1
|
Davison JR, Hadjithomas M, Romeril SP, Choi YJ, Bentley KW, Biggins JB, Chacko N, Castaldi MP, Chan LK, Cumming JN, Downes TD, Eisenhauer EL, Fei F, Fontaine BM, Endalur Gopinarayanan V, Gurnani S, Hecht A, Hosford CJ, Ibrahim A, Jagels A, Joubran C, Kim JN, Lisher JP, Liu DD, Lyles JT, Mannara MN, Murray GJ, Musial E, Niu M, Olivares-Amaya R, Percuoco M, Saalau S, Sharpe K, Sheahan AV, Thevakumaran N, Thompson JE, Thompson DA, Wiest A, Wyka SA, Yano J, Verdine GL. Genomic Discovery and Structure-Activity Exploration of a Novel Family of Enzyme-Activated Covalent Cyclin-Dependent Kinase Inhibitors. J Med Chem 2024; 67:13147-13173. [PMID: 39078366 PMCID: PMC11320645 DOI: 10.1021/acs.jmedchem.4c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Fungi have historically been the source of numerous important medicinal compounds, but full exploitation of their genetic potential for drug development has been hampered in traditional discovery paradigms. Here we describe a radically different approach, top-down drug discovery (TD3), starting with a massive digital search through a database of over 100,000 fully genomicized fungi to identify loci encoding molecules with a predetermined human target. We exemplify TD3 by the selection of cyclin-dependent kinases (CDKs) as targets and the discovery of two molecules, 1 and 2, which inhibit therapeutically important human CDKs. 1 and 2 exhibit a remarkable mechanism, forming a site-selective covalent bond to the CDK active site Lys. We explored the structure-activity relationship via semi- and total synthesis, generating an analog, 43, with improved kinase selectivity, bioavailability, and efficacy. This work highlights the power of TD3 to identify mechanistically and structurally novel molecules for the development of new medicines.
Collapse
Affiliation(s)
- Jack R. Davison
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michalis Hadjithomas
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stuart P. Romeril
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yoon Jong Choi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Keith W. Bentley
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John B. Biggins
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Nadia Chacko
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - M. Paola Castaldi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lawrence K. Chan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jared N. Cumming
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Thomas D. Downes
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Eric L. Eisenhauer
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Fan Fei
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Benjamin M. Fontaine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | | | - Srishti Gurnani
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Audrey Hecht
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher J. Hosford
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ashraf Ibrahim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Annika Jagels
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Camil Joubran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ji-Nu Kim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John P. Lisher
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Daniel D. Liu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James T. Lyles
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Matteo N. Mannara
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gordon J. Murray
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Emilia Musial
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Mengyao Niu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Roberto Olivares-Amaya
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Marielle Percuoco
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Susanne Saalau
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Kristen Sharpe
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Anjali V. Sheahan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Neroshan Thevakumaran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James E. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Dawn A. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Aric Wiest
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stephen A. Wyka
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jason Yano
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gregory L. Verdine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
- Departments
of Chemistry and Chemical Biology, and Stem Cell and Regenerative
Biology, Harvard University and Harvard
Medical School, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Rico-Jiménez M, Udaondo Z, Krell T, Matilla MA. Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium Serratia plymuthica. mSystems 2024; 9:e0016524. [PMID: 38837409 PMCID: PMC11264596 DOI: 10.1128/msystems.00165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
The communication between plants and their microbiota is highly dynamic and involves a complex network of signal molecules. Among them, the auxin indole-3-acetic acid (IAA) is a critical phytohormone that not only regulates plant growth and development, but is emerging as an important inter- and intra-kingdom signal that modulates many bacterial processes that are important during interaction with their plant hosts. However, the corresponding signaling cascades remain largely unknown. Here, we advance our understanding of the largely unknown mechanisms by which IAA carries out its regulatory functions in plant-associated bacteria. We showed that IAA caused important changes in the global transcriptome of the rhizobacterium Serratia plymuthica and multidisciplinary approaches revealed that IAA sensing interferes with the signaling mediated by other pivotal plant-derived signals such as amino acids and 4-hydroxybenzoic acid. Exposure to IAA caused large alterations in the transcript levels of genes involved in amino acid metabolism, resulting in significant metabolic alterations. IAA treatment also increased resistance to toxic aromatic compounds through the induction of the AaeXAB pump, which also confers resistance to IAA. Furthermore, IAA promoted motility and severely inhibited biofilm formation; phenotypes that were associated with decreased c-di-GMP levels and capsule production. IAA increased capsule gene expression and enhanced bacterial sensitivity to a capsule-dependent phage. Additionally, IAA induced the expression of several genes involved in antibiotic resistance and led to changes in the susceptibility and responses to antibiotics with different mechanisms of action. Collectively, our study illustrates the complexity of IAA-mediated signaling in plant-associated bacteria. IMPORTANCE Signal sensing plays an important role in bacterial adaptation to ecological niches and hosts. This communication appears to be particularly important in plant-associated bacteria since they possess a large number of signal transduction systems that respond to a wide diversity of chemical, physical, and biological stimuli. IAA is emerging as a key inter- and intra-kingdom signal molecule that regulates a variety of bacterial processes. However, despite the extensive knowledge of the IAA-mediated regulatory mechanisms in plants, IAA signaling in bacteria remains largely unknown. Here, we provide insight into the diversity of mechanisms by which IAA regulates primary and secondary metabolism, biofilm formation, motility, antibiotic susceptibility, and phage sensitivity in a biocontrol rhizobacterium. This work has important implications for our understanding of bacterial ecology in plant environments and for the biotechnological and clinical applications of IAA, as well as related molecules.
Collapse
Affiliation(s)
- Miriam Rico-Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Zulema Udaondo
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
3
|
Guo Z, Jiang N, Li M, Guo H, Liu Q, Qin X, Zhang Z, Han C, Wang Y. A vicinal oxygen chelate protein facilitates viral infection by triggering the unfolded protein response in Nicotiana benthamiana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1481-1499. [PMID: 38695653 DOI: 10.1111/jipb.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/31/2024] [Indexed: 07/12/2024]
Abstract
Vicinal oxygen chelate (VOC) proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities. However, the biological functions of VOC proteins in plants are poorly understood. Here, we show that a VOC in Nicotiana benthamiana (NbVOC1) facilitates viral infection. NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus (BNYVV). Transient overexpression of NbVOC1 or its homolog from Beta vulgaris (BvVOC1) enhanced BNYVV infection in N. benthamiana, which required the nuclear localization of VOC1. Consistent with this result, overexpressing NbVOC1 facilitated BNYVV infection, whereas, knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N. benthamiana plants. NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28, which enhances their self-interaction and DNA binding to the promoters of unfolded protein response (UPR)-related genes. We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription, forming a positive feedback loop to induce the UPR and facilitating BNYVV infection. Collectively, our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.
Collapse
Affiliation(s)
- Zhihong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ning Jiang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Menglin Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Hongfang Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qi Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xinyu Qin
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zongying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Aparicio Chacón MV, Hernández Luelmo S, Devlieghere V, Robichez L, Leroy T, Stuer N, De Keyser A, Ceulemans E, Goossens A, Goormachtig S, Van Dingenen J. Exploring the potential role of four Rhizophagus irregularis nuclear effectors: opportunities and technical limitations. FRONTIERS IN PLANT SCIENCE 2024; 15:1384496. [PMID: 38736443 PMCID: PMC11085264 DOI: 10.3389/fpls.2024.1384496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.
Collapse
Affiliation(s)
- María Victoria Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofía Hernández Luelmo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Viktor Devlieghere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Louis Robichez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Toon Leroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
5
|
Sánchez Pérez LDC, Zubillaga RA, García-Gutiérrez P, Landa A. Sigma-Class Glutathione Transferases (GSTσ): A New Target with Potential for Helminth Control. Trop Med Infect Dis 2024; 9:85. [PMID: 38668546 PMCID: PMC11053550 DOI: 10.3390/tropicalmed9040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Glutathione transferases (GSTs EC 2.5.1.18) are critical components of phase II metabolism, instrumental in xenobiotics' metabolism. Their primary function involves conjugating glutathione to both endogenous and exogenous toxic compounds, which increases their solubility and enables their ejection from cells. They also play a role in the transport of non-substrate compounds and immunomodulation, aiding in parasite establishment within its host. The cytosolic GST subfamily is the most abundant and diverse in helminths, and sigma-class GST (GSTσ) belongs to it. This review focuses on three key functions of GSTσ: serving as a detoxifying agent that provides drug resistance, functioning as an immune system modulator through its involvement in prostaglandins synthesis, and acting as a vaccine antigen.
