1
|
McCauley M, Huston M, Condren AR, Pereira F, Cline J, Yaple-Maresh M, Painter MM, Zimmerman GE, Robertson AW, Carney N, Goodall C, Terry V, Müller R, Sherman DH, Collins KL. Structure-Activity Relationships of Natural and Semisynthetic Plecomacrolides Suggest Distinct Pathways for HIV-1 Immune Evasion and Vacuolar ATPase-Dependent Lysosomal Acidification. J Med Chem 2024. [PMID: 38452116 DOI: 10.1021/acs.jmedchem.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The human immunodeficiency virus (HIV)-encoded accessory protein Nef enhances pathogenicity by reducing major histocompatibility complex I (MHC-I) cell surface expression, protecting HIV-infected cells from immune recognition. Nef-dependent downmodulation of MHC-I can be reversed by subnanomolar concentrations of concanamycin A (1), a well-known inhibitor of vacuolar ATPase, at concentrations below those that interfere with lysosomal acidification or degradation. We conducted a structure-activity relationship study that assessed 76 compounds for Nef inhibition, 24 and 72 h viability, and lysosomal neutralization in Nef-expressing primary T cells. This analysis demonstrated that the most potent compounds were natural concanamycins and their derivatives. Comparison against a set of new, semisynthetic concanamycins revealed that substituents at C-8 and acylation of C-9 significantly affected Nef potency, target cell viability, and lysosomal neutralization. These findings provide important progress toward understanding the mechanism of action of these compounds and the identification of an advanced lead anti-HIV Nef inhibitory compound.
Collapse
Affiliation(s)
- Morgan McCauley
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan 48109, United States
| | - Matthew Huston
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
| | - Alanna R Condren
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan 48109, United States
| | - Filipa Pereira
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan 48109, United States
| | - Joel Cline
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
| | - Marianne Yaple-Maresh
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
| | - Mark M Painter
- University of Michigan, Graduate Program in Immunology, Ann Arbor, Michigan 48109, United States
| | - Gretchen E Zimmerman
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
| | - Andrew W Robertson
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan 48109, United States
- University of Michigan Natural Products Discovery Core, Life Sciences Institute, Ann Arbor, Michigan 48109, United States
| | - Nolan Carney
- University of Michigan, Department of Chemistry, Ann Arbor, Michigan 48109, United States
| | - Christopher Goodall
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
| | - Valeri Terry
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken 66123, Germany
| | - David H Sherman
- University of Michigan, Department of Microbiology & Immunology, Ann Arbor, Michigan 48109, United States
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan 48109, United States
- University of Michigan, Department of Medicinal Chemistry, Ann Arbor, Michigan 48109, United States
- University of Michigan, Department of Chemistry, Ann Arbor, Michigan 48109, United States
| | - Kathleen L Collins
- University of Michigan, Graduate Program in Immunology, Ann Arbor, Michigan 48109, United States
- University of Michigan, Department of Internal Medicine, Ann Arbor, Michigan 48109, United States
- University of Michigan, Department of Microbiology & Immunology, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Li GL, Qi HM, He YL, Shen YK, Shen T. Concanamycin H from the soil actinomycete Streptomyces sp. R1706-8. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221109161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The actinomycete strain R1706-8 is isolated from a soil sample collected from the nest of the horned-face bee ( Osmia cornifrons) and identified as Streptomyces sp. based upon the results of 16SrRNA sequence analysis. Two concanamycin derivatives obtained from the solid fermentation have been determined by analysis of the infrared, high-resolution electrospray ionization mass spectrometry, 1D and 2D NMR spectra as well as by comparison with literature data. Of the two derivatives, one is a new compound, named concanamycin H, and the other is the known compound, concanamycin G. These compounds are assayed for antibacterial activity, with concanamycins H and G displaying inhibitory activity against Bacillus subtilis (minimum inhibitory concentration = 0.625 µg mL−1).
