumulation within the different plant tissues) and phytosequestration/phytostabilization (HM immobilization within the soil) have gained momentum in recent years. Natural metal(loid)-hyperaccumulating plants have the potential to assimilate increased levels of metal(loid)s, and several such species have already been identified as potential candidates for HM phytoremediation. Furthermore, the development of transgenic rhizobacterial and/or plant strains with enhanced environmental adaptability and metal(loid) uptake ability using genetic engineering might open new avenues in PGPR-assisted phytoremediation technologies. With the use of the Geographic Information System (GIS) for identifying metal(loid)-impacted lands and an appropriate combination of normal/transgenic (hyper)accumulator plant(s) and rhizobacterial inoculant(s), it is possible to develop efficient integrated phytobial remediation strategies in boosting the clean-up process over vast regions of HM-contaminated sites and eventually restore ecosystem health.
Collapse
Affiliation(s)
- Pritam Mukherjee
- Department of Oceanography, Techno India University, West Bengal, EM 4/1 Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Joystu Dutta
- Department of Environmental Science, University Teaching Department, Sant Gahira Guru University, Ambikapur, 497001, Chhattisgarh, India
| | - Madhumita Roy
- Department of Microbiology, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, 484886, Madhya Pradesh, India
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, 35 B. C. Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
4
|
Negi R, Sharma B, Jan T, Kaur T, Chowdhury S, Kapoor M, Singh S, Kumar A, Rai AK, Rustagi S, Shreaz S, Kour D, Ahmed N, Kumar K, Yadav AN. Microbial Consortia: Promising Tool as Plant Bioinoculants for Agricultural Sustainability. Curr Microbiol 2024; 81:222. [PMID: 38874817 DOI: 10.1007/s00284-024-03755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
In the present scenario, growing population demands more food, resulting in the need for sustainable agriculture. Numerous approaches are explored in response to dangers and obstacles to sustainable agriculture. A viable approach is to be exploiting microbial consortium, which generate diverse biostimulants with growth-promoting characteristics for plants. These bioinoculants play an indispensable role in optimizing nutrient uptake efficiency mitigating environmental stress. Plant productivity is mostly determined by the microbial associations that exist at the rhizospheric region of plants. The engineered consortium with multifunctional attributes can be effectively employed to improve crop growth efficacy. A number of approaches have been employed to identify the efficient consortia for plant growth and enhanced crop productivity. Various plant growth-promoting (PGP) microbes with host growth-supporting characteristics were investigated to see if they might work cohesively and provide a cumulative effect for improved growth and crop yield. The effective microbial consortia should be assessed using compatibility tests, pot experimentation techniques, generation time, a novel and quick plant bioassay, and sensitivity to external stimuli (temperature, pH). The mixture of two or more microbial strains found in the root microbiome stimulates plant growth and development. The present review deals with mechanism, formulation, inoculation process, commercialization, and applications of microbial consortia as plant bioinoculants for agricultural sustainability.
Collapse
Affiliation(s)
- Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Anu Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India.
| |
Collapse
|
5
|
Gómez F, Rodríguez N, Rodríguez-Manfredi JA, Escudero C, Carrasco-Ropero I, Martínez JM, Ferrari M, De Angelis S, Frigeri A, Fernández-Sampedro M, Amils R. Association of Acidotolerant Cyanobacteria to Microbial Mats below pH 1 in Acidic Mineral Precipitates in Río Tinto River in Spain. Microorganisms 2024; 12:829. [PMID: 38674771 PMCID: PMC11052175 DOI: 10.3390/microorganisms12040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This report describes acidic microbial mats containing cyanobacteria that are strongly associated to precipitated minerals in the source area of Río Tinto. Río Tinto (Huelva, Southwestern Spain) is an extreme acidic environment where iron and sulfur cycles play a fundamental role in sustaining the extremely low pH and the high concentration of heavy metals, while maintaining a high level of microbial diversity. These multi-layered mineral deposits are stable all year round and are characterized by a succession of thick greenish-blue and brownish layers mainly composed of natrojarosite. The temperature and absorbance above and below the mineral precipitates were followed and stable conditions were detected inside the mineral precipitates. Different methodologies, scanning and transmission electron microscopy, immunological detection, fluorescence in situ hybridization, and metagenomic analysis were used to describe the biodiversity existing in these microbial mats, demonstrating, for the first time, the existence of acid-tolerant cyanobacteria in a hyperacidic environment of below pH 1. Up to 0.46% of the classified sequences belong to cyanobacterial microorganisms, and 1.47% of the aligned DNA reads belong to the Cyanobacteria clade.
Collapse
Affiliation(s)
- Felipe Gómez
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | | | - Cristina Escudero
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | | | - José M. Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| | - Marco Ferrari
- Istituto di Astrofisica e Planetologia Spaziali (INAF), via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Simone De Angelis
- Istituto di Astrofisica e Planetologia Spaziali (INAF), via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alessandro Frigeri
- Istituto di Astrofisica e Planetologia Spaziali (INAF), via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Maite Fernández-Sampedro
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Kantor EJH, Robicheau BM, Tolman J, Archibald JM, LaRoche J. Metagenomics reveals the genetic diversity between sublineages of UCYN-A and their algal host plastids. ISME COMMUNICATIONS 2024; 4:ycae150. [PMID: 39670058 PMCID: PMC11637426 DOI: 10.1093/ismeco/ycae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
UCYN-A (or Cand. Atelocyanobacterium thalassa) has been recognized as a globally distributed, early stage, nitrogen-fixing organelle (the "nitroplast") of cyanobacterial origin present in the haptophyte alga Braarudosphaera bigelowii. Although the nitroplast was recognized as UCYN-A2, not all sublineages of UCYN-A have been confirmed as nitroplasts, and full genomes are still lacking for several known sublineages. We investigated the differences between UCYN-A sublineages by sequencing and assembly of metagenomic sequences acquired from cultured biomass from NW Atlantic seawater, which yielded near-complete Metagenome Assembled Genomes (MAGs) corresponding to UCYN-A1, -A4, and the plastid of the UCYN-A4-associated B. bigelowii. Weekly time-series data paired with the recurrence of specific microbes in cultures used for metagenomics gave further insight into the microbial community associated with the algal/UCYN-A complex. The UCYN-A1 MAG was found to have 99% average nucleotide identity (ANI) to the Pacific-derived reference genome despite its Atlantic Ocean origin. Comparison of the UCYN-A4 MAG (the initial genome sequenced from this sublineage) to other genomes showed that UCYN-A4 is sufficiently genetically distinct from both UCYN-A1 and UCYN-A2 (ANI of ~83% and ~85%, respectively) to be considered its own sublineage, but more similar to UCYN-A2 than -A1, supporting its possible classification as a nitroplast. The B. bigelowii plastid sequence was compared with published plastid sequences (sharing 78% ANI with Chrysochromulina parva) adding to our understanding of genomic variation across Haptophyta organelles and emphasizing the need for further full genomic sequencing of B. bigelowii genotypes and their organelles.