Collapse
Affiliation(s)
| | - Rafael A. Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City C.P. 09310, Mexico; (L.d.C.S.P.); (P.G.-G.)
| | - Ponciano García-Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City C.P. 09310, Mexico; (L.d.C.S.P.); (P.G.-G.)
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| |
Collapse
|
6
|
Tan J, Lamont GJ, Sekula M, Hong H, Sloan L, Scott DA. The transcriptomic response to cannabidiol of Treponema denticola, a phytocannabinoid-resistant periodontal pathogen. J Clin Periodontol 2024; 51:222-232. [PMID: 38105008 DOI: 10.1111/jcpe.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
AIM The use of cannabis, which contains multiple antimicrobials, may be a risk factor for periodontitis. We hypothesized that multiple oral spirochetes would be phytocannabinoid-resistant and that cannabidiol (CBD) would act as an environmental stressor to which Treponema denticola would respond transcriptionally, thereby providing first insights into spirochetal survival strategies. MATERIALS AND METHODS Oral spirochete growth was monitored spectrophotometrically in the presence and absence of physiologically relevant phytocannabinoid doses, the transcriptional response to phytocannabinoid exposure determined by RNAseq, specific gene activity fluxes verified using qRT-PCR and orthologues among fully sequenced oral spirochetes identified. RESULTS Multiple strains of oral treponemes were resistant to CBD (0.1-10 μg/mL), while T. denticola ATCC 35405 was resistant to all phytocannabinoids tested (CBD, cannabinol [CBN], tetrahydrocannabinol [THC]). A total of 392 T. denticola ATCC 35405 genes were found to be CBD-responsive by RNAseq. A selected subset of these genes was independently verified by qRT-PCR. Genes found to be differentially activated by both methods included several involved in transcriptional regulation and toxin control. Suppressed genes included several involved in chemotaxis and proteolysis. CONCLUSIONS Oral spirochetes, unlike some other periodontal bacteria, are resistant to physiological doses of phytocannabinoids. Investigation of CBD-induced transcriptomic changes provided insight into the resistance mechanisms of this important periodontal pathogen. These findings should be considered in the context of the reported enhanced susceptibility to periodontitis in cannabis users.
Collapse
Affiliation(s)
- Jinlian Tan
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Gwyneth J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Michael Sekula
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, USA
| | - HeeJue Hong
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Lucy Sloan
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Ghaly TM, Rajabal V, Penesyan A, Coleman NV, Paulsen IT, Gillings MR, Tetu SG. Functional enrichment of integrons: Facilitators of antimicrobial resistance and niche adaptation. iScience 2023; 26:108301. [PMID: 38026211 PMCID: PMC10661359 DOI: 10.1016/j.isci.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Integrons are genetic elements, found among diverse bacteria and archaea, that capture and rearrange gene cassettes to rapidly generate genetic diversity and drive adaptation. Despite their broad taxonomic and geographic prevalence, and their role in microbial adaptation, the functions of gene cassettes remain poorly characterized. Here, using a combination of bioinformatic and experimental analyses, we examined the functional diversity of gene cassettes from different environments. We find that cassettes encode diverse antimicrobial resistance (AMR) determinants, including those conferring resistance to antibiotics currently in the developmental pipeline. Further, we find a subset of cassette functions is universally enriched relative to their broader metagenomes. These are largely involved in (a)biotic interactions, including AMR, phage defense, virulence, biodegradation, and stress tolerance. The remainder of functions are sample-specific, suggesting that they confer localised functions relevant to their microenvironment. Together, they comprise functional profiles different from bulk metagenomes, representing niche-adaptive components of the prokaryotic pangenome.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Nicholas V. Coleman
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
8
|
Travis S, Green KD, Thamban Chandrika N, Pang AH, Frantom PA, Tsodikov OV, Garneau-Tsodikova S, Thompson MK. Identification and analysis of small molecule inhibitors of FosB from Staphylococcus aureus. RSC Med Chem 2023; 14:947-956. [PMID: 37252104 PMCID: PMC10211316 DOI: 10.1039/d3md00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to human health around the world. Though bacterial pathogens can develop resistance through a variety of mechanisms, one of the most prevalent is the production of antibiotic-modifying enzymes like FosB, a Mn2+-dependent l-cysteine or bacillithiol (BSH) transferase that inactivates the antibiotic fosfomycin. FosB enzymes are found in pathogens such as Staphylococcus aureus, one of the leading pathogens in deaths associated with AMR. fosB gene knockout experiments establish FosB as an attractive drug target, showing that the minimum inhibitory concentration (MIC) of fosfomycin is greatly reduced upon removal of the enzyme. Herein, we have identified eight potential inhibitors of the FosB enzyme from S. aureus by applying high-throughput in silico screening of the ZINC15 database with structural similarity to phosphonoformate, a known FosB inhibitor. In addition, we have obtained crystal structures of FosB complexes to each compound. Furthermore, we have kinetically characterized the compounds with respect to inhibition of FosB. Finally, we have performed synergy assays to determine if any of the new compounds lower the MIC of fosfomycin in S. aureus. Our results will inform future studies on inhibitor design for the FosB enzymes.
Collapse
Affiliation(s)
- Skye Travis
- Department of Chemistry & Biochemistry, The University of Alabama Box 870336, 250 Hackberry Lane Tuscaloosa AL 35487 USA +(205) 348 8439
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone St. Lexington KY 40536 USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone St. Lexington KY 40536 USA
| | - Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone St. Lexington KY 40536 USA
| | - Patrick A Frantom
- Department of Chemistry & Biochemistry, The University of Alabama Box 870336, 250 Hackberry Lane Tuscaloosa AL 35487 USA +(205) 348 8439
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone St. Lexington KY 40536 USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone St. Lexington KY 40536 USA
| | - Matthew K Thompson
- Department of Chemistry & Biochemistry, The University of Alabama Box 870336, 250 Hackberry Lane Tuscaloosa AL 35487 USA +(205) 348 8439
| |
Collapse
|
9
|
Travis S, Green KD, Gilbert NC, Tsodikov OV, Garneau-Tsodikova S, Thompson MK. Inhibition of Fosfomycin Resistance Protein FosB from Gram-Positive Pathogens by Phosphonoformate. Biochemistry 2023; 62:109-117. [PMID: 36525630 DOI: 10.1021/acs.biochem.2c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Gram-positive pathogen Staphylococcus aureus is a leading cause of antimicrobial resistance related deaths worldwide. Like many pathogens with multidrug-resistant strains, S. aureus contains enzymes that confer resistance through antibiotic modification(s). One such enzyme present in S. aureus is FosB, a Mn2+-dependent l-cysteine or bacillithiol (BSH) transferase that inactivates the antibiotic fosfomycin. fosB gene knockout experiments show that the minimum inhibitory concentration (MIC) of fosfomycin is significantly reduced when the FosB enzyme is not present. This suggests that inhibition of FosB could be an effective method to restore fosfomycin activity. We used high-throughput in silico-based screening to identify small-molecule analogues of fosfomycin that inhibited thiol transferase activity. Phosphonoformate (PPF) was a top hit from our approach. Herein, we have characterized PPF as a competitive inhibitor of FosB from S. aureus (FosBSa) and Bacillus cereus (FosBBc). In addition, we have determined a crystal structure of FosBBc with PPF bound in the active site. Our results will be useful for future structure-based development of FosB inhibitors that can be delivered in combination with fosfomycin in order to increase the efficacy of this antibiotic.