Collapse
Affiliation(s)
- Guo-Li Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Hui-Min Qi
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Yi-Lin He
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Yu-Kai Shen
- College of School of Marine Science, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Tong Shen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| |
Collapse
|
3
|
Small structural alterations greatly influence the membrane affinity of lipophilic ligands: Membrane interactions of bafilomycin A1 and its desmethyl derivative bearing 19F-labeling. Bioorg Med Chem 2019; 27:1677-1682. [DOI: 10.1016/j.bmc.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022]
|
4
|
Wu C, Medema MH, Läkamp RM, Zhang L, Dorrestein PC, Choi YH, van Wezel GP. Leucanicidin and Endophenasides Result from Methyl-Rhamnosylation by the Same Tailoring Enzymes in Kitasatospora sp. MBT66. ACS Chem Biol 2016; 11:478-90. [PMID: 26675041 DOI: 10.1021/acschembio.5b00801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increasing bacterial multidrug resistance necessitates novel drug-discovery efforts. One way to obtain novel chemistry is glycosylation, which is prevalent in nature, with high diversity in both the sugar moieties and the targeted aglycones. Kitasatospora sp. MBT66 produces endophenaside antibiotics, which is a family of (methyl-)rhamnosylated phenazines. Here we show that this strain also produces the plecomacrolide leucanicidin (1), which is derived from bafilomycin A1 by glycosylation with the same methyl-rhamnosyl moiety as present in the endophenasides. Immediately adjacent to the baf genes for bafilomycin biosynthesis lie leuA and leuB, which encode a sugar-O-methyltransferase and a glycosyltransferase, respectively. LeuA and LeuB are the only enzymes encoded by the genome of Kitasatospora sp. MBT66 that are candidates for the methyl-rhamnosylation of natural products, and mutation of leuB abolished glycosylation of both families of natural products. Thus, LeuA and -B mediate the post-PKS methyl-rhamnosylation of bafilomycin A1 to leucanicidin and of phenazines to endophenasides, showing surprising promiscuity by tolerating both macrolide and phenazine skeletons as the substrates. Detailed metabolic analysis by MS/MS based molecular networking facilitated the characterization of nine novel phenazine glycosides 6-8, 16, and 22-26, whereby compounds 23 and 24 represent an unprecedented tautomeric glyceride phenazine, further enriching the structural diversity of endophenasides.
Collapse
Affiliation(s)
- Changsheng Wu
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Marnix H. Medema
- Bioinformatics
Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Rianne M. Läkamp
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0751, United States
| | - Le Zhang
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Pieter C. Dorrestein
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0751, United States
| | - Young Hae Choi
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
5
|
Kazami S, Muroi M, Kawatani M, Kubota T, Usui T, Kobayashi J, Osada H. Iejimalides Show Anti-Osteoclast ActivityviaV-ATPase Inhibition. Biosci Biotechnol Biochem 2014; 70:1364-70. [PMID: 16794315 DOI: 10.1271/bbb.50644] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Iejimalides (IEJLs), 24-membered macrolides, are potent antitumor compounds, but their molecular targets remain to be revealed. In the course of screening, we identified IEJLs as potent osteoclast inhibitors. Since it is known that osteoclasts are sensitive to vacuolar H(+)-ATPase (V-ATPase) inhibitor, we investigated the effect of IEJLs on V-ATPases. IEJLs inhibited the V-ATPases of both mammalian and yeast cells in situ, and of yeast V-ATPases in vitro. A bafilomycin-resistant yeast mutant conferred IEJL resistance, suggesting that IEJLs bind a site similar to the bafilomycins/concanamycins-binding site. These results indicate that IEJLs are novel V-ATPase inhibitors, and that antitumor and antiosteporotic activities are exerted via V-ATPase inhibition.
Collapse
Affiliation(s)
- Sayaka Kazami
- Antibiotics Laboratory, RIKEN Discovery Research Institute, Hirosawa, Saitama
| | | | | | | | | | | | | |
Collapse
|
6
|
Osteresch C, Bender T, Grond S, von Zezschwitz P, Kunze B, Jansen R, Huss M, Wieczorek H. The binding site of the V-ATPase inhibitor apicularen is in the vicinity of those for bafilomycin and archazolid. J Biol Chem 2012; 287:31866-76. [PMID: 22815478 DOI: 10.1074/jbc.m112.372169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The investigation of V-ATPases as potential therapeutic drug targets and hence of their specific inhibitors is a promising approach in osteoporosis and cancer treatment because the occurrence of these diseases is interrelated to the function of the V-ATPase. Apicularen belongs to the novel inhibitor family of the benzolactone enamides, which are highly potent but feature the unique characteristic of not inhibiting V-ATPases from fungal sources. In this study we specify, for the first time, the binding site of apicularen within the membrane spanning V(O) complex. By photoaffinity labeling using derivatives of apicularen and of the plecomacrolides bafilomycin and concanamycin, each coupled to (14)C-labeled 4-(3-trifluoromethyldiazirin-3-yl)benzoic acid, we verified that apicularen binds at the interface of the V(O) subunits a and c. The binding site is in the vicinity to those of the plecomacrolides and of the archazolids, a third family of V-ATPase inhibitors. Expression of subunit c homologues from Homo sapiens and Manduca sexta, both species sensitive to benzolactone enamides, in a Saccharomyces cerevisiae strain lacking the corresponding intrinsic gene did not transfer this sensitivity to yeast. Therefore, the binding site of benzolactone enamides cannot be formed exclusively by subunit c. Apparently, subunit a substantially contributes to the binding of the benzolactone enamides.