Collapse
Affiliation(s)
- Ella Joy H Kantor
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | | | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - John M Archibald
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Woern C, Grossmann L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol Adv 2023; 69:108240. [PMID: 37647973 DOI: 10.1016/j.biotechadv.2023.108240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Wu GK, Zhao MX, Chen SR, Sun YN, Qin SF, Wang AJ, Ye QF, Alwathnani H, You LX, Rensing C. Antioxidant CeO 2 doped with carbon dots enhance ammonia production by an electroactive Azospirillum humicireducens SgZ-5 T. CHEMOSPHERE 2023; 341:140094. [PMID: 37678589 DOI: 10.1016/j.chemosphere.2023.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Microbial nitrogen fixation is a fundamental process in the nitrogen cycle, providing a continuous supply of biologically available nitrogen essential for life. In this study, we combined cerium oxide-doped carbon dots (CeO2/CDs) with electroactive nitrogen-fixing bacterium Azospirillum humicireducens SgZ-5T to enhance nitrogen fixation through ammonium production. Our research demonstrates that treatment of SgZ-5T cells with CeO2/CDs (0.2 mg mL-1) resulted in a 265.70% increase in ammonium production compared to SgZ-5T cells alone. CeO2/CDs facilitate electron transfer in the biocatalytic process, thereby enhancing nitrogenase activity. Additionally, CeO2/CDs reduce the concentration of reactive oxygen species in SgZ-5T cells, leading to increased ammonium production. The upregulation of nifD, nifH and nifK gene expression upon incorporation of CeO2/CDs (0.2 mg mL-1) into SgZ-5T cells supports this observation. Our findings not only provide an economical and environmentally friendly approach to enhance biological nitrogen fixation but also hold potential for alleviating nitrogen fertilizer scarcity.
Collapse
Affiliation(s)
- Gao-Kai Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Meng-Xin Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Si-Ru Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yi-Nan Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Su-Fang Qin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Qun-Feng Ye
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
9
|
Ali M, Ahmed I, Tariq H, Abbas S, Zia MH, Mumtaz A, Sharif M. Growth improvement of wheat ( Triticum aestivum) and zinc biofortification using potent zinc-solubilizing bacteria. FRONTIERS IN PLANT SCIENCE 2023; 14:1140454. [PMID: 37251763 PMCID: PMC10213544 DOI: 10.3389/fpls.2023.1140454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Zinc (Zn) is an indispensable element for proper plant growth. A sizeable proportion of the inorganic Zn that is added to soil undergoes a transformation into an insoluble form. Zinc-solubilizing bacteria (ZSB) have the potential to transform the insoluble Zn into plant-accessible forms and are thus promising alternatives for Zn supplementation. The current research was aimed at investigating the Zn solubilization potential of indigenous bacterial strains and to evaluate their impact on wheat growth and Zn biofortification. A number of experiments were conducted at the National Agriculture Research Center (NARC), Islamabad, during 2020-21. A total of 69 strains were assessed for their Zn-solubilizing ability against two insoluble Zn sources (ZnO and ZnCO3) using plate assay techniques. During the qualitative assay, the solubilization index and solubilization efficiency were measured. The qualitatively selected Zn-solubilizing bacterial strains were further tested quantitatively using broth culture for Zn and phosphorus (P) solubility. Tricalcium phosphate was used as insoluble source of P. The results showed that broth culture pH was negatively correlated with Zn solubilization, i.e., ZnO (r2 = 0.88) and ZnCO3 (r2 = 0.96). Ten novel promising strains, i.e., Pantoea sp. NCCP-525, Klebsiella sp. NCCP-607, Brevibacterium sp. NCCP-622, Klebsiella sp. NCCP-623, Acinetobacter sp. NCCP-644, Alcaligenes sp. NCCP-650, Citrobacter sp. NCCP-668, Exiguobacterium sp. NCCP-673, Raoultella sp. NCCP-675, and Acinetobacter sp. NCCP-680, were selected from the ecology of Pakistan for further experimentation on wheat crop based on plant growth-promoting rhizobacteria (PGPR) traits, i.e., solubilization of Zn and P in addition to being positive for nifH and acdS genes. Before evaluating the bacterial strains for plant growth potential, a control experiment was also conducted to determine the highest critical Zn level from ZnO to wheat growth using different Zn levels (0.1, 0.05, 0.01, 0.005, and 0.001% Zn) against two wheat varieties (Wadaan-17 and Zincol-16) in sand culture under glasshouse conditions. Zinc-free Hoagland nutrients solution was used to irrigate the wheat plants. As a result, 50 mg kg-1 of Zn from ZnO was identified as the highest critical level for wheat growth. Using the critical level (50 mg kg-1 of Zn), the selected ZSB strains were inoculated alone and in consortium to the seed of wheat, with and without the use of ZnO, in sterilized sand culture. The ZSB inoculation in consortium without ZnO resulted in improved shoot length (14%), shoot fresh weight (34%), and shoot dry weight (37%); with ZnO root length (116%), it saw root fresh weight (435%), root dry weight (435%), and Zn content in the shoot (1177%) as compared to the control. Wadaan-17 performed better on growth attributes, while Zincol-16 had 5% more shoot Zn concentration. The present study concluded that the selected bacterial strains show the potential to act as ZSB and are highly efficient bio-inoculants to combat Zn deficiency, and the inoculation of these strains in consortium performed better in terms of growth and Zn solubility for wheat as compared to individual inoculation. The study further concluded that 50 mg kg-1 Zn from ZnO had no negative impact on wheat growth; however, higher concentrations hampered wheat growth.
Collapse
Affiliation(s)
- Murad Ali
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
- Cereal Crops Research Institute (CCRI), Pirsabak, Nowshera, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Hamza Tariq
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Saira Abbas
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Munir Hussain Zia
- Research and Development Department, Fauji Fertilizer Company (FFC) Limited, Rawalpindi, Pakistan
| | - Amer Mumtaz
- Food Sciences Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Sharif
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
10
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Liu DW, Ji L, Nie Y, Li Y, Xu L, Liu JQ, Xue G. Facile and controllable preparation of carbon microsphere for electro-driven nitrogen reduction: Accommodating nitrogen doping with hierarchical porous structure. J Colloid Interface Sci 2023; 634:995-1004. [PMID: 36571861 DOI: 10.1016/j.jcis.2022.12.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Driven by sustainable electricity, electrochemical nitrogen fixation under ambient conditions is considered as a promising strategy to generate low-concentrated NH3/NH4+. Under the principle of doping and porous engineering, nitrogen-doped carbon microsphere with hierarchical pores (NC-HP) is fabricated via pyrolyzing polymer microsphere. Hierarchical structure with macro-, meso- and micropores is obtained by assembling melamine/phenol-formaldehyde oligomers in Pickering droplets, with the assistance of triblock copolymer Pluronic F127. The regularity of mesopores is strongly affected by melamine to phenol mass ratio. For NC-HP, nitrogen content (N-content) in the carbon matrix can reach as high as 19.1 wt%, yet trade-off effect is observed between N-content and regularity of mesopores. As consequence, NC-HP-3 with N-content of 15.6 wt% and distinct mesopores exhibits the highest catalytic performance. At -0.5 V vs. RHE, NH3/NH4+ production rate and Faradaic efficiency (FE) value reach 15.6 μg∙mgcat.-1∙h-1 and 15.5%, respectively. It shows excellent recyclability, and no degradations are observed with respect to morphology and porous structure. In this hierarchical porous structure, mesopores are expected to facilitate mass transfer for both electrolyte ions and nitrogen, and hence catalytic active sites (e.g. pyrrolic- and pyridinic-N species) in hierarchically mutually connected pores can be well utilized.