Collapse
Affiliation(s)
- Skye Travis
- Department of Chemistry & Biochemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Matthew K Thompson
- Department of Chemistry & Biochemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
10
|
Mordvinov V, Pakharukova M. Xenobiotic-Metabolizing Enzymes in Trematodes. Biomedicines 2022; 10:biomedicines10123039. [PMID: 36551794 PMCID: PMC9775572 DOI: 10.3390/biomedicines10123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Trematode infections occur worldwide causing considerable deterioration of human health and placing a substantial financial burden on the livestock industry. The hundreds of millions of people afflicted with trematode infections rely entirely on only two drugs (praziquantel and triclabendazole) for treatment. An understanding of anthelmintic biotransformation pathways in parasites should clarify factors that can modulate therapeutic potency of anthelmintics currently in use and may lead to the discovery of synergistic compounds for combination treatments. Despite the pronounced epidemiological significance of trematodes, there is still no adequate understanding of the functionality of their metabolic systems, including xenobiotic-metabolizing enzymes. The review is focused on the structure and functional significance of the xenobiotic-metabolizing system in trematodes. Knowledge in this field can solve practical problems related to the search for new targets for antiparasitic therapy based on a focused action on certain elements of the parasite's metabolic system. Knowledge of the functionality of this system is required to understand the adaptation of the biochemical processes of parasites residing in the host and mechanisms of drug resistance development, as well as to select a promising molecular target for the discovery and development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Viatcheslav Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(913)-394-6669
| |
Collapse
|
11
|
Abstract
The glyoxalase gene family consists of six structurally and functionally diverse enzymes with broad roles in metabolism. The common feature that defines this family is based on structural motifs that coordinate divalent cations which are required for activity. These family members have been implicated in a variety of physiological processes, including amino-acid metabolism (4-hydroxyphenylpyruvate dioxygenase; HPD), primary metabolism (methylmalonyl-CoA epimerase; MCEE), and aldehyde detoxication (glyoxalase 1; GLO1) and therefore have significant associations with disease. A central function of this family is the detoxification of reactive dicarbonyls (e.g., methylglyoxal), which react with cellular nucleophiles, resulting in the modification of lipids, proteins, and DNA. These damaging modifications activate canonical stress responses such as heat shock, unfolded protein, antioxidant, and DNA damage responses. Thus, glyoxalases serve an important role in homeostasis, preventing the pathogenesis of metabolic disease states, including obesity, diabetes, cardiovascular disease, renal failure, and aging. This review presents a thorough overview of the literature surrounding this diverse enzyme class. Although extensive literature exists for some members of this family (e.g., GLO1), little is known about the physiological role of glyoxalase domain-containing protein 4 (GLOD4) and 5 (GLOD5), paving the way for exciting avenues for future research.
Collapse
Affiliation(s)
- Dominique O Farrera
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - James J Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| |
Collapse
|
12
|
Kakkis A, Golub E, Choi TS, Tezcan FA. Redox- and metal-directed structural diversification in designed metalloprotein assemblies. Chem Commun (Camb) 2022; 58:6958-6961. [PMID: 35642584 DOI: 10.1039/d2cc02440c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a designed protein building block whose self-assembly behaviour is dually gated by the redox state of disulphide bonds and the identity of exogenous metal ions. This protein construct is shown - through extensive structural and biophysical characterization - to access five distinct oligomeric states, exemplifying how the complex interplay between hydrophobic, metal-ligand, and reversible covalent interactions could be harnessed to obtain multiple, responsive protein architectures from a single building block.
Collapse
Affiliation(s)
- Albert Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Eyal Golub
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Bari SMN, Chou-Zheng L, Howell O, Hossain M, Hill CM, Boyle TA, Cater K, Dandu VS, Thomas A, Aslan B, Hatoum-Aslan A. A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme. Cell Host Microbe 2022; 30:570-582.e7. [PMID: 35421352 DOI: 10.1016/j.chom.2022.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
The perpetual arms race between bacteria and their viruses (phages) has given rise to diverse immune systems, including restriction-modification and CRISPR-Cas, which sense and degrade phage-derived nucleic acids. These complex systems rely upon production and maintenance of multiple components to achieve antiphage defense. However, the prevalence and effectiveness of minimal, single-component systems that cleave DNA remain unknown. Here, we describe a unique mode of nucleic acid immunity mediated by a single enzyme with nuclease and helicase activities, herein referred to as Nhi (nuclease-helicase immunity). This enzyme provides robust protection against diverse staphylococcal phages and prevents phage DNA accumulation in cells stripped of all other known defenses. Our observations support a model in which Nhi targets and degrades phage-specific replication intermediates. Importantly, Nhi homologs are distributed in diverse bacteria and exhibit functional conservation, highlighting the versatility of such compact weapons as major players in antiphage defense.
Collapse
Affiliation(s)
- S M Nayeemul Bari
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Lucy Chou-Zheng
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Olivia Howell
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Motaher Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Courtney M Hill
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Tori A Boyle
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Katie Cater
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Vidya Sree Dandu
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Alexander Thomas
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Barbaros Aslan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA.
| |
Collapse
|
14
|
Chen MH, Li YS, Hsu NS, Lin KH, Wang YL, Wang ZC, Chang CF, Lin JP, Chang CY, Li TL. Structural and Mechanistic Bases for StnK3 and Its Mutant-Mediated Lewis-Acid-Dependent Epimerization and Retro-Aldol Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mei-Hua Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Zhe-Chong Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jin-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 115, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
15
|
Li H, Tan Y, Zhang D. Genomic discovery and structural dissection of a novel type of polymorphic toxin system in gram-positive bacteria. Comput Struct Biotechnol J 2022; 20:4517-4531. [PMID: 36051883 PMCID: PMC9424270 DOI: 10.1016/j.csbj.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Bacteria have developed several molecular conflict systems to facilitate kin recognition and non-kin competition to gain advantages in the acquisition of growth niches and of limited resources. One such example is a large class of so-called polymorphic toxin systems (PTSs), which comprise a variety of the toxin proteins secreted via T2SS, T5SS, T6SS, T7SS and many others. These systems are highly divergent in terms of sequence/structure, domain architecture, toxin-immunity association, and organization of the toxin loci, which makes it difficult to identify and characterize novel systems using traditional experimental and bioinformatic strategies. In recent years, we have been developing and utilizing unique genome-mining strategies and pipelines, based on the organizational principles of both domain architectures and genomic loci of PTSs, for an effective and comprehensive discovery of novel PTSs, dissection of their components, and prediction of their structures and functions. In this study, we present our systematic discovery of a new type of PTS (S8-PTS) in several gram-positive bacteria. We show that the S8-PTS contains three components: a peptidase of the S8 family (subtilases), a polymorphic toxin, and an immunity protein. We delineated the typical organization of these polymorphic toxins, in which a N-terminal signal peptide is followed by a potential receptor binding domain, BetaH, and one of 16 toxin domains. We classified each toxin domain by the distinct superfamily to which it belongs, identifying nine BECR ribonucleases, one Restriction Endonuclease, one HNH nuclease, two novel toxin domains homologous to the VOC enzymes, one toxin domain with the Frataxin-like fold, and several other unique toxin families such as Ntox33 and HicA. Accordingly, we identified 20 immunity families and classified them into different classes of folds. Further, we show that the S8-PTS-associated peptidases are analogous to many other processing peptidases found in T5SS, T7SS, T9SS, and many proprotein-processing peptidases, indicating that they function to release the toxin domains during secretion. The S8-PTSs are mostly found in animal and plant-associated bacteria, including many pathogens. We propose S8-PTSs will facilitate the competition of these bacteria with other microbes or contribute to the pathogen-host interactions.
Collapse
Affiliation(s)
- Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
- Program of Bioinformatics and Computational Biology, College of Arts & Sciences, Saint Louis University, MO 63103, USA
- Corresponding author at: Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA.
| |
Collapse
|
16
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
17
|
Allen KN, Whitman CP. The Birth of Genomic Enzymology: Discovery of the Mechanistically Diverse Enolase Superfamily. Biochemistry 2021; 60:3515-3528. [PMID: 34664940 DOI: 10.1021/acs.biochem.1c00494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzymes are categorized into superfamilies by sequence, structural, and mechanistic similarities. The evolutionary implications can be profound. Until the mid-1990s, the approach was fragmented largely due to limited sequence and structural data. However, in 1996, Babbitt et al. published a paper in Biochemistry that demonstrated the potential power of mechanistically diverse superfamilies to identify common ancestry, predict function, and, in some cases, predict specificity. This Perspective describes the findings of the original work and reviews the current understanding of structure and mechanism in the founding family members. The outcomes of the genomic enzymology approach have reached far beyond the functional assignment of members of the enolase superfamily, inspiring the study of superfamilies and the adoption of sequence similarity networks and genome context and yielding fundamental insights into enzyme evolution.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Ghosh P, Adolphsen KN, Yurgel SN, Kahn ML. Sinorhizobium medicae WSM419 Genes That Improve Symbiosis between Sinorhizobium meliloti Rm1021 and Medicago truncatula Jemalong A17 and in Other Symbiosis Systems. Appl Environ Microbiol 2021; 87:e0300420. [PMID: 33990306 PMCID: PMC8276806 DOI: 10.1128/aem.03004-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA (increased symbiotic effectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant's regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Katie N. Adolphsen
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Svetlana N. Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Michael L. Kahn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
19
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
20
|
Abstract
Bacterial proteases and peptidases are integral to cell physiology and stability, and their necessity in Streptococcus pneumoniae is no exception. Protein cleavage and processing mechanisms within the bacterial cell serve to ensure that the cell lives and functions in its commensal habitat and can respond to new environments presenting stressful conditions. For S. pneumoniae, the human nasopharynx is its natural habitat. In the context of virulence, movement of S. pneumoniae to the lungs, blood, or other sites can instigate responses by the bacteria that result in their proteases serving dual roles of self-protein processors and virulence factors of host protein targets.