Collapse
Affiliation(s)
- Christin Osteresch
- Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, 49069 Osnabrück, German
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Honig A, Avin-Wittenberg T, Ufaz S, Galili G. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. THE PLANT CELL 2012; 24:288-303. [PMID: 22253227 PMCID: PMC3289568 DOI: 10.1105/tpc.111.093112] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/14/2011] [Accepted: 01/01/2012] [Indexed: 05/18/2023]
Abstract
Atg8 is a central protein in bulk starvation-induced autophagy, but it is also specifically associated with multiple protein targets under various physiological conditions to regulate their selective turnover by the autophagy machinery. Here, we describe two new closely related Arabidopsis thaliana Atg8-interacting proteins (ATI1 and ATI2) that are unique to plants. We show that under favorable growth conditions, ATI1 and ATI2 are partially associated with the endoplasmic reticulum (ER) membrane network, whereas upon exposure to carbon starvation, they become mainly associated with newly identified spherical compartments that dynamically move along the ER network. These compartments are morphologically distinct from previously reported spindle-shaped ER bodies and, in contrast to them, do not contain ER-lumenal markers possessing a C-terminal HDEL sequence. Organelle and autophagosome-specific markers show that the bodies containing ATI1 are distinct from Golgi, mitochondria, peroxisomes, and classical autophagosomes. The final destination of the ATI1 bodies is the central vacuole, indicating that they may operate in selective turnover of specific proteins. ATI1 and ATI2 gene expression is elevated during late seed maturation and desiccation. We further demonstrate that ATI1 overexpression or suppression of both ATI1 and ATI2, respectively, stimulate or inhibit seed germination in the presence of the germination-inhibiting hormone abscisic acid.
Collapse
|
8
|
Wagner CA, Mohebbi N, Uhlig U, Giebisch GH, Breton S, Brown D, Geibel JP. Angiotensin II stimulates H⁺-ATPase activity in intercalated cells from isolated mouse connecting tubules and cortical collecting ducts. Cell Physiol Biochem 2011; 28:513-20. [PMID: 22116365 DOI: 10.1159/000335112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Intercalated cells in the collecting duct system express V-type H(+)-ATPases which participate in acid extrusion, bicarbonate secretion, and chloride absorption depending on the specific subtype. The activity of H(+)-ATPases is regulated by acid-base status and several hormones, including angiotensin II and aldosterone. Angiotensin II stimulates chloride absorption mediated by pendrin in type B intercalated cells and this process is energized by the activity of H(+)-ATPases. Moreover, angiotensin II stimulates bicarbonate secretion by the connecting tubule (CNT) and early cortical collecting duct (CCD). In the present study we examined the effect of angiotensin II (10 nM) on H(+)-ATPase activity and localization in isolated mouse connecting tubules and cortical collecting ducts. Angiotensin II stimulated Na(+)-independent intracellular pH recovery about 2-3 fold, and this was abolished by the specific H(+)-ATPase inhibitor concanamycin. The effect of angiotensin II was mediated through type 1 angiotensin II receptors (AT(1)-receptors) because it could be blocked by saralasin. Stimulation of H(+)-ATPase activity required an intact microtubular network--it was completely inhibited by colchicine. Immunocytochemistry of isolated CNT/CCDs incubated in vitro with angiotensin II suggests enhanced membrane associated staining of H(+)-ATPases in pendrin expressing intercalated cells. In summary, angiotensin II stimulates H(+)-ATPases in CNT/CCD intercalated cells, and may contribute to the regulation of chloride absorption and bicarbonate secretion in this nephron segment.
Collapse
Affiliation(s)
- Carsten A Wagner
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
La Ferla B, Airoldi C, Zona C, Orsato A, Cardona F, Merlo S, Sironi E, D'Orazio G, Nicotra F. Natural glycoconjugates with antitumor activity. Nat Prod Rep 2010; 28:630-48. [PMID: 21120227 DOI: 10.1039/c0np00055h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer is one of the major causes of death worldwide. As a consequence, many different therapeutic approaches, including the use of glycosides as anticancer agents, have been developed. Various glycosylated natural products exhibit high activity against a variety of microbes and human tumors. In this review we classify glycosides according to the nature of their aglycone (non-saccharidic) part. Among them, we describe anthracyclines, aureolic acids, enediyne antibiotics, macrolide and glycopeptides presenting different strengths and mechanisms of action against human cancers. In some cases, the glycosidic residue is crucial for their activity, such as in anthracycline, aureolic acid and enediyne antibiotics; in other cases, Nature has exploited glycosylation to improve solubility or pharmacokinetic properties, as in the glycopeptides. In this review we focus our attention on natural glycoconjugates with anticancer properties. The structure of several of the carbohydrate moieties found in these conjugates and their role are described. The structure–activity relationship of some of these compounds, together with the structural features of their interaction with the biological targets, are also reported. Taken together, all this information is useful for the design of new potential anti-tumor drugs.