Collapse
Affiliation(s)
- Da-Wei Liu
- School of Chemical Engineering, Northwest University, International Science & Technology Cooperation Base of Most for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, 229 Taibai North Road, Xi'an 710069, PR China
| | - Lei Ji
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China
| | - Yan Nie
- School of Chemical Engineering, Northwest University, International Science & Technology Cooperation Base of Most for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, 229 Taibai North Road, Xi'an 710069, PR China
| | - Yong Li
- Research Center for Fine Chemicals Engineering, Shanxi University, No.92 Wucheng Rd., Taiyuan 030006, PR China
| | - Long Xu
- School of Chemical Engineering, Northwest University, International Science & Technology Cooperation Base of Most for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, 229 Taibai North Road, Xi'an 710069, PR China
| | - Ji-Quan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China.
| | - Ganglin Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China
| |
Collapse
|
12
|
Kamran A, Mushtaq M, Arif M, Rashid S. Role of biostimulants (ascorbic acid and fulvic acid) to synergize Rhizobium activity in pea (Pisum sativum L. var. Meteor). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:668-682. [PMID: 36801772 DOI: 10.1016/j.plaphy.2023.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Biostimulants such as ascorbic acid (AA) and fulvic acid (FA)can enhance the efficiency of root-nodulating bacteria. This study investigates optimum concentration of these two biostimulants to maximize the Rhizobium activity and increase root size, nodulation capability, NPK uptake, yield and quality. Interaction with nitrogenase enzyme through molecular docking was also studied by using both AA and FA as ligands to better understand their inhibitory role in excess amounts. The findings of the study suggest: the combined application of both FA and AA at 200 ppm concentrations proved to be more effective than the individual application. Excellent vegetative growth was noticed which translated into an increased reproductive growth i.e statistically significant increase in number of pods per plant, fresh and dry weight of pods per plant, number of seeds per pod, total chlorophyll, carotenoids and chemical constituents of pea seeds i.e. N (16.17%), P (40.47%), K (39.96%) and protein (16.25%). These findings were substantiated by molecular docking of nitrogenase enzyme with ascorbic acid and fulvic acid. The XP docking score of ascorbic acid (-7.07 kcal mol-1) and fulvic acid (-6.908 kcal mol-1) exhibited that the optimum doses (200 ppm) should be used as higher dose or their excess amount can hinder the Rhizobium activity of nitrogen fixation by interacting with the nitrogenase enzyme.
Collapse
Affiliation(s)
- Atif Kamran
- Agriculture, Food & Nutritional Science, University of Alberta, Canada; Institute of Botany, University of the Punjab Lahore, Pakistan.
| | | | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Saima Rashid
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| |
Collapse
|
13
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
14
|
Taut J, Chambron J, Kersting B. Fifty Years of Inorganic Biomimetic Chemistry: From the Complexation of Single Metal Cations to Polynuclear Metal Complexes by Multidentate Thiolate Ligands. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Josef Taut
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
- Institut de Chimie de Strasbourg UMR 7177 CNRS-Université de Strasbourg 1, rue Blaise Pascal 67008 Strasbourg France
| | - Jean‐Claude Chambron
- Institut de Chimie de Strasbourg UMR 7177 CNRS-Université de Strasbourg 1, rue Blaise Pascal 67008 Strasbourg France
| | - Berthold Kersting
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
15
|
Abeed AHA, Mahdy RE, Alshehri D, Hammami I, Eissa MA, Abdel Latef AAH, Mahmoud GAE. Induction of resilience strategies against biochemical deteriorations prompted by severe cadmium stress in sunflower plant when Trichoderma and bacterial inoculation were used as biofertilizers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004173. [PMID: 36340332 PMCID: PMC9631322 DOI: 10.3389/fpls.2022.1004173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 05/28/2023]
Abstract
Background Cadmium (Cd) is a highly toxic heavy metal. Its emission is suspected to be further increased due to the dramatic application of ash to agricultural soils and newly reclaimed ones. Thereby, Cd stress encountered by plants will exacerbate. Acute and chronic exposure to Cd can upset plant growth and development and ultimately causes plant death. Microorganisms as agriculturally important biofertilizers have constantly been arising as eco-friendly practices owing to their ability to built-in durability and adaptability mechanisms of plants. However, applying microbes as a biofertilizer agent necessitates the elucidation of the different mechanisms of microbe protection and stabilization of plants against toxic elements in the soil. A greenhouse experiment was performed using Trichoderma harzianum and plant growth-promoting (PGP) bacteria (Azotobacter chroococcum and Bacillus subtilis) individually and integrally to differentiate their potentiality in underpinning various resilience mechanisms versus various Cd levels (0, 50, 100, and 150 mg/kg of soil). Microorganisms were analyzed for Cd tolerance and biosorption capacity, indoleacetic acid production, and phosphate and potassium solubilization in vitro. Plant growth parameters, water relations, physiological and biochemical analysis, stress markers and membrane damage traits, and nutritional composition were estimated. Results Unequivocal inversion from a state of downregulation to upregulation was distinct under microbial inoculations. Inoculating soil with T. harzianum and PGPB markedly enhanced the plant parameters under Cd stress (150 mg/kg) compared with control plants by 4.9% and 13.9%, 5.6% and 11.1%, 55.6% and 5.7%, and 9.1% and 4.6% for plant fresh weight, dry weight, net assimilation rate, and transpiration rate, respectively; by 2.3% and 34.9%, 26.3% and 69.0%, 26.3% and 232.4%, 135.3% and 446.2%, 500% and 95.6%, and 60% and 300% for some metabolites such as starch, amino acids, phenolics, flavonoids, anthocyanin, and proline, respectively; by 134.0% and 604.6% for antioxidants including reduced glutathione; and by 64.8% and 91.2%, 21.9% and 72.7%, and 76.7% and 166.7% for enzymes activity including ascorbate peroxidase, glutathione peroxidase, and phenylalanine ammonia-lyase, respectively. Whereas a hampering effect mediated by PGP bacterial inoculation was registered on levels of superoxide anion, hydroxyl radical, electrolyte leakage, and polyphenol oxidase activity, with a decrease of 0.53%, 14.12%, 2.70%, and 5.70%, respectively, under a highest Cd level (150 mg/kg) compared with control plants. The available soil and plant Cd concentrations were decreased by 11.5% and 47.5%, and 3.8% and 45.0% with T. harzianum and PGP bacterial inoculation, respectively, compared with non-inoculated Cd-stressed plants. Whereas, non-significant alternation in antioxidant capacity of sunflower mediated by T. harzianum action even with elevated soil Cd concentrations indicates stable oxidative status. The uptake of nutrients, viz., K, Ca, Mg, Fe, nitrate, and phosphorus, was interestingly increased (34.0, 4.4, 3.3, 9.2, 30.0, and 1.0 mg/g dry weight, respectively) owing to the synergic inoculation in the presence of 150 mg of Cd/kg. Conclusions However, strategies of microbe-induced resilience are largely exclusive and divergent. Biofertilizing potential of T. harzianum showed that, owing to its Cd biosorption capability, a resilience strategy was induced via reducing Cd bioavailability to be in the range that turned its effect from toxicity to essentiality posing well-known low-dose stimulation phenomena (hormetic effect), whereas using Azotobacter chroococcum and Bacillus subtilis, owing to their PGP traits, manifested a resilience strategy by neutralizing the potential side effects of Cd toxicity. The synergistic use of fungi and bacteria proved the highest efficiency in imparting sunflower adaptability under Cd stress.