Collapse
Affiliation(s)
- Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi USA
| |
Collapse
|
21
|
Ye X, Wei X, Liao J, Chen P, Li X, Chen Y, Yang Y, Zhao Q, Sun H, Pan L, Chen G, He X, Lyu J, Fang H. 4-Hydroxyphenylpyruvate Dioxygenase-Like Protein Promotes Pancreatic Cancer Cell Progression and Is Associated With Glutamine-Mediated Redox Balance. Front Oncol 2021; 10:617190. [PMID: 33537239 PMCID: PMC7848781 DOI: 10.3389/fonc.2020.617190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor cells develop a series of metabolic reprogramming mechanisms to meet the metabolic needs for tumor progression. As metabolic hubs in cells, mitochondria play a significant role in this process, including energy production, biosynthesis, and redox hemostasis. In this study, we show that 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), a previously uncharacterized protein, is positively associated with the development of pancreatic ductal adenocarcinoma (PDAC) and disease prognosis. We found that overexpression of HPDL in PDAC cells promotes tumorigenesis in vitro, whereas knockdown of HPDL inhibits cell proliferation and colony formation. Mechanistically, we found that HPDL is a mitochondrial intermembrane space localized protein that positively regulates mitochondrial bioenergetic processes and adenosine triphosphate (ATP) generation in a glutamine dependent manner. Our results further reveal that HPDL protects cells from oxidative stress by reprogramming the metabolic profile of PDAC cells toward glutamine metabolism. In short, we conclude that HPDL promotes PDAC likely through its effects on glutamine metabolism and redox balance.
Collapse
Affiliation(s)
- Xianglai Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiujuan Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Liao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peipei Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueyun Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yulong Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yue Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiongya Zhao
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hongwei Sun
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liming Pan
- Department of Pathology, The People's Hospital of Yuhuan, The Yuhuan Branch of the First Affiliated Hospital of Wenzhou Medical University, Taizhou, China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xujun He
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China.,Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, Wenzhou Medical University, Wenzhou, China.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Kakkis A, Gagnon D, Esselborn J, Britt RD, Tezcan FA. Metal‐Templated Design of Chemically Switchable Protein Assemblies with High‐Affinity Coordination Sites. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Albert Kakkis
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Derek Gagnon
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Julian Esselborn
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - R. David Britt
- Department of Chemistry University of California, Davis 1 Shields Avenue Davis CA 95616 USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
23
|
Kakkis A, Gagnon D, Esselborn J, Britt RD, Tezcan FA. Metal-Templated Design of Chemically Switchable Protein Assemblies with High-Affinity Coordination Sites. Angew Chem Int Ed Engl 2020; 59:21940-21944. [PMID: 32830423 DOI: 10.1002/anie.202009226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Indexed: 11/09/2022]
Abstract
To mimic a hypothetical pathway for protein evolution, we previously tailored a monomeric protein (cyt cb562 ) for metal-mediated self-assembly, followed by re-design of the resulting oligomers for enhanced stability and metal-based functions. We show that a single hydrophobic mutation on the cyt cb562 surface drastically alters the outcome of metal-directed oligomerization to yield a new trimeric architecture, (TriCyt1)3. This nascent trimer was redesigned into second and third-generation variants (TriCyt2)3 and (TriCyt3)3 with increased structural stability and preorganization for metal coordination. The three TriCyt variants combined furnish a unique platform to 1) provide tunable coupling between protein quaternary structure and metal coordination, 2) enable the construction of metal/pH-switchable protein oligomerization motifs, and 3) generate a robust metal coordination site that can coordinate all mid-to-late first-row transition-metal ions with high affinity.
Collapse
Affiliation(s)
- Albert Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Derek Gagnon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Julian Esselborn
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
Dajnowicz S, Ghoreishi D, Modugula K, Damm W, Harder ED, Abel R, Wang L, Yu HS. Advancing Free-Energy Calculations of Metalloenzymes in Drug Discovery via Implementation of LFMM Potentials. J Chem Theory Comput 2020; 16:6926-6937. [PMID: 32910652 DOI: 10.1021/acs.jctc.0c00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steven Dajnowicz
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Delaram Ghoreishi
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Kalyan Modugula
- D.E. Shaw India Private Ltd., Plot No. 573, Jubilee Hills, Hyderabad, Telangana 500096, India
| | - Wolfgang Damm
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Edward D. Harder
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Robert Abel
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Lingle Wang
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Haoyu S. Yu
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| |
Collapse
|
25
|
An iron (II) dependent oxygenase performs the last missing step of plant lysine catabolism. Nat Commun 2020; 11:2931. [PMID: 32523014 PMCID: PMC7286885 DOI: 10.1038/s41467-020-16815-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/21/2020] [Indexed: 11/08/2022] Open
Abstract
Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes. Hydroxyglutarate synthase (HglS) converts 2-oxoadipate to D-2- hydroxyglutarate during lysine catabolism in bacteria. Here the authors use structural and biochemical approaches to show that HglS acts via successive decarboxylation and intramolecular hydroxylation and that homologous enzymes catalyze the final step of lysine catabolism in plants.
Collapse
|
26
|
Chen X, Sun Y, Wang S, Ying K, Xiao L, Liu K, Zuo X, He J. Identification of a novel structure-specific endonuclease AziN that contributes to the repair of azinomycin B-mediated DNA interstrand crosslinks. Nucleic Acids Res 2020; 48:709-718. [PMID: 31713613 PMCID: PMC7145581 DOI: 10.1093/nar/gkz1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) induced by the highly genotoxic agent azinomycin B (AZB) can cause severe perturbation of DNA structure and even cell death. However, Streptomyces sahachiroi, the strain that produces AZB, seems almost impervious to this danger because of its diverse and distinctive self-protection machineries. Here, we report the identification of a novel endonuclease-like gene aziN that contributes to drug self-protection in S. sahachiroi. AziN expression conferred AZB resistance on native and heterologous host strains. The specific binding reaction between AziN and AZB was also verified in accordance with its homology to drug binding proteins, but no drug sequestering and deactivating effects could be detected. Intriguingly, due to the high affinity with the drug, AziN was discovered to exhibit specific recognition and binding capacity with AZB-mediated ICL structures, further inducing DNA strand breakage. Subsequent in vitro assays demonstrated the structure-specific endonuclease activity of AziN, which cuts both damaged strands at specific sites around AZB-ICLs. Unravelling the nuclease activity of AziN provides a good entrance point to illuminate the complex mechanisms of AZB-ICL repair.
Collapse
Affiliation(s)
- Xiaorong Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuedi Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Ying
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Le Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Zuo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
28
|
Hannigan GD, Prihoda D, Palicka A, Soukup J, Klempir O, Rampula L, Durcak J, Wurst M, Kotowski J, Chang D, Wang R, Piizzi G, Temesi G, Hazuda DJ, Woelk CH, Bitton DA. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res 2019; 47:e110. [PMID: 31400112 PMCID: PMC6765103 DOI: 10.1093/nar/gkz654] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/09/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
Natural products represent a rich reservoir of small molecule drug candidates utilized as antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The increase in full microbial genomes and similar resources has led to development of BGC prediction algorithms, although their precision and ability to identify novel BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers reduced false positive rates in BGC identification and an improved ability to extrapolate and identify novel BGC classes compared to existing machine-learning tools. We supplemented this with random forest classifiers that accurately predicted BGC product classes and potential chemical activity. Application of DeepBGC to bacterial genomes uncovered previously undetectable putative BGCs that may code for natural products with novel biologic activities. The improved accuracy and classification ability of DeepBGC represents a major addition to in-silico BGC identification.