Collapse
Affiliation(s)
- Barbara La Ferla
- Department of Biotechnology and Bioscience, University of Milano Bicocca, Piazza della Scienza 2, I-20126, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bockelmann S, Menche D, Rudolph S, Bender T, Grond S, von Zezschwitz P, Muench SP, Wieczorek H, Huss M. Archazolid A binds to the equatorial region of the c-ring of the vacuolar H+-ATPase. J Biol Chem 2010; 285:38304-14. [PMID: 20884613 DOI: 10.1074/jbc.m110.137539] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The macrolactone archazolid is a novel, highly specific V-ATPase inhibitor with an IC(50) value in the low nanomolar range. The binding site of archazolid is presumed to overlap with the binding site of the established plecomacrolide V-ATPase inhibitors bafilomycin and concanamycin in subunit c of the membrane-integral V(O) complex. Using a semi-synthetic derivative of archazolid for photoaffinity labeling of the V(1)V(O) holoenzyme we confirmed binding of archazolid to the V(O) subunit c. For the plecomacrolide binding site a model has been published based on mutagenesis studies of the c subunit of Neurospora crassa, revealing 11 amino acids that are part of the binding pocket at the interface of two adjacent c subunits (Bowman, B. J., McCall, M. E., Baertsch, R., and Bowman, E. J. (2006) J. Biol. Chem. 281, 31885-31893). To investigate the contribution of these amino acids to the binding of archazolid, we established in Saccharomyces cerevisiae mutations that in N. crassa had changed the IC(50) value for bafilomycin 10-fold or more and showed that out of the amino acids forming the plecomacrolide binding pocket only one amino acid (tyrosine 142) contributes to the binding of archazolid. Using a fluorescent derivative of N,N'-dicyclohexylcarbodiimide, we found that the binding site for archazolid comprises the essential glutamate within helix 4 of subunit c. In conclusion the archazolid binding site resides within the equatorial region of the V(O) rotor subunit c. This hypothesis was supported by an additional subset of mutations within helix 4 that revealed that leucine 144 plays a role in archazolid binding.
Collapse
Affiliation(s)
- Svenja Bockelmann
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, Barbarastrasse 11, 49069 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Burkard N, Bender T, Westmeier J, Nardmann C, Huss M, Wieczorek H, Grond S, von Zezschwitz P. New Fluorous Photoaffinity Labels (F-PAL) and Their Application in V-ATPase Inhibition Studies. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Blanchette CD, Woo YH, Thomas C, Shen N, Sulchek TA, Hiddessen AL. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells. PLoS One 2009; 4:e6056. [PMID: 19557127 PMCID: PMC2699028 DOI: 10.1371/journal.pone.0006056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/05/2009] [Indexed: 01/07/2023] Open
Abstract
Background Phagocytosis has been extensively examined in ‘professional’ phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in ‘non-professional’ phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Methodology/Principal Findings Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. Conclusions/Significance Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23–32 min, 3–4 min and 74–120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e.g. pathogen-host systems.
Collapse
Affiliation(s)
- Craig D. Blanchette
- Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Youn-Hi Woo
- Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Cynthia Thomas
- Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Nan Shen
- Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Todd A. Sulchek
- Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Amy L. Hiddessen
- Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins. According to their localization in a multitude of eukaryotic endomembranes and plasma membranes, they energize many different transport processes. Currently, a handful of specific inhibitors of the V-ATPase are known, which represent valuable tools for the characterization of transport processes on the level of tissues, single cells or even purified proteins. The understanding of how these inhibitors function may provide a basis to develop new drugs for the benefit of patients suffering from diseases such as osteoporosis or cancer. For this purpose, it appears absolutely essential to determine the exact inhibitor binding site in a target protein on the one side and to uncover the crucial structural elements of an inhibitor on the other side. However, even for some of the most popular and long known V-ATPase inhibitors, such as bafilomycin or concanamycin, the authentic structures of their binding sites are elusive. The aim of this review is to summarize the recent advances for the old players in the inhibition game, the plecomacrolides bafilomycin and concanamycin, and to introduce some of the new players, the macrolacton archazolid, the benzolactone enamides salicylihalamide, lobatamide, apicularen, oximidine and cruentaren, and the indolyls.