Collapse
Affiliation(s)
- Amany H. A. Abeed
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Rasha E. Mahdy
- Agronomy Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Inès Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mamdouh A. Eissa
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | | | | |
Collapse
|
16
|
Yang P, Guo H, Zhang F, Zhou Y, Niu X. 电催化合成氨反应原位表征技术研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Tzeliou CE, Mermigki MA, Tzeli D. Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules 2022; 27:molecules27092660. [PMID: 35566011 PMCID: PMC9105939 DOI: 10.3390/molecules27092660] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The multiscaling quantum mechanics/molecular mechanics (QM/MM) approach was introduced in 1976, while the extensive acceptance of this methodology started in the 1990s. The combination of QM/MM approach with molecular dynamics (MD) simulation, otherwise known as the QM/MM/MD approach, is a powerful and promising tool for the investigation of chemical reactions’ mechanism of complex molecular systems, drug delivery, properties of molecular devices, organic electronics, etc. In the present review, the main methodologies in the multiscaling approaches, i.e., density functional theory (DFT), semiempirical methodologies (SE), MD simulations, MM, and their new advances are discussed in short. Then, a review on calculations and reactions on metalloproteins is presented, where particular attention is given to nitrogenase that catalyzes the conversion of atmospheric nitrogen molecules N₂ into NH₃ through the process known as nitrogen fixation and the FeMo-cofactor.
Collapse
Affiliation(s)
- Christina Eleftheria Tzeliou
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
| | - Markella Aliki Mermigki
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
- Correspondence: ; Tel.: +30-210-727-4307
| |
Collapse
|
18
|
Guo B, Cheng X, Tang Y, Guo W, Deng S, Wu L, Fu X. Dehydrated UiO-66(SH) 2 : The Zr-O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angew Chem Int Ed Engl 2022; 61:e202117244. [PMID: 35083838 DOI: 10.1002/anie.202117244] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 12/20/2022]
Abstract
This work reports the dehydrated Zr-based MOF UiO-66(SH)2 as a visible-light-driven photocatalyst to mimic the biological N2 fixation process. The 15 N2 and other control experiments demonstrated that the new photocatalyst is highly efficient in converting N2 to ammonia. In-situ TGA, XPS, and EXAFS as well as first-principles simulations were used to demonstrate the role of the thermal treatment and the changes of the local structures around Zr due to the dehydration. It was shown that the dehydration opened a gate for the entry of N2 molecules into the [Zr6 O6 ] cluster where the strong N≡N bond was broken stepwise by μ-N-Zr type interactions driven by the photoelectrons aided by the protonation. This mechanism was discussed in comparison with the Lowe-Thorneley mechanism proposed for the MoFe nitrogenase, and with emphasis on the [Zr6 O6 ] cluster effect and the leading role of photoelectrons over the protonation. The results shed new light on understanding the catalytic mechanism of biological N2 fixation and open a new way to fix N2 under mild conditions.
Collapse
Affiliation(s)
- Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Xiyue Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yu Tang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wei Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shuiquan Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
19
|
Zeng L, Qiao Z, Peng X, Liu Z, Li Z, Yang B, Lei L, Wu G, Hou Y. Progress in Mo/W-based electrocatalysts for nitrogen reduction to ammonia under ambient conditions. Chem Commun (Camb) 2022; 58:2096-2111. [PMID: 35048091 DOI: 10.1039/d1cc06665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia (NH3), possessing high hydrogen content and energy density, has been widely employed for fertilizers and value-added chemicals in green energy carriers and fuels. However, the current NH3 synthesis largely depends on the traditional Haber-Bosch process, which needs tremendous energy consumption and generates greenhouse gas, resulting in severe energy and environmental issues. The electrochemical strategy of converting N2 to NH3 under mild conditions is a potentially promising route to realize an environmentally friendly concept. Among various catalysts, molybdenum/tungsten-based electrocatalysts have been widely used in electrochemical catalytic and energy conversion. This review describes the latest progress of molybdenum/tungsten-based electrocatalysts for the electrochemical nitrogen reduction reaction. The fundamental roles of morphology, doping, defects, heterojunction, and coupling regulation in improving electrocatalytic performance are mainly discussed. Besides, some tailoring strategies for enhancing the conversion efficiency of N2 to NH3 over Mo/W-based electrocatalysts are also summarized. Finally, the existing challenges and limitations of N2 fixation are proposed, as well as possible future perspectives, which will provide a platform for further development of advanced Mo/W-based N2 reduction systems.
Collapse
Affiliation(s)
- Libin Zeng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhi Qiao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Xianyun Peng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhibin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China.,School of Biological and Chemical Engineering NingboTech University, No. 1 South Qianhu Road, Ningbo, 315100, China
| |
Collapse
|
20
|
Guo B, Cheng X, Tang Y, Guo W, Deng S, Wu L, Fu X. Dehydrated UiO‐66(SH)
2
: The Zr−O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Xiyue Cheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Yu Tang
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| | - Wei Guo
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| | - Shuiquan Deng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
21
|
Dong Y, Zhang S, Zhao L. Unraveling the Structural Development of
Peptide‐Coordinated Iron‐Sulfur
Clusters: Prebiotic Evolution and Biosynthetic Strategies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yijun Dong
- School of Life Sciences, Tsinghua University Beijing 100084 China
| | - Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
22
|
Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Int J Mol Sci 2021; 22:10529. [PMID: 34638870 PMCID: PMC8509026 DOI: 10.3390/ijms221910529] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Collapse
Affiliation(s)
- Qudsia Saeed
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jiří Kučerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road, Lahore 54000, Pakistan;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Munaza Naseem
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
- Agricultural Research, Ltd., Zahradni 400/1, 664 41 Troubsko, Czech Republic
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Adnan Mustafa
- Biology Center CAS, SoWa RI, Na Sadkach 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
23
|
Ali M, Ali Q, Sohail MA, Ashraf MF, Saleem MH, Hussain S, Zhou L. Diversity and Taxonomic Distribution of Endophytic Bacterial Community in the Rice Plant and Its Prospective. Int J Mol Sci 2021; 22:ijms221810165. [PMID: 34576331 PMCID: PMC8465699 DOI: 10.3390/ijms221810165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Endophytic bacterial communities are beneficial communities for host plants that exist inside the surfaces of plant tissues, and their application improves plant growth. They benefit directly from the host plant by enhancing the nutrient amount of the plant’s intake and influencing the phytohormones, which are responsible for growth promotion and stress. Endophytic bacteria play an important role in plant-growth promotion (PGP) by regulating the indirect mechanism targeting pest and pathogens through hydrolytic enzymes, antibiotics, biocontrol potential, and nutrient restriction for pathogens. To attain these benefits, firstly bacterial communities must be colonized by plant tissues. The nature of colonization can be achieved by using a set of traits, including attachment behavior and motility speed, degradation of plant polymers, and plant defense evasion. The diversity of bacterial endophytes colonization depends on various factors, such as plants’ relationship with environmental factors. Generally, each endophytic bacteria has a wide host range, and they are used as bio-inoculants in the form of synthetic applications for sustainable agriculture systems and to protect the environment from chemical hazards. This review discusses and explores the taxonomic distribution of endophytic bacteria associated with different genotypes of rice plants and their origin, movement, and mechanism of PGP. In addition, this review accentuates compressive meta data of endophytic bacteria communities associated with different genotypes of rice plants, retrieves their plant-growth-promoting properties and their antagonism against plant pathogens, and discusses the indication of endophytic bacterial flora in rice plant tissues using various methods. The future direction deepens the study of novel endophytic bacterial communities and their identification from rice plants through innovative techniques and their application for sustainable agriculture systems.