Collapse
Affiliation(s)
- Geoffrey D Hannigan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - David Prihoda
- Big Data Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Andrej Palicka
- AI & Big Data Analytics, MSD Czech Republic s.r.o., Prague, Czech Republic
| | - Jindrich Soukup
- Data Science, MSD Czech Republic s.r.o., Prague, Czech Republic
| | - Ondrej Klempir
- Bioinformatics & Cheminformatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
| | - Lena Rampula
- NLP, MSD Czech Republic s.r.o., Prague, Czech Republic
| | - Jindrich Durcak
- Bioinformatics & Cheminformatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
| | - Michael Wurst
- AI & Big Data Analytics, MSD Czech Republic s.r.o., Prague, Czech Republic
| | - Jakub Kotowski
- AI & Big Data Analytics, MSD Czech Republic s.r.o., Prague, Czech Republic
| | - Dan Chang
- Genetics & Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Gergely Temesi
- Bioinformatics & Cheminformatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
| | - Daria J Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA.,Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA, USA
| | - Christopher H Woelk
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Danny A Bitton
- Bioinformatics & Cheminformatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
| |
Collapse
|
29
|
Sharma V, Kumar R, Sharma VK, Yadav AK, Tiirola M, Sharma PK. Expression, purification, characterization and in silico analysis of newly isolated hydrocarbon degrading bleomycin resistance dioxygenase. Mol Biol Rep 2019; 47:533-544. [PMID: 31724125 DOI: 10.1007/s11033-019-05159-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
In the present investigation, we report cloning, expression, purification and characterization of a novel Bleomycin Resistance Dioxygenase (BRPD). His-tagged fusion protein was purified to homogeneity using Ni-NTA affinity chromatography, yielding 1.2 mg of BRPD with specific activity of 6.25 U mg-1 from 600 ml of E. coli culture. Purified enzyme was a dimer with molecular weight ~ 26 kDa in SDS-PAGE and ~ 73 kDa in native PAGE analysis. The protein catalyzed breakdown of hydrocarbon substrates, including catechol and hydroquinone, in the presence of metal ions, as characterized via spectrophotometric analysis of the enzymatic reactions. Bleomycin binding was proven using the EMSA gel retardation assay, and the putative bleomycin binding site was further determined by in silico analysis. Molecular dynamic simulations revealed that BRPD attains octahedral configuration in the presence of Fe2+ ion, forming six co-ordinate complexes to degrade hydroquinone-like molecules. In contrary, in the presence of Zn2+ ion BRPD adopts tetrahedral configuration, which enables degradation of catechol-like molecules.
Collapse
Affiliation(s)
- Vinay Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
| | | | | | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014, Jyvaskyla, Finland
| | - Pushpender Kumar Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India.
| |
Collapse
|
30
|
Ramasubramanian R, Anandababu K, Mösch-Zanetti NC, Belaj F, Mayilmurugan R. Bioinspired models for an unusual 3-histidine motif of diketone dioxygenase enzyme. Dalton Trans 2019; 48:14326-14336. [PMID: 31486449 DOI: 10.1039/c9dt02518a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioinspired models for contrasting the electronic nature of neutral tris-histidine with the anionic 2-histidine-1-carboxylate facial motif and their subsequent impact on catalysis are reported. Herewith, iron(ii) complexes [Fe(L)(CH3CN)3](SO3CF3)21-3 of tris(2-pyridyl)-based ligands (L) have been synthesized and characterized as accurate structural models for the neutral 3-histidine triad of the enzyme diketone dioxygenase (DKDO). The molecular structure of one of the complexes exhibits octahedral coordination geometry and Fe-N11py bond lengths [1.952(4) to 1.959(4) Å] close to the Fe-NHis bond distances (1.98 Å) of the 3-His triad in the resting state of the enzyme, as obtained by EXAFS studies. The diketonate substrate-adduct complexes [Fe(L)(acacR)](SO3CF3) (R = Me, Ph) of 1-3 have been obtained using Na(acacR) in acetonitrile. The Fe2+/3+ redox potentials of the complexes (1.05 to 1.2 V vs. Fc/Fc+) and their substrate adducts (1.02 to 1.19 V vs. Fc/Fc+) appeared at almost the same redox barrier. All diketonate adducts exhibit two Fe(ii) → acac MLCT bands around 338 to 348 and 430 to 490 nm. Exposure of these adducts to O2 results in the decay of both MLCT bands with a rate of (kO2) 5.37 to 9.41 × 10-3 M-1 s-1. The kO2 values were concomitantly accelerated 20 to 50 fold by the addition of H+ (acetic acid), which nicely models the rate enhancement in the enzyme kinetics by the glutamate residue (Glu98). The oxygenation of the phenyl-substituted adducts yielded benzoin and benzoic acid (40% to 71%) as cleavage products in the presence of H+ ions. Isotope-labeling experiments using 18O2 showed 47% incorporation of 18O in benzoic acid, which reveals that the oxygen originates from dioxygen. Thus, the present model complexes exhibit very similar chemical surroundings to the active site of DKDO and mimic its functions elegantly. On the basis of these results, the C-C bond cleavage reaction mechanism is discussed.
Collapse
Affiliation(s)
- Ramamoorthy Ramasubramanian
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| | | | - Ferdinand Belaj
- Institute of Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| |
Collapse
|
31
|
Preliminary Characterization of a Ni2+-Activated and Mycothiol-Dependent Glyoxalase I Enzyme from Streptomyces coelicolor. INORGANICS 2019. [DOI: 10.3390/inorganics7080099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The glyoxalase system consists of two enzymes, glyoxalase I (Glo1) and glyoxalase II (Glo2), and converts a hemithioacetal substrate formed between a cytotoxic alpha-ketoaldehyde, such as methylglyoxal (MG), and an intracellular thiol, such as glutathione, to a non-toxic alpha-hydroxy acid, such as d-lactate, and the regenerated thiol. Two classes of Glo1 have been identified. The first is a Zn2+-activated class and is exemplified by the Homo sapiens Glo1. The second class is a Ni2+-activated enzyme and is exemplified by the Escherichia coli Glo1. Glutathione is the intracellular thiol employed by Glo1 from both these sources. However, many organisms employ other intracellular thiols. These include trypanothione, bacillithiol, and mycothiol. The trypanothione-dependent Glo1 from Leishmania major has been shown to be Ni2+-activated. Genetic studies on Bacillus subtilis and Corynebacterium glutamicum focused on MG resistance have indicated the likely existence of Glo1 enzymes employing bacillithiol or mycothiol respectively, although no protein characterizations have been reported. The current investigation provides a preliminary characterization of an isolated mycothiol-dependent Glo1 from Streptomyces coelicolor. The enzyme has been determined to display a Ni2+-activation profile and indicates that Ni2+-activated Glo1 are indeed widespread in nature regardless of the intracellular thiol employed by an organism.