Collapse
Affiliation(s)
- Markus Huss
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | |
Collapse
|
14
|
Olano C, Méndez C, Salas JA. Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep 2009; 26:628-60. [PMID: 19387499 DOI: 10.1039/b822528a] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covering: up to October 2008. Antitumor compounds produced by actinomycetes and novel derivatives generated by combinatorial biosynthesis are reviewed (with 318 references cited.) The different structural groups for which the relevant gene clusters have been isolated and characterized are reviewed, with a description of the strategies used for the generation of the novel derivatives and the activities of these compounds against tumor cell lines.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | |
Collapse
|
15
|
Hesselink RW, Fedorov A, Hemminga MA, Prieto M. Membrane-bound peptides from V-ATPase subunita do not interact with an indole-type inhibitor. J Pept Sci 2008; 14:383-8. [DOI: 10.1002/psc.980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Bafilomycin A1 is a potassium ionophore that impairs mitochondrial functions. J Bioenerg Biomembr 2007; 39:321-9. [DOI: 10.1007/s10863-007-9095-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Bender T, Huss M, Wieczorek H, Grond S, von Zezschwitz P. Convenient Synthesis of a [1-14C]Diazirinylbenzoic Acid as a Photoaffinity Label for Binding Studies of V-ATPase Inhibitors. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Hettiarachchi KD, Zimmet PZ, Myers MA. The plecomacrolide vacuolar-ATPase inhibitor bafilomycin, alters insulin signaling in MIN6 beta-cells. Cell Biol Toxicol 2007; 22:169-81. [PMID: 16555000 DOI: 10.1007/s10565-006-0054-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 01/05/2006] [Indexed: 12/31/2022]
Abstract
Inhibition of endosomal acidification disturbs insulin signaling in both liver and adipose cells. In this study we used MIN6 beta cells to determine whether bafilomycin, a potent inhibitor of the proton-translocating vacuolar ATPase, disrupts insulin signaling in islet beta cells. Pretreatment of MIN6 cells with varying concentrations of bafilomycin according to a time course revealed concentration and time-dependent changes in phosphorylation of insulin receptor signaling components. Increased phosphorylation of insulin receptor (IR), IRS2 and Akt was prolonged at low bafilomycin concentrations (10 and 50 nmol/L), whereas at high concentrations (100 and 200 nmol/L) phosphorylation rapidly returned to basal levels or below. Akt activation was demonstrated by transient increases in phosphorylation of BAD, cytoplasmic retention of FoxO1 and increased preproinsulin mRNA. Bcl2 expression was also transiently increased but reduced after 30 min exposure to bafilomycin, and this coincided with reduced cell viability. Thus, in beta cells inhibition of endosomal acidification by low concentrations of bafilomycin transiently increases insulin signaling, whereas high concentrations promote cell death. Bafilomycin and other agents that interfere with insulin signaling may contribute to diabetes development through disturbing homeostatic control of beta cell growth.
Collapse
Affiliation(s)
- K D Hettiarachchi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
19
|
Haydock SF, Appleyard AN, Mironenko T, Lester J, Scott N, Leadlay PF. Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiology (Reading) 2005; 151:3161-3169. [PMID: 16207901 DOI: 10.1099/mic.0.28194-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The macrolide antibiotic concanamycin A has been identified as an exceptionally potent inhibitor of the vacuolar (V-type) ATPase. Such compounds have been mooted as the basis of a potential drug treatment for osteoporosis, since the V-ATPase is involved in the osteoclast-mediated bone resorption that underlies this common condition. To enable combinatorial engineering of altered concanamycins, the biosynthetic gene cluster governing the biosynthesis of concanamycin A has been cloned fromStreptomyces neyagawaensisand shown to span a region of over 100 kbp of contiguous DNA. An efficient transformation system has been developed forS. neyagawaensisand used to demonstrate the role of the cloned locus in the formation of concanamycin A. Sequence analysis of the 28 ORFs in the region has revealed key features of the biosynthetic pathway, in particular the biosynthetic origin of portions of the backbone, which arise from the unusual polyketide building blocks ethylmalonyl-CoA and methoxymalonyl-ACP, and the origin of the pendant deoxysugar moiety 4′-O-carbamoyl-2′-deoxyrhamnose, as well as the presence of a modular polyketide synthase (PKS) encoded by six giant ORFs. Examination of the methoxymalonyl-specific acyltransferase (AT) domains has led to recognition of an amino acid sequence motif which can be used to distinguish methylmalonyl-CoA- from methoxymalonyl-ACP-specific AT domains in natural PKSs.