Collapse
Affiliation(s)
- Mohsin Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Q.A.); (L.Z.)
| | - Muhammad Aamir Sohail
- Center for Excellence in Molecular Plant Sciences, National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China;
| | | | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Punjab, Pakistan;
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (Q.A.); (L.Z.)
| |
Collapse
|
24
|
Koirala A, Brözel VS. Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights into the Origin and Distribution of Nitrogen Fixation across Bacteria and Archaea. Microorganisms 2021; 9:microorganisms9081662. [PMID: 34442741 PMCID: PMC8399215 DOI: 10.3390/microorganisms9081662] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
The phylogeny of nitrogenase has only been analyzed using the structural proteins NifHDK. As nifHDKENB has been established as the minimum number of genes necessary for in silico prediction of diazotrophy, we present an updated phylogeny of diazotrophs using both structural (NifHDK) and cofactor assembly proteins (NifENB). Annotated Nif sequences were obtained from InterPro from 963 culture-derived genomes. Nif sequences were aligned individually and concatenated to form one NifHDKENB sequence. Phylogenies obtained using PhyML, FastTree, RapidNJ, and ASTRAL from individuals and concatenated protein sequences were compared and analyzed. All six genes were found across the Actinobacteria, Aquificae, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Deferribacteres, Firmicutes, Fusobacteria, Nitrospira, Proteobacteria, PVC group, and Spirochaetes, as well as the Euryarchaeota. The phylogenies of individual Nif proteins were very similar to the overall NifHDKENB phylogeny, indicating the assembly proteins have evolved together. Our higher resolution database upheld the three cluster phylogeny, but revealed undocumented horizontal gene transfers across phyla. Only 48% of the 325 genera containing all six nif genes are currently supported by biochemical evidence of diazotrophy. In addition, this work provides reference for any inter-phyla comparison of Nif sequences and a quality database of Nif proteins that can be used for identifying new Nif sequences.
Collapse
Affiliation(s)
- Amrit Koirala
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA;
| | - Volker S. Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA;
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
- Correspondence: ; Tel.: +1-605-688-6144
| |
Collapse
|
25
|
Tian W, Li L, Xiao X, Wu H, Wang Y, Hu Z, Begum N, Zou Y, Lou L, Chang M, Cai Q. Identification of a plant endophytic growth-promoting bacteria capable of inhibiting cadmium uptake in rice. J Appl Microbiol 2021; 132:520-531. [PMID: 34216530 DOI: 10.1111/jam.15201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022]
Abstract
AIMS The study aims to identify a novel plant growth-promoting bacteria (PGPB), which contributes to promoting growth and reducing cadmium (Cd) concentration in rice under Cd-contaminated conditions. METHODS AND RESULTS Nine bacterial strains were isolated from plants grown in Cd-contaminated soil. These bacteria were tolerant to 1000 μmol/L CdCl2 , capable of producing indole-3-acetic acid, fixing nitrogen and solubilizing phosphate. The result of hydroponic experiment showed that under the control and Cd stress conditions, the dry weight of the Tm02-inoculated rice seedlings increased significantly. Furthermore, under Cd stress, the concentration of Cd in the shoot of the Tm02-inoculated seedlings decreased significantly, while there was no significant difference in Cd concentration between treatment with other eight strains and noninoculated seedlings. The same results were observed in the pot experiment as well, where there was a significantly reduced Cd concentration in rice grains of the Tm02-inoculated rice plants. Tm02 was classified as Pantoea agglomerans through 16S rDNA sequencing. CONCLUSIONS A novel PGPB strain Tm02 was identified and confirmed that it has the function of promoting rice growth and reducing Cd concentration in rice grain under Cd-contaminated conditions. This strain has the potential to improve rice yield in Cd-contaminated paddy fields. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a new example of using PGPB to improve the tolerance of rice to Cd pollution.
Collapse
Affiliation(s)
- Wei Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Le Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiao Xiao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huili Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yulong Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhaoyang Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Nahmina Begum
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Lalmatia Mohila College, Dhaka, Bangladesh
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ming Chang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Koch RA, Yoon GM, Aryal UK, Lail K, Amirebrahimi M, LaButti K, Lipzen A, Riley R, Barry K, Henrissat B, Grigoriev IV, Herr JR, Aime MC. Symbiotic nitrogen fixation in the reproductive structures of a basidiomycete fungus. Curr Biol 2021; 31:3905-3914.e6. [PMID: 34245690 DOI: 10.1016/j.cub.2021.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Nitrogen (N) fixation is a driving force for the formation of symbiotic associations between N2-fixing bacteria and eukaryotes.1 Limited examples of these associations are known in fungi, and none with sexual structures of non-lichenized species.2-6 The basidiomycete Guyanagaster necrorhizus is a sequestrate fungus endemic to the Guiana Shield.7 Like the root rot-causing species in its sister genera Armillaria and Desarmillaria, G. necrorhizus sporocarps fruit from roots of decaying trees (Figures 1A-1C),8 and genome sequencing is consistent with observations that G. necrorhizus is a white-rotting decomposer. This species also represents the first documentation of an arthropod-dispersed sequestrate fungus. Numerous species of distantly related wood-feeding termites, which scavenge for N-rich food, feed on the mature spore-bearing tissue, or gleba, of G. necrorhizus. During feeding, mature spores adhere to termites for subsequent dispersal.9 Using chemical assays, isotope analysis, and high-throughput sequencing, we show that the sporocarps harbor actively N2-fixing Enterobacteriaceae species and that the N content within fungal tissue increases with maturation. Untargeted proteomic profiling suggests that ATP generation in the gleba is accomplished via fermentation. The use of fermentation-an anaerobic process-indicates that the sporocarp environment is anoxic, likely an adaptation to protect the oxygen-sensitive nitrogenase enzyme. Sporocarps also have a thick outer covering, possibly to limit oxygen diffusion. The enriched N content within mature sporocarps may offer a dietary inducement for termites in exchange for spore dispersal. These results show that the flexible metabolic capacity of fungi may facilitate N2-fixing associations, as well as higher-level organismal associations.
Collapse
Affiliation(s)
- Rachel A Koch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Department of Plant Pathology, University of Nebraska, Lincoln, NE 68520, USA.
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Kathleen Lail
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mojgan Amirebrahimi
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille 13288, France; Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille 13288, France; Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Joshua R Herr
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68520, USA; Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68520, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Mandon K, Nazaret F, Farajzadeh D, Alloing G, Frendo P. Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants (Basel) 2021; 10:antiox10060880. [PMID: 34070926 PMCID: PMC8226930 DOI: 10.3390/antiox10060880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Plants interact with a large number of microorganisms that greatly influence their growth and health. Among the beneficial microorganisms, rhizosphere bacteria known as Plant Growth Promoting Bacteria increase plant fitness by producing compounds such as phytohormones or by carrying out symbioses that enhance nutrient acquisition. Nitrogen-fixing bacteria, either as endophytes or as endosymbionts, specifically improve the growth and development of plants by supplying them with nitrogen, a key macro-element. Survival and proliferation of these bacteria require their adaptation to the rhizosphere and host plant, which are particular ecological environments. This adaptation highly depends on bacteria response to the Reactive Oxygen Species (ROS), associated to abiotic stresses or produced by host plants, which determine the outcome of the plant-bacteria interaction. This paper reviews the different antioxidant defense mechanisms identified in diazotrophic bacteria, focusing on their involvement in coping with the changing conditions encountered during interaction with plant partners.