Collapse
|
32
|
Emergence of metal selectivity and promiscuity in metalloenzymes. J Biol Inorg Chem 2019; 24:517-531. [DOI: 10.1007/s00775-019-01667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/13/2019] [Indexed: 01/27/2023]
|
33
|
Churchfield LA, Tezcan FA. Design and Construction of Functional Supramolecular Metalloprotein Assemblies. Acc Chem Res 2019; 52:345-355. [PMID: 30698941 DOI: 10.1021/acs.accounts.8b00617] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nature puts to use only a small fraction of metal ions in the periodic table. Yet, when incorporated into protein scaffolds, this limited set of metal ions carry out innumerable cellular functions and execute essential biochemical transformations such as photochemical H2O oxidation, O2 or CO2 reduction, and N2 fixation, highlighting the outsized importance of metalloproteins in biology. Not surprisingly, elucidating the intricate interplay between metal ions and protein structures has been the focus of extensive structural and mechanistic scrutiny over the last several decades. As a result of such top-down efforts, we have gained a reasonably detailed understanding of how metal ions shape protein structures and how protein structures in turn influence metal reactivity. It is fair to say that we now have some idea-and in some cases, a good idea-about how most known metalloproteins function and we possess enough insight to quickly assess the modus operandi of newly discovered ones. However, translating this knowledge into an ability to construct functional metalloproteins from scratch represents a challenge at a whole different level: it is one thing to know how an automobile works; it is another to build one. In our quest to build new metalloproteins, we have taken an original approach in which folded, monomeric proteins are used as ligands or synthons for building supramolecular complexes through metal-mediated self-assembly (MDPSA, Metal-Directed Protein Self-Assembly). The interfaces in the resulting protein superstructures are subsequently tailored with covalent, noncovalent, or additional metal-coordination interactions for stabilization and incorporation of new functionalities (MeTIR, Metal Templated Interface Redesign). In an earlier Account, we had described the proof-of-principle studies for MDPSA and MeTIR, using a four-helix bundle, heme protein cytochrome cb562 (cyt cb562), as a model building block. By the end of those studies, we were able to demonstrate that a tetrameric, Zn-directed cyt cb562 complex (Zn4:M14) could be stabilized through computationally prescribed noncovalent interactions inserted into the nascent protein-protein interfaces. In this Account, we first describe the rationale and motivation for our particular metalloprotein engineering strategy and a brief summary of our earlier work. We then describe the next steps in the "evolution" of bioinorganic complexity on the Zn4:M14 scaffold, namely, (a) the generation of a self-standing protein assembly that can stably and selectively bind metal ions, (b) the creation of reactive metal centers within the protein assembly, and (c) the coupling of metal coordination and reactivity to external stimuli through allosteric effects.
Collapse
Affiliation(s)
- Lewis A. Churchfield
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356, United States
| |
Collapse
|
34
|
Heuberger K, Bailey HJ, Burda P, Chaikuad A, Krysztofinska E, Suormala T, Bürer C, Lutz S, Fowler B, Froese DS, Yue WW, Baumgartner MR. Genetic, structural, and functional analysis of pathogenic variations causing methylmalonyl-CoA epimerase deficiency. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1265-1272. [PMID: 30682498 PMCID: PMC6525113 DOI: 10.1016/j.bbadis.2019.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/05/2022]
Abstract
Human methylmalonyl-CoA epimerase (MCEE) catalyzes the interconversion of d-methylmalonyl-CoA and l-methylmalonyl-CoA in propionate catabolism. Autosomal recessive pathogenic variations in MCEE reportedly cause methylmalonic aciduria (MMAuria) in eleven patients. We investigated a cohort of 150 individuals suffering from MMAuria of unknown origin, identifying ten new patients with pathogenic variations in MCEE. Nine patients were homozygous for the known nonsense variation p.Arg47* (c.139C > T), and one for the novel missense variation p.Ile53Arg (c.158T > G). To understand better the molecular basis of MCEE deficiency, we mapped p.Ile53Arg, and two previously described pathogenic variations p.Lys60Gln and p.Arg143Cys, onto our 1.8 Å structure of wild-type (wt) human MCEE. This revealed potential dimeric assembly disruption by p.Ile53Arg, but no clear defects from p.Lys60Gln or p.Arg143Cys. We solved the structure of MCEE-Arg143Cys to 1.9 Å and found significant disruption of two important loop structures, potentially impacting surface features as well as the active-site pocket. Functional analysis of MCEE-Ile53Arg expressed in a bacterial recombinant system as well as patient-derived fibroblasts revealed nearly undetectable soluble protein levels, defective globular protein behavior, and using a newly developed assay, lack of enzymatic activity - consistent with misfolded protein. By contrast, soluble protein levels, unfolding characteristics and activity of MCEE-Lys60Gln were comparable to wt, leaving unclear how this variation may cause disease. MCEE-Arg143Cys was detectable at comparable levels to wt MCEE, but had slightly altered unfolding kinetics and greatly reduced activity. These studies reveal ten new patients with MCEE deficiency and rationalize misfolding and loss of activity as molecular defects in MCEE-type MMAuria. Identification of ten new patients with MCEE-type methylmalonic aciduria. Crystal structures of MCEE wild-type and p.Arg143Cys differ in local conformations. Novel biochemical assay of methylmalonyl-CoA epimerase activity.
Collapse
Affiliation(s)
- Kathrin Heuberger
- Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford, OX3 7DQ, UK
| | - Patricie Burda
- Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Apirat Chaikuad
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford, OX3 7DQ, UK
| | - Ewelina Krysztofinska
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford, OX3 7DQ, UK
| | - Terttu Suormala
- Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Céline Bürer
- Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Seraina Lutz
- Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford, OX3 7DQ, UK.
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| |
Collapse
|
35
|
Ramasubramanian R, Anandababu K, Kumar M, Mayilmurugan R. Nickel(ii) complexes of a 3N ligand as a model for diketone cleaving unusual nickel(ii)-dioxygenase enzymes. Dalton Trans 2018; 47:4049-4053. [PMID: 29488521 DOI: 10.1039/c7dt04739h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diketone substrate bound nickel(ii) complexes of 2,6-bis(1-methylbenzimidazolyl)pyridine have been synthesized and characterized as relevant active site models for unusual diketone cleaving Ni(ii)-dependent enzymes Ni-ARD and DKDO. The average Ni-Npy/benzim bond distances (2.050-2.107 Å) of model complexes are almost identical to the Ni-NHis bond distances of NiII-ARD (2.02-2.19 Å). The reaction of these adducts with dioxygen exhibited C-C cleavage with the rate of kO2, 5.24-73.71 × 10-3 M-1 s-1. The phenyl substituted adduct regioselectively elicits 52% of benzoic acid as the major product.
Collapse
Affiliation(s)
- Ramamoorthy Ramasubramanian
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India.
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India.
| | - Mukesh Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra-400 085, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India.
| |
Collapse
|
36
|
Choi JE, Nguyen CM, Lee B, Park JH, Oh JY, Choi JS, Kim JC, Song JK. Isolation and characterization of a novel metagenomic enzyme capable of degrading bacterial phytotoxin toxoflavin. PLoS One 2018; 13:e0183893. [PMID: 29293506 PMCID: PMC5749703 DOI: 10.1371/journal.pone.0183893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
Toxoflavin, a 7-azapteridine phytotoxin produced by the bacterial pathogens such as Burkholderia glumae and Burkholderia gladioli, has been known as one of the key virulence factors in crop diseases. Because the toxoflavin had an antibacterial activity, a metagenomic E. coli clone capable of growing well in the presence of toxoflavin (30 μg/ml) was isolated and the first metagenome-derived toxoflavin-degrading enzyme, TxeA of 140 amino acid residues, was identified from the positive E. coli clone. The conserved amino acids for metal-binding and extradiol dioxygenase activity, Glu-12, His-8 and Glu-130, were revealed by the sequence analysis of TxeA. The optimum conditions for toxoflavin degradation were evaluated with the TxeA purified in E. coli. Toxoflavin was totally degraded at an initial toxoflavin concentration of 100 μg/ml and at pH 5.0 in the presence of Mn2+, dithiothreitol and oxygen. The final degradation products of toxoflavin and methyltoxoflavin were fully identified by MS and NMR as triazines. Therefore, we suggested that the new metagenomic enzyme, TxeA, provided the clue to applying the new metagenomic enzyme to resistance development of crop plants to toxoflavin-mediated disease as well as to biocatalysis for Baeyer-Villiger type oxidation.