Collapse
Affiliation(s)
- Stephen F Haydock
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Anthony N Appleyard
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tatiana Mironenko
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - John Lester
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Natasha Scott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
20
|
Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, Ingenhorst G, Zeeck A, Wieczorek H. Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC BIOCHEMISTRY 2005; 6:13. [PMID: 16080788 PMCID: PMC1190152 DOI: 10.1186/1471-2091-6-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 08/04/2005] [Indexed: 11/10/2022]
Abstract
Background V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins. According to their localization in a multitude of eukaryotic membranes, they energize many different transport processes. Since their malfunction is correlated with various diseases in humans, the elucidation of the properties of this enzyme for the development of selective inhibitors and drugs is one of the challenges in V-ATPase research. Results Archazolid A and B, two recently discovered cytotoxic macrolactones produced by the myxobacterium Archangium gephyra, and apicularen A and B, two novel benzolactone enamides produced by different species of the myxobacterium Chondromyces, exerted a similar inhibitory efficacy on a wide range of mammalian cell lines as the well established plecomacrolidic type V-ATPase inhibitors concanamycin and bafilomycin. Like the plecomacrolides both new macrolides also prevented the lysosomal acidification in cells and inhibited the V-ATPase purified from the midgut of the tobacco hornworm, Manduca sexta, with IC50 values of 20–60 nM. However, they did not influence the activity of mitochondrial F-ATPase or that of the Na+/K+-ATPase. To define the binding sites of these new inhibitors we used a semi-synthetic radioactively labelled derivative of concanamycin which exclusively binds to the membrane Vo subunit c. Whereas archazolid A prevented, like the plecomacrolides concanamycin A, bafilomycin A1 and B1, labelling of subunit c by the radioactive I-concanolide A, the benzolactone enamide apicularen A did not compete with the plecomacrolide derivative. Conclusion The myxobacterial antibiotics archazolid and apicularen are highly efficient and specific novel inhibitors of V-ATPases. While archazolid at least partly shares a common binding site with the plecomacrolides bafilomycin and concanamycin, apicularen adheres to an independent binding site.
Collapse
Affiliation(s)
- Markus Huss
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, 49069 Osnabrück, Germany
| | - Florenz Sasse
- Gesellschaft für Biotechnologische Forschung, Bereich Naturstoffe, 38124 Braunschweig, Germany
| | - Brigitte Kunze
- Gesellschaft für Biotechnologische Forschung, Bereich Naturstoffe, 38124 Braunschweig, Germany
| | - Rolf Jansen
- Gesellschaft für Biotechnologische Forschung, Bereich Naturstoffe, 38124 Braunschweig, Germany
| | - Heinrich Steinmetz
- Gesellschaft für Biotechnologische Forschung, Bereich Naturstoffe, 38124 Braunschweig, Germany
| | - Gudrun Ingenhorst
- Universität Göttingen, Fakultät für Chemie, Institut für Organische und Biomolekulare Chemie, 37077 Göttingen, Germany
| | - Axel Zeeck
- Universität Göttingen, Fakultät für Chemie, Institut für Organische und Biomolekulare Chemie, 37077 Göttingen, Germany
| | - Helmut Wieczorek
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, 49069 Osnabrück, Germany
| |
Collapse
|
21
|
Páli T, Dixon N, Kee TP, Marsh D. Incorporation of the V-ATPase inhibitors concanamycin and indole pentadiene in lipid membranes. Spin-label EPR studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:14-8. [PMID: 15157605 DOI: 10.1016/j.bbamem.2004.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/04/2004] [Indexed: 10/26/2022]
Abstract
The incorporation of concanamycin A, a potent inhibitor of vacuolar ATPases, into membranes of dimyristoyl phosphatidylcholine has been studied by using EPR of spin-labelled lipid chains. At an inhibitor/lipid ratio of 1:1 mol/mol, concanamycin A broadens the chain-melting transition of the phospholipid bilayer membrane, and effects the lipid chain motion in the fluid phase. The outer hyperfine splitting of a spin label at the C-5 position and the line widths of a spin label at the C-14 position of the lipid chain are increased by concanamycin A. Considerably larger membrane perturbations are caused by equimolar admixture of a designed synthetic 5-(5,6-dichloro-2-indolyl)-2,4-pentadienoyl V-ATPase inhibitor. These results indicate that concanamycin A intercalates readily between the lipid chains in biological membranes, with minimal perturbation of the bilayer structure. Essentially identical results are obtained with concanamycin A added to preformed membranes as a concentrated solution in DMSO, or mixed with lipid in organic solvent prior to membrane formation. Therefore, the common mode of addition in V-ATPase inhibition assays ensures incorporation of concanamycin into the lipid bilayer milieu, which provides an efficient channel of access to the transmembrane domains of the V-ATPase.