Collapse
Affiliation(s)
- Karine Mandon
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Fanny Nazaret
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Davoud Farajzadeh
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran;
- Center for International Scientific Studies and Collaboration (CISSC), Ministry of Science, Research and Technology, Tehran 158757788, Iran
| | - Geneviève Alloing
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Pierre Frendo
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
- Correspondence:
| |
Collapse
|
28
|
Zhang S, Wang M, Jiang S, Wang H. The Activation and Reduction of N
2
by Single/Double‐Atom Electrocatalysts: A First‐Principle Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shishi Zhang
- Institute for Advanced Study School of Materials Science and Engineering Nanchang University Xuefu Road 999 Nanchang City 330031 PR China
| | - Mingda Wang
- Institute for Advanced Study School of Materials Science and Engineering Nanchang University Xuefu Road 999 Nanchang City 330031 PR China
| | - Sheng Jiang
- Institute for Advanced Study School of Materials Science and Engineering Nanchang University Xuefu Road 999 Nanchang City 330031 PR China
| | - Hongming Wang
- Institute for Advanced Study School of Materials Science and Engineering Nanchang University Xuefu Road 999 Nanchang City 330031 PR China
| |
Collapse
|
29
|
Zu Y, Yao H, Wang Y, Yan L, Gu Z, Chen C, Gao L, Yin W. The age of bioinspired molybdenum‐involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Huiqin Yao
- School of Basic Medicine Ningxia Medical University Yinchuan China
| | - Yifan Wang
- School of Basic Medicine Ningxia Medical University Yinchuan China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Lizeng Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics Chinese Academy of Sciences Beijing China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| |
Collapse
|
30
|
Li S, Miao P, Zhang Y, Wu J, Zhang B, Du Y, Han X, Sun J, Xu P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000086. [PMID: 32201994 DOI: 10.1002/adma.202000086] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 05/21/2023]
Abstract
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.
Collapse
Affiliation(s)
- Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Peng Miao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jie Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianmin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
31
|
Bista D, Sengupta T, Reber AC, Khanna SN. A Magnetic Superatomic Dimer with an Intense Internal Electric Dipole Moment. J Phys Chem A 2021; 125:816-824. [DOI: 10.1021/acs.jpca.0c10262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dinesh Bista
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Turbasu Sengupta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Arthur C. Reber
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Shiv N. Khanna
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| |
Collapse
|
32
|
Zhao L, Zhou J, Zhang L, Sun X, Sun X, Yan T, Ren X, Wei Q. Anchoring Au(111) on a Bismuth Sulfide Nanorod: Boosting the Artificial Electrocatalytic Nitrogen Reduction Reaction under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55838-55843. [PMID: 33263999 DOI: 10.1021/acsami.0c15987] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR), as a green and sustainable method for ammonia synthesis, has become one of the candidates to substitute industrial Haber-Bosch ammonia synthesis in the near future. In this work, gold nanoparticles (Au NPs) were successfully anchored on bismuth sulfide nanorods (Bi2S3 NRs), which acted as highly efficient electrocatalytic NRR catalysts. The N-philic nature of Bi and the unique mutual coordination of Au-S-Bi can greatly promote the nitrogen adsorption and form the intermediate product N2H*, achieving a boosted improvement in the NRR activity through a continuous hydrogenation reaction. Definitely, the as-synthesized Au(111)@Bi2S3 nanorod catalyst exhibits an excellent NH3 generation rate of 45.57 μg h-1 mgcat.-1 with a faradic efficiency of 3.10% at -0.8 V vs reversible hydrogen electrode. High stability and reproducibility are also demonstrated throughout the electrocatalytic NRR process. Density functional theory calculations were performed to further understand the NRR catalytic mechanism on the Au(111)@Bi2S3 nanorods catalyst.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Jinzhi Zhou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Lunwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Xiaojun Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| |
Collapse
|
33
|
Yang J, Bai H, Guo Y, Zhang H, Jiang R, Yang B, Wang J, Yu JC. Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jianhua Yang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Haoyuan Bai
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
| | - Han Zhang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
| | - Jianfang Wang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Jimmy C. Yu
- Department of Chemistry The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| |
Collapse
|
34
|
Yang J, Bai H, Guo Y, Zhang H, Jiang R, Yang B, Wang J, Yu JC. Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angew Chem Int Ed Engl 2020; 60:927-936. [DOI: 10.1002/anie.202010192] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/07/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Jianhua Yang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Haoyuan Bai
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
| | - Han Zhang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
| | - Jianfang Wang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Jimmy C. Yu
- Department of Chemistry The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| |
Collapse
|
35
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Rupnik K, Tanifuji K, Rettberg L, Ribbe MW, Hu Y, Hales BJ. Electron Paramagnetic Resonance and Magnetic Circular Dichroism Spectra of the Nitrogenase M Cluster Precursor Suggest Sulfur Migration upon Oxidation: A Proposal for Substrate and Inhibitor Binding. Chembiochem 2020; 21:1767-1772. [PMID: 31881119 PMCID: PMC7481019 DOI: 10.1002/cbic.201900681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 02/01/2023]
Abstract
The active site of the nitrogen-fixing enzyme Mo-nitrogenase is the M cluster ([MoFe7 S9 C⋅R-homocitrate]), also known as the FeMo cofactor or FeMoco. The biosynthesis of this highly complex metallocluster involves a series of proteins. Among them, NifB, a radical-SAM enzyme, is instrumental in the assembly of the L cluster ([Fe8 S9 C]), a precursor and all-iron core of the M cluster. In the absence of sulfite, NifB assembles a precursor form of the L cluster called the L* cluster ([Fe8 S8 C]), which lacks the final ninth sulfur. EPR and MCD spectroscopies are used to probe the electronic structures of the paramagnetic, oxidized forms of both the L and L* clusters, labeled LOx and [L*]Ox . This study shows that both LOx and [L*]Ox have nearly identical EPR and MCD spectra, thus suggesting that the two clusters have identical structures upon oxidation; in other words, a sulfur migrates away from LOx following oxidation, thereby rendering the cluster identical to [L*]Ox . It is proposed that a similar migration could occur to the M cluster upon oxidation, and that this is an instrumental part of both M cluster formation and nitrogenase substrate/inhibitor binding.