Collapse
Affiliation(s)
- Ji-Eun Choi
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Cuong Mai Nguyen
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Phytochemistry, Vietnam Institute of Industrial Chemistry, HoanKiem, Hanoi, Vietnam
| | - Boyoung Lee
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Ji Hyun Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Joon Young Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jung Sup Choi
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jae Kwang Song
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
37
|
Skiba MA, Sikkema AP, Moss NA, Tran CL, Sturgis RM, Gerwick L, Gerwick WH, Sherman DH, Smith JL. A Mononuclear Iron-Dependent Methyltransferase Catalyzes Initial Steps in Assembly of the Apratoxin A Polyketide Starter Unit. ACS Chem Biol 2017; 12:3039-3048. [PMID: 29096064 PMCID: PMC5784268 DOI: 10.1021/acschembio.7b00746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural product biosynthetic pathways contain a plethora of enzymatic tools to carry out difficult biosynthetic transformations. Here, we discover an unusual mononuclear iron-dependent methyltransferase that acts in the initiation steps of apratoxin A biosynthesis (AprA MT1). Fe3+-replete AprA MT1 catalyzes one or two methyl transfer reactions on the substrate malonyl-ACP (acyl carrier protein), whereas Co2+, Fe2+, Mn2+, and Ni2+ support only a single methyl transfer. MT1 homologues exist within the "GNAT" (GCN5-related N-acetyltransferase) loading modules of several modular biosynthetic pathways with propionyl, isobutyryl, or pivaloyl starter units. GNAT domains are thought to catalyze decarboxylation of malonyl-CoA and acetyl transfer to a carrier protein. In AprA, the GNAT domain lacks both decarboxylation and acyl transfer activity. A crystal structure of the AprA MT1-GNAT di-domain with bound Mn2+, malonate, and the methyl donor S-adenosylmethionine (SAM) reveals that the malonyl substrate is a bidentate metal ligand, indicating that the metal acts as a Lewis acid to promote methylation of the malonyl α-carbon. The GNAT domain is truncated relative to functional homologues. These results afford an expanded understanding of MT1-GNAT structure and activity and permit the functional annotation of homologous GNAT loading modules both with and without methyltransferases, additionally revealing their rapid evolutionary adaptation in different biosynthetic contexts.
Collapse
Affiliation(s)
- Meredith A. Skiba
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor MI, 48109
| | - Andrew P. Sikkema
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor MI, 48109
| | - Nathan A. Moss
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Collin L. Tran
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | | | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor MI, 48109
| |
Collapse
|
38
|
Kalita J, Shukla R, Shukla H, Gadhave K, Giri R, Tripathi T. Comprehensive analysis of the catalytic and structural properties of a mu-class glutathione s-transferase from Fasciola gigantica. Sci Rep 2017; 7:17547. [PMID: 29235505 PMCID: PMC5727538 DOI: 10.1038/s41598-017-17678-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023] Open
Abstract
Glutathione S‒transferases (GSTs) play an important role in the detoxification of xenobiotics. They catalyze the nucleophilic addition of glutathione (GSH) to nonpolar compounds, rendering the products water-soluble. In the present study, we investigated the catalytic and structural properties of a mu-class GST from Fasciola gigantica (FgGST1). The purified recombinant FgGST1 formed a homodimer composed of 25 kDa subunit. Kinetic analysis revealed that FgGST1 displays broad substrate specificity and shows high GSH conjugation activity toward 1-chloro-2,4-dinitrobenzene, 4-nitroquinoline-1-oxide, and trans-4-phenyl-3-butene-2-one and peroxidase activity towards trans-2-nonenal and hexa-2,4-dienal. The FgGST1 was highly sensitive to inhibition by cibacron blue. The cofactor (GSH) and inhibitor (cibacron blue) were docked, and binding sites were identified. The molecular dynamics studies and principal component analysis indicated the stability of the systems and the collective motions, respectively. Unfolding studies suggest that FgGST1 is a highly cooperative molecule because, during GdnHCl-induced denaturation, a simultaneous unfolding of the protein without stabilization of any partially folded intermediate is observed. The protein is stabilized with a conformational free energy of about 10 ± 0.3 kcal mol-1. Additionally, the presence of conserved Pro-53 and structural motifs such as N-capping box and hydrophobic staple, further aided in the stability and proper folding of FgGST1.
Collapse
Affiliation(s)
- Jupitara Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
39
|
Song WJ, Yu J, Tezcan FA. Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-lactamases. J Am Chem Soc 2017; 139:16772-16779. [PMID: 28992705 DOI: 10.1021/jacs.7b08981] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe the design and evolution of catalytic hydrolase activity on a supramolecular protein scaffold, Zn4:C96RIDC14, which was constructed from cytochrome cb562 building blocks via a metal-templating strategy. Previously, we reported that Zn4:C96RIDC14 could be tailored with tripodal (His/His/Glu), unsaturated Zn coordination motifs in its interfaces to generate a variant termed Zn8:A104AB34, which in turn displayed catalytic activity for the hydrolysis of activated esters and β-lactam antibiotics. Zn8:A104AB34 was subsequently subjected to directed evolution via an in vivo selection strategy, leading to a variant Zn8:A104/G57AB34 which displayed enzyme-like Michaelis-Menten behavior for ampicillin hydrolysis. A criterion for the evolutionary utility or designability of a new protein structure is its ability to accommodate different active sites. With this in mind, we examined whether Zn4:C96RIDC14 could be tailored with alternative Zn coordination sites that could similarly display evolvable catalytic activities. We report here a detailed structural and functional characterization of new variant Zn8:AB54, which houses similar, unsaturated Zn coordination sites to those in Zn8:A104/G57AB34, but in completely different microenvironments. Zn8:AB54 displays Michaelis-Menten behavior for ampicillin hydrolysis without any optimization. Yet, the subsequent directed evolution of Zn8:AB54 revealed limited catalytic improvement, which we ascribed to the local protein rigidity surrounding the Zn centers and the lack of evolvable loop structures nearby. The relaxation of local rigidity via the elimination of adjacent disulfide linkages led to a considerable structural transformation with a concomitant improvement in β-lactamase activity. Our findings reaffirm previous observations that the delicate balance between protein flexibility and stability is crucial for enzyme design and evolution.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States.,Department of Chemistry, Seoul National University , Seoul 08826, Korea
| | - Jaeseung Yu
- Department of Chemistry, Seoul National University , Seoul 08826, Korea
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States
| |
Collapse
|
40
|
Buchko GW, Echols N, Flynn EM, Ng HL, Stephenson S, Kim HB, Myler PJ, Terwilliger TC, Alber T, Kim CY. Structural and Biophysical Characterization of the Mycobacterium tuberculosis Protein Rv0577, a Protein Associated with Neutral Red Staining of Virulent Tuberculosis Strains and Homologue of the Streptomyces coelicolor Protein KbpA. Biochemistry 2017; 56:4015-4027. [PMID: 28692281 DOI: 10.1021/acs.biochem.7b00511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis protein Rv0577 is a prominent antigen in tuberculosis patients, the component responsible for neutral red staining of virulent strains of M. tuberculosis, a putative component in a methylglyoxal detoxification pathway, and an agonist of toll-like receptor 2. It also has an amino acid sequence that is 36% identical to that of Streptomyces coelicolor AfsK-binding protein A (KbpA), a component in the complex secondary metabolite pathways in the Streptomyces genus. To gain insight into the biological function of Rv0577 and the family of KpbA kinase regulators, the crystal structure for Rv0577 was determined to a resolution of 1.75 Å, binding properties with neutral red and deoxyadenosine were surveyed, backbone dynamics were measured, and thermal stability was assayed by circular dichroism spectroscopy. The protein is composed of four approximate repeats with a βαβββ topology arranged radially in consecutive pairs to form two continuous eight-strand β-sheets capped on both ends with an α-helix. The two β-sheets intersect in the center at roughly a right angle and form two asymmetric deep "saddles" that may serve to bind ligands. Nuclear magnetic resonance chemical shift perturbation experiments show that neutral red and deoxyadenosine bind to Rv0577. Binding to deoxyadenosine is weaker with an estimated dissociation constants of 4.1 ± 0.3 mM for saddle 1. Heteronuclear steady-state {1H}-15N nuclear Overhauser effect, T1, and T2 values were generally uniform throughout the sequence with only a few modest pockets of differences. Circular dichroism spectroscopy characterization of the thermal stability of Rv0577 indicated irreversible unfolding upon heating with an estimated melting temperature of 56 °C.