Collapse
Affiliation(s)
- Tibor Páli
- Department of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
22
|
Biasotti B, Dallavalle S, Merlini L, Farina C, Gagliardi S, Parini C, Belfiore P. Synthesis of photoactivable inhibitors of osteoclast vacuolar ATPase. Bioorg Med Chem 2003; 11:2247-54. [PMID: 12713834 DOI: 10.1016/s0968-0896(03)00106-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Amides of (2Z,4E)-5-[(5,6-dichloroindol-2-yl)]-2-methoxy-N-[3-[4-[3-(carboxymethoxy)phenyl)] piperazin-1-yl]propyl]-2,4-pentadienamide (1) and of 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienoic acid (2) are strong inhibitors of the vacuolar ATPase located on the plasma membrane of osteoclasts. In order to understand which V-ATPase subunit is involved in the interaction with these novel inhibitors, analogues containing a photoactivable group and an iodine atom were designed. A series of alcohols or amines containing the photoactivable trifluoroaziridinophenyl or benzophenone moiety and an iodine atom were linked to the above acids via an ester or amide group. These compounds could be thereafter used as a radioactive photoprobe to label the protein. Whereas the compounds containing the photoactivable groups maintained good inhibitory activity, the introduction of the bulky iodine atom was generally detrimental, decreasing potency significantly. Better results were obtained by linking 3-(4-aminopiperidinomethyl)-3'-iodobenzophenone to 3-ethoxy-4-(2-(5,6-dichlorobenzimidazolyl))benzoic acid to give the corresponding amide 27, that inhibited vacuolar ATP-ase with a IC(50)=140 nM. The feasibility of introducing a radioactive 125I atom was ascertained by exchanging the iodine with a tributylstannyl group, that was again substituted by iodine.
Collapse
Affiliation(s)
- Barbara Biasotti
- Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, Via Celoria 2, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Dixon N, Pali T, Ball S, Harrison MA, Marsh D, Findlay JBC, Kee TP. New biophysical probes for structure–activity analyses of vacuolar-H+-ATPase enzymes. Org Biomol Chem 2003; 1:4361-3. [PMID: 14685305 DOI: 10.1039/b311401e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New EPR spin labelled and photoactivatable molecules have been designed to probe specifically the vacuolar-H(+)-ATPase.
Collapse
Affiliation(s)
- Neil Dixon
- Department of Chemistry, Woodhouse Lane, Leeds, UK LS2 9JT
| | | | | | | | | | | | | |
Collapse
|
24
|
Yoshimoto Y, Jyojima T, Arita T, Ueda M, Imoto M, Matsumura S, Toshima K. Vacuolar-type H(+)-ATPase inhibitory activity of synthetic analogues of the concanamycins: is the hydrogen bond network involving the lactone carbonyl, the hemiacetal hydroxy group, and the C-19 hydroxy group essential for the biological activity of the concanamycins? Bioorg Med Chem Lett 2002; 12:3525-8. [PMID: 12443768 DOI: 10.1016/s0960-894x(02)00806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic analogue of the concanamycins, which lacks the hydrogen bond network existing in the concanamycin structure, retains vacuolar-type H(+)-ATPase (V-ATPase) inhibitory activity and induces apoptosis to cancer cells that overexpressing epidermal growth factor receptors (EGFR).
Collapse
Affiliation(s)
- Yuya Yoshimoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Huss M, Ingenhorst G, König S, Gassel M, Dröse S, Zeeck A, Altendorf K, Wieczorek H. Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. J Biol Chem 2002; 277:40544-8. [PMID: 12186879 DOI: 10.1074/jbc.m207345200] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type ATPase (V-ATPase) purified from the midgut of the tobacco hornworm Manduca sexta is inhibited 50% by 10 nm of the plecomacrolide concanamycin A, the specific inhibitor of V-ATPases. To determine the binding site(s) of that antibiotic in the enzyme complex, labeling with the semisynthetic 9-O-[p-(trifluoroethyldiazirinyl)-benzoyl]-21,23-dideoxy-23-[(125)I]iodo-concanolide A (J-concanolide A) was performed, which still inhibits the V-ATPase 50% at a concentration of 15-20 microm. Upon treatment with UV light, a highly reactive carbene is generated from this concanamycin derivative, resulting in the formation of a covalent bond to the enzyme. In addition, the radioactive tracer (125)I makes the detection of the labeled subunit(s) feasible. Treatment of the V(1)/V(o) holoenzyme, the V(o) complex, and the V-ATPase containing goblet cell apical membranes with concanolide resulted in the labeling of only the proteolipid, subunit c, of the proton translocating V(o) complex. Binding of J-concanolide A to subunit c was prevented in a concentration-dependent manner by concanamycin A, indicating that labeling was specific. Binding was also prevented by the plecomacrolides bafilomycin A(1) and B(1), respectively, but not by the benzolactone enamide salicylihalamide, a member of a novel class of V-ATPase inhibitors.