Collapse
Affiliation(s)
- Kresimir Rupnik
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kazuki Tanifuji
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Lee Rettberg
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Brian J Hales
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
37
|
Kuramae EE, Derksen S, Schlemper TR, Dimitrov MR, Costa OYA, da Silveira APD. Sorghum Growth Promotion by Paraburkholderia tropica and Herbaspirillum frisingense: Putative Mechanisms Revealed by Genomics and Metagenomics. Microorganisms 2020; 8:E725. [PMID: 32414048 PMCID: PMC7285511 DOI: 10.3390/microorganisms8050725] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/11/2023] Open
Abstract
Bacteria from the genera Paraburkholderia and Herbaspirillum can promote the growth of Sorghum bicolor, but the underlying mechanisms are not yet known. In a pot experiment, sorghum plants grown on sterilized substrate were inoculated with Paraburkholderia tropica strain IAC/BECa 135 and Herbaspirillum frisingense strain IAC/BECa 152 under phosphate-deficient conditions. These strains significantly increased Sorghum bicolor cultivar SRN-39 root and shoot biomass. Shotgun metagenomic analysis of the rhizosphere revealed successful colonization by both strains; however, the incidence of colonization was higher in plants inoculated with P. tropica strain IAC/BECa 135 than in those inoculated with H. frisingense strain IAC/BECa 152. Conversely, plants inoculated with H. frisingense strain IAC/BECa 152 showed the highest increase in biomass. Genomic analysis of the two inoculants implied a high degree of rhizosphere fitness of P. tropica strain IAC/BECa 135 through environmental signal processing, biofilm formation, and nutrient acquisition. Both genomes contained genes related to plant growth-promoting bacterial (PGPB) traits, including genes related to indole-3-acetate (IAA) synthesis, nitrogen fixation, nodulation, siderophore production, and phosphate solubilization, although the P. tropica strain IAC/BECa 135 genome contained a slightly more extensive repertoire. This study provides evidence that complementary mechanisms of growth promotion in Sorghum might occur, i.e., that P. tropica strain IAC/BECa 135 acts in the rhizosphere and increases the availability of nutrients, while H. frisingense strain IAC/BECa 152 influences plant hormone signaling. While the functional and taxonomic profiles of the rhizobiomes were similar in all treatments, significant differences in plant biomass were observed, indicating that the rhizobiome and the endophytic microbial community may play equally important roles in the complicated plant-microbial interplay underlying increased host plant growth.
Collapse
Affiliation(s)
- Eiko E. Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Microbial Ecology Department, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (S.D.); (T.R.S.); (M.R.D.); (O.Y.A.C.)
- Utrecht University, Institute of Environmental Biology, Ecology and biodiversity, 3508 TC Utrecht, The Netherlands
| | - Stan Derksen
- Netherlands Institute of Ecology (NIOO-KNAW), Microbial Ecology Department, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (S.D.); (T.R.S.); (M.R.D.); (O.Y.A.C.)
| | - Thiago R. Schlemper
- Netherlands Institute of Ecology (NIOO-KNAW), Microbial Ecology Department, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (S.D.); (T.R.S.); (M.R.D.); (O.Y.A.C.)
| | - Maurício R. Dimitrov
- Netherlands Institute of Ecology (NIOO-KNAW), Microbial Ecology Department, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (S.D.); (T.R.S.); (M.R.D.); (O.Y.A.C.)
| | - Ohana Y. A. Costa
- Netherlands Institute of Ecology (NIOO-KNAW), Microbial Ecology Department, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (S.D.); (T.R.S.); (M.R.D.); (O.Y.A.C.)
| | - Adriana P. D. da Silveira
- Center of Soil and Environmental Resources, Agronomic Institute of Campinas (IAC), Av. Barão de Itapura 1481, 13020-902 Campinas, Brazil
| |
Collapse
|
38
|
Zhao L, Zhao J, Zhao J, Zhang L, Wu D, Wang H, Li J, Ren X, Wei Q. Artificial N 2 fixation to NH 3 by electrocatalytic Ru NPs at low overpotential. NANOTECHNOLOGY 2020; 31:29LT01. [PMID: 32191924 DOI: 10.1088/1361-6528/ab814e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ammonia synthesis, one of the most challenging chemical synthesis processes, plays a vital role in the development of human industry and agriculture. Compared with the industrial Harber-Bosch ammonia process with huge energy input and high CO2 emissions, the search for a resource-saving, environmentally-friendly ammonia synthesis alternative is extremely urgent. Electrocatalytic nitrogen reduction appears to be a good candidate. In this communication, we report the development of ruthenium nanoparticles as a highly efficient and durable nitrogen reduction reaction (NRR) electrocatalyst in acidic electrolyte under ambient conditions. Such electrochemical NRR catalyst exhibits a large NH3 formation rate (24.88 μg h-1 mg-1 cat.) with Faradaic efficiency (0.35%) at -0.15 V versus reversible hydrogen electrode, outperforming many reported NRR electrocatalysts. Note that it exhibits high durability and stability during the entire electrochemical NRR process.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li G, Li F, Liu J, Fan C. Fe-based MOFs for photocatalytic N2 reduction: Key role of transition metal iron in nitrogen activation. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121245] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Liu W, Yin K, Yuan K, Zuo S, Yang S, Yao C, Chen M. In situ synthesis of Bi2MoO6@C@attapulgite photocatalyst for enhanced photocatalytic nitrogen fixation ability under simulated solar irradiation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Abstract
Root nodules are agricultural-important symbiotic plant-microbe composites in which microorganisms receive energy from plants and reduce dinitrogen (N2) into fertilizers. Mimicking root nodules using artificial devices can enable renewable energy-driven fertilizer production. This task is challenging due to the necessity of a microscopic dioxygen (O2) concentration gradient, which reconciles anaerobic N2 fixation with O2-rich atmosphere. Here we report our designed electricity-powered biological|inorganic hybrid system that possesses the function of root nodules. We construct silicon-based microwire array electrodes and replicate the O2 gradient of root nodules in the array. The wire array compatibly accommodates N2-fixing symbiotic bacteria, which receive energy and reducing equivalents from inorganic catalysts on microwires, and fix N2 in the air into biomass and free ammonia. A N2 reduction rate up to 6.5 mg N2 per gram dry biomass per hour is observed in the device, about two orders of magnitude higher than the natural counterparts.
Collapse
Affiliation(s)
- Shengtao Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
42
|
Role of Biofertilizer in Biological Management of Fungal Diseases of Pigeon Pea [(Cajanus cajan) (L.) Millsp.]. Fungal Biol 2020. [DOI: 10.1007/978-3-030-35947-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Wu J, Wang Z, Li S, Niu S, Zhang Y, Hu J, Zhao J, Xu P. FeMoO4 nanorods for efficient ambient electrochemical nitrogen reduction. Chem Commun (Camb) 2020; 56:6834-6837. [DOI: 10.1039/d0cc02217a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
FeMoO4 nanorods exhibit outstanding electrocatalytic activity, selectivity and stability for nitrogen reduction reaction (NRR).
Collapse
Affiliation(s)
- Jie Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - ZhongXu Wang
- College of Chemistry and Chemical Engineering
- and Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin, 150025
| | - Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Siqi Niu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jing Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering
- and Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin, 150025
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
44
|
Qiu Y, Zhao S, Qin M, Diao J, Liu S, Dai L, Zhang W, Guo X. Multi-yolk–shell bismuth@porous carbon as a highly efficient electrocatalyst for artificial N2 fixation under ambient conditions. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00153h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multi-yolk–shell bismuth@porous carbon catalyst was fabricated by facile synthetic processes. The MB@PC catalyst displays deliver a NH3 yield of 28.63 μg h−1 mg−1cat., a Faraday efficiency of 10.58 % at −0.5 V versus RHE under ambient conditions.