Collapse
Affiliation(s)
- Markus Huss
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, 49069 Osnabrück, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Eguchi T, Kobayashi K, Uekusa H, Ohashi Y, Mizoue K, Matsushima Y, Kakinuma K. Stereostructure of a novel cytotoxic 18-membered macrolactone antibiotic FD-891. Org Lett 2002; 4:3383-6. [PMID: 12323024 DOI: 10.1021/ol026518k] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The absolute stereochemistry of FD-891, a novel cytotoxic 18-membered macrolactone antibiotic, was determined by a synthetic approach as well as X-ray diffraction of degradative derivatives. The absolute configuration of FD-891 turned out to be as shown above. The stable conformer of FD-891 was also discussed with respect to biological activity by comparison with the structurally related concanamycin A on the bases of molecular mechanics calculations. [structure: see text]
Collapse
Affiliation(s)
- Tadashi Eguchi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Granger D, Marsolais M, Burry J, Laprade R. V-type H+-ATPase in the human eccrine sweat duct: immunolocalization and functional demonstration. Am J Physiol Cell Physiol 2002; 282:C1454-60. [PMID: 11997260 DOI: 10.1152/ajpcell.00319.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated for the presence of a vacuolar-type H+-ATPase (V-ATPase) in the human eccrine sweat duct (SD). With the use of immunocytochemistry, an anti-V- ATPase antibody showed a strong staining at the apical membrane and a weaker one in the cytoplasm. Cold preservation followed by rewarming did not alter this staining pattern. With the use of the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein on isolated and perfused straight SD under HCO-free conditions and in the absence of Na+, proton extrusion was determined from the recovery rate of intracellular pH (dpH(i)/dt) following an acid load. Oligomycin (25 microM), an inhibitor of F-type ATPases, decreased dpH(i)/dt by 88 +/- 6%, suggesting a role for an ATP-dependent process involved in pH(i) recovery. Moreover, dpH(i)/dt was inhibited at 95 +/- 3% by 100 nM luminal concanamycin A, a specific inhibitor of V-ATPases, whereas 10 microM bafilomycin A1, another specific inhibitor of V-ATPases, was required to decrease dpH(i)/dt by 73%. These results strongly suggest that a V-ATPase is involved in proton secretion in the human eccrine SD.
Collapse
Affiliation(s)
- D Granger
- Groupe de Recherche en Transport Membranaire, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | |
Collapse
|
28
|
Bowman BJ, Bowman EJ. Mutations in subunit C of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J Biol Chem 2002; 277:3965-72. [PMID: 11724795 DOI: 10.1074/jbc.m109756200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bafilomycin A1, a potent inhibitor of vacuolar H(+)-ATPases (V-ATPase), inhibited growth of Neurospora crassa in medium adjusted to alkaline pH. Ninety-eight mutant strains were selected for growth on medium (pH 7.2) containing 0.3 or 1.0 microm bafilomycin. Three criteria suggested that 11 mutant strains were altered in the V-ATPase: 1) these strains accumulated high amounts of arginine when grown at pH 5.8 in the presence of bafilomycin, 2) the mutation mapped to the locus of vma-3, which encodes the proteolipid subunit c of the V-ATPase, and 3) V-ATPase activity in purified vacuolar membranes was resistant to bafilomycin. Sequencing of the genomic DNA encoding vma-3 identified the following mutations: T32I (two strains), F136L (two strains), Y143H (two strains), and Y143N (five strains). Characterization of V-ATPase activity in the four kinds of mutant strains showed that the enzyme was resistant to bafilomycin in vitro, with half-maximal inhibition obtained at 80-400 nm compared with 6.3 nm for the wild-type enzyme. Surprisingly, the mutant enzymes showed only weak resistance to concanamycin. Interestingly, the positions of two mutations corresponded to positions of oligomycin-resistant mutations in the c subunit of F(1)F(0)-ATP synthases (F-ATPases), suggesting that bafilomycin and oligomycin utilize a similar binding site and mechanism of inhibition in the related F- and V-ATPases.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
29
|
Ingenhorst G, Bindseil K, Boddien C, Dröse S, Gaßel M, Altendorf K, Zeeck A. Synthesis of a Doubly Labelled Concanamycin Derivative for ATPase Binding Studies. European J Org Chem 2001. [DOI: 10.1002/1099-0690(200112)2001:23<4525::aid-ejoc4525>3.0.co;2-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|