Collapse
Affiliation(s)
- Yu Qiu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- and the College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Sen Zhao
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- and the College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Mingxin Qin
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jinxiang Diao
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- and the College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Shuangquan Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- and the College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Lanxin Dai
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- and the College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Wenhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xiaohui Guo
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- and the College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|
45
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part V. Nitrogenases. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Yu G, Guo H, Liu S, Chen L, Alshehri AA, Alzahrani KA, Hao F, Li T. Cr 3C 2 Nanoparticle-Embedded Carbon Nanofiber for Artificial Synthesis of NH 3 through N 2 Fixation under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35764-35769. [PMID: 31508929 DOI: 10.1021/acsami.9b12675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Industrial production of NH3 heavily depends on the conventional Haber-Bosch process under rigorous conditions with a large amount of energy consumption and carbon emissions. Electrocatalysis exhibits an intriguing prospect for the N2 reduction reaction (NRR) at ambient conditions. In this case, a high-efficiency and low-cost catalyst is paramount. In this letter, Cr3C2 nanoparticles and carbon nanofiber composite (Cr3C2@CNF) are proposed as a noble-metal-free NRR electrocatalyst for converting N2 to NH3 with an excellent selectivity. The optimal Faradic efficiency and NH3 yield rate achieved are as high as 8.6% and 23.9 μg h-1 mgcat.-1 at -0.3 V vs reversible hydrogen electrode in 0.1 M HCl, respectively. Theoretical calculations show a low reaction barrier of merely 0.53 eV in the enzymatic route for this catalyst.
Collapse
Affiliation(s)
- Guangsen Yu
- School of Materials and Energy , University of Electronic Science and Technology of China , Chengdu 611731 , Sichuan , China
| | - Haoran Guo
- School of Materials and Energy , University of Electronic Science and Technology of China , Chengdu 611731 , Sichuan , China
| | - Shanhu Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , Zhejiang , China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science , King Abdulaziz University , P.O. Box 80203, Jeddah 21589 , Saudi Arabia
| | - Khalid Ahmad Alzahrani
- Chemistry Department, Faculty of Science , King Abdulaziz University , P.O. Box 80203, Jeddah 21589 , Saudi Arabia
| | - Feng Hao
- School of Materials and Energy , University of Electronic Science and Technology of China , Chengdu 611731 , Sichuan , China
| | - Tingshuai Li
- School of Materials and Energy , University of Electronic Science and Technology of China , Chengdu 611731 , Sichuan , China
| |
Collapse
|
47
|
Gulliver D, Lipus D, Ross D, Bibby K. Insights into microbial community structure and function from a shallow, simulated CO 2 -leakage aquifer demonstrate microbial selection and adaptation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:338-351. [PMID: 29984552 DOI: 10.1111/1758-2229.12675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Geological carbon storage is likely to be a part of a comprehensive strategy to minimize the atmospheric release of carbon dioxide (CO2 ), raising concerns that injected CO2 will leak into overlying freshwater aquifers. CO2(aq) leakage may impact the dominant microbial community responsible for important ecosystem functions such as nutrient cycling, metal cycling and carbon conversion. Here, we examined the impact of an experimental in situ CO2 -leakage on a freshwater aquifer microbial community. High-throughput 16S rRNA gene sequencing demonstrated lower microbial diversity in freshwater wells with CO2 concentrations above 1.15 g l-1 . Metagenomic sequencing and population genome binning were used to evaluate the metabolic potential of microbial populations across four CO2 exposed samples and one control sample. Population genome binning resulted in the recovery and annotation of three metagenome assembled genomes (MAGs). Two of the MAGs, most closely related to Curvibacter and Sulfuricurvum, had the functional capacity for CO2 utilization via carbon fixation coupled to sulfur and iron oxidation. The third draft genome was an Archaea, most closely related to Methanoregula, characterized by the metabolic potential for methanogenesis. Together, these findings show that CO2 leakage in a freshwater aquifer poses a strong selection, driving both microbial community structure and metabolic function.
Collapse
Affiliation(s)
- Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
| | - Daniel Lipus
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Daniel Ross
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
- AECOM, Pittsburgh, PA, USA
| | - Kyle Bibby
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
48
|
Wang Y, Chen XM, Zhang LL, Liu CG. Jahn-Teller Distorted Effects To Promote Nitrogen Reduction over Keggin-Type Phosphotungstic Acid Catalysts: Insight from Density Functional Theory Calculations. Inorg Chem 2019; 58:7852-7862. [PMID: 31141350 DOI: 10.1021/acs.inorgchem.9b00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular geometry, electronic structure, and possible reaction mechanism of a series of mono-transition-metal-substituted Keggin-type polyoxometalate (POM)-dinitrogen complexes [PW11O39M(N2)] n- (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, Re, Os, Ir, Pt, Au, and Hg) have been investigated by using density functional theory (DFT) calculations with M06L functional. The calculated adsorption energy of N2 molecule, N-N bond length, N-N stretching frequency, and the NBO charge on the coordinated N2 moiety indicate that MoII-, TcII-, WII-, ReII-, and OsII-POM complexes are significant for binding and activation of the inert N2 molecule. The degree of the N2 activation can be classified into the "moderately activated" category according to Tuczek's sense [ J. Comput. Chem. 2006 , 27 , 1278 ]. Electronic structure and NBO analysis indicate that the terminal N atom of the coordinated N2 molecule in these POM-dinitrogen complexes possesses more negative charge relative to the bridge N atom because Jahn-Teller distorted effects lead to an effective orbital mixture between σ2s* orbital of N2 and d z2 orbital of transition metal center. And the mono-lacunary Keggin-type POM ligand with five oxygen donor atoms serves as a strong electron donor to the bivalent metal center. Meanwhile, a catalytic cycle for direct conversion of N2 into NH3 has been systematically investigated based on a Re-POM complex along distal, alternating, and enzymatic pathways. The calculated free energy profile of the three catalytic cycles indicates that the distal mechanism is the favorable pathway in the presence of proton and electron donors.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , P. R. China.,College of Chemical Engineering , Northeast Electric Power University , Jilin City 132012 , P. R. China
| | - Xue-Mei Chen
- College of Chemical Engineering , Northeast Electric Power University , Jilin City 132012 , P. R. China
| | - Li-Long Zhang
- College of Chemical Engineering , Northeast Electric Power University , Jilin City 132012 , P. R. China
| | - Chun-Guang Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , P. R. China.,College of Chemical Engineering , Northeast Electric Power University , Jilin City 132012 , P. R. China
| |
Collapse
|
49
|
Zhao J, Ren X, Li X, Fan D, Sun X, Ma H, Wei Q, Wu D. High-performance N 2-to-NH 3 fixation by a metal-free electrocatalyst. NANOSCALE 2019; 11:4231-4235. [PMID: 30809607 DOI: 10.1039/c8nr10401h] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Haber-Bosch process for the synthesis of ammonia (NH3) not only causes large energy consumption but also leads to CO2 emissions. Electrocatalytic hydrogenation of N2 to NH3 under ambient conditions is a highly desirable alternative method; however, it needs an efficient electrocatalyst. In this study, we report a mesoporous boron nitride (MBN) metal-free electrocatalyst for the N2 reduction reaction under ambient conditions. Owing to its mesoporous structure, this MBN electrocatalyst can expose more active sites, resulting in an outstanding NH3 formation rate of 18.2 μg h-1 mgcat.-1 with a faradaic efficiency of 5.5% at -0.7 V vs. reversible hydrogen electrode in 0.1 M Na2SO4. It also demonstrates strong long-term electrochemical durability.
Collapse
Affiliation(s)
- Jinxiu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mustafa S, Kabir S, Shabbir U, Batool R. Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 2019. [DOI: 10.1007/s13199-019-00602-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|