Collapse
Affiliation(s)
- Garry W Buchko
- Seattle Structural Genomics Center for Infectious Diseases.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94158-2330, United States.,Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - E Megan Flynn
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Ho-Leung Ng
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Samuel Stephenson
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Heung-Bok Kim
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Diseases.,Department of Medical Education and Biomedical Informatics and Department of Global Health, University of Washington , Seattle, Washington 98195, United States.,Center for Infectious Disease Research , Seattle, Washington 98109-5219, United States
| | - Thomas C Terwilliger
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Tom Alber
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94158-2330, United States.,Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
41
|
Liang Y, Wan N, Cheng Z, Mo Y, Liu B, Liu H, Raboanatahiry N, Yin Y, Li M. Whole-Genome Identification and Expression Pattern of the Vicinal Oxygen Chelate Family in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:745. [PMID: 28536594 PMCID: PMC5422514 DOI: 10.3389/fpls.2017.00745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/20/2017] [Indexed: 05/25/2023]
Abstract
Vicinal oxygen chelate proteins (VOC) are members of the metalloenzyme superfamily, which plays roles in many biological reactions. Some members of the VOC superfamily have been systematically characterized but not in Brassica napus. In this study, 38 VOC genes were identified based on their conserved domains. The present results revealed that most of the BnaVOC genes have few introns, and all contained the typical VOC structure of βαβββ modules. The BnaVOC genes are distributed unevenly across 15 chromosomes in B. napus and occur as gene clusters on chromosomes C5 and A6. The synteny and phylogenetic analyses revealed that the VOC gene family is a consequence of mesopolyploidy events that occurred in Brassica evolution, and whole-genome duplication and segmental duplication played a major role in the expansion of the BnaVOC gene family. The expression profile analysis indicated that the expression of most BnaVOCs was increased in the leaves and late stage seeds. Further results indicated that seeds of B. napus with a high oil content show higher expression levels under drought stress conditions, suggesting that BnaVOCs not only respond to abiotic stress but may also affect lipid metabolism in drought stress. This present study provides a comprehensive overview of the VOC gene family and provides new insights into their biological function in B. napus evolution.
Collapse
Affiliation(s)
- Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Neng Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Zao Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yufeng Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Baolin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Hui Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
42
|
Helf MJ, Jud A, Piel J. Enzyme from an Uncultivated Sponge Bacterium Catalyzes S-Methylation in a Ribosomal Peptide. Chembiochem 2017; 18:444-450. [DOI: 10.1002/cbic.201600594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Maximilian J. Helf
- Institute of Microbiology; HCI G431; Eidgenössische Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
- Boyce Thompson Institute; Cornell University; 533 Tower Road Ithaca NY 14850 USA
| | - Aurelia Jud
- Institute of Microbiology; HCI G431; Eidgenössische Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Jörn Piel
- Institute of Microbiology; HCI G431; Eidgenössische Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
43
|
Kaltenbach M, Emond S, Hollfelder F, Tokuriki N. Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity. PLoS Genet 2016; 12:e1006305. [PMID: 27716796 PMCID: PMC5065130 DOI: 10.1371/journal.pgen.1006305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with “evolvability” was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and the emergence of generalist enzymes. Understanding how enzymes evolve is a fundamental question that can help us decipher not only the mechanisms of evolution on a higher level, i.e., whole organisms, but also advances our knowledge of sequence-structure-function relationships as a guide to artificial evolution in the test tube. An important yet unexplained phenomenon occurs during the evolution of a new enzymatic function; it has been observed that new and ancestral functions often trade-off only weakly, meaning the original native activity is initially maintained at a high level despite drastic improvement of the new promiscuous activity. It has previously been proposed that weak trade-offs occur because the native activity is robust to mutations while the promiscuous activity is not. However, the present work contradicts this hypothesis, based on the detailed characterization of mutational effects on both activities in two examples of enzyme evolution. We propose an alternative explanation: the weak activity trade-off is consistent with being a by-product of strong selection for the new activity rather than an intrinsic property of the native activity.
Collapse
Affiliation(s)
- Miriam Kaltenbach
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Stephane Emond
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
44
|
Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:724-737. [DOI: 10.1016/j.bbapap.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
45
|
Henderson KL, Boyles DK, Le VH, Lewis EA, Emerson JP. ITC Methods for Assessing Buffer/Protein Interactions from the Perturbation of Steady-State Kinetics. Methods Enzymol 2016; 567:257-78. [DOI: 10.1016/bs.mie.2015.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Bailey JB, Subramanian RH, Churchfield LA, Tezcan FA. Metal-Directed Design of Supramolecular Protein Assemblies. Methods Enzymol 2016; 580:223-50. [PMID: 27586336 PMCID: PMC5131729 DOI: 10.1016/bs.mie.2016.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Owing to their central roles in cellular signaling, construction, and biochemistry, protein-protein interactions (PPIs) and protein self-assembly have become a major focus of molecular design and synthetic biology. In order to circumvent the complexity of constructing extensive noncovalent interfaces, which are typically involved in natural PPIs and protein self-assembly, we have developed two design strategies, metal-directed protein self-assembly (MDPSA) and metal-templated interface redesign (MeTIR). These strategies, inspired by both the proposed evolutionary roles of metals and their prevalence in natural PPIs, take advantage of the favorable properties of metal coordination (bonding strength, directionality, and reversibility) to guide protein self-assembly with minimal design and engineering. Using a small, monomeric protein (cytochrome cb562) as a model building block, we employed MDPSA and MeTIR to create a diverse array of functional supramolecular architectures which range from structurally tunable oligomers to metalloprotein complexes that can properly self-assemble in living cells into novel metalloenzymes. The design principles and strategies outlined herein should be readily applicable to other protein systems with the goal of creating new PPIs and protein assemblies with structures and functions not yet produced by natural evolution.
Collapse
Affiliation(s)
- J B Bailey
- University of California, San Diego, La Jolla, CA, United States
| | - R H Subramanian
- University of California, San Diego, La Jolla, CA, United States
| | - L A Churchfield
- University of California, San Diego, La Jolla, CA, United States
| | - F A Tezcan
- University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
47
|
Abstract
Carbon–sulfur biological chemistry encompasses a fascinating area of biochemistry and medicinal chemistry and includes the roles that methionine and S-adenosyl-l-methionine play in cells as well as the chemistry of intracellular thiols such as glutathione. This article, based on the 2014 Bernard Belleau Award lecture, provides an overview of some of the key investigations that were undertaken in this area from a bioorganic perspective. The research has ameliorated our fundamental knowledge of several of the enzymes utilizing these sulfur-containing molecules, has led to the development of several novel 19F biophysical probes, and has explored some of the medicinal chemistry associated with these processes.
Collapse
Affiliation(s)
- John F. Honek
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
48
|
Identification of the Gene Cluster for the Anaerobic Degradation of 3,5-Dihydroxybenzoate (α-Resorcylate) in Thauera aromatica Strain AR-1. Appl Environ Microbiol 2015; 81:7201-14. [PMID: 26253674 DOI: 10.1128/aem.01698-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022] Open
Abstract
Thauera aromatica strain AR-1 degrades 3,5-dihydroxybenzoate (3,5-DHB) with nitrate as an electron acceptor. Previous biochemical studies have shown that this strain converts 3,5-DHB to hydroxyhydroquinone (1,2,4-trihydroxybenzene) through water-dependent hydroxylation of the aromatic ring and subsequent decarboxylation, and they suggest a pathway homologous to that described for the anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) by Azoarcus anaerobius. Southern hybridization of a T. aromatica strain AR-1 gene library identified a 25-kb chromosome region based on its homology with A. anaerobius main pathway genes. Sequence analysis defined 20 open reading frames. Knockout mutations of the most relevant genes in the pathway were generated by reverse genetics. Physiological and biochemical analyses identified the genes for the three main steps in the pathway which were homologous to those described in A. anaerobius and suggested the function of several auxiliary genes possibly involved in enzyme maturation and intermediate stabilization. However, T. aromatica strain AR-1 had an additional enzyme to metabolize hydroxyhydroquinone, a putative cytoplasmic quinone oxidoreductase. In addition, a specific tripartite ATP-independent periplasmic (TRAP) transport system was required for efficient growth on 3,5-DHB. Reverse transcription-PCR (RT-PCR) analysis showed that the pathway genes were organized in five 3,5-DHB-inducible operons, three of which have been shown to be under the control of a single LysR-type transcriptional regulator, DbdR. Despite sequence homology, the genetic organizations of the clusters in T. aromatica strain AR-1 and A. anaerobius differed substantially.
Collapse
|
49
|
Yevglevskis M, Bowskill CR, Chan CCY, Heng JHJ, Threadgill MD, Woodman TJ, Lloyd MD. A study on the chiral inversion of mandelic acid in humans. Org Biomol Chem 2015; 12:6737-44. [PMID: 25050409 DOI: 10.1039/c3ob42515k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mandelic acid is a chiral metabolite of the industrial pollutant styrene and is used in chemical skin peels, as a urinary antiseptic and as a component of other medicines. In humans, S-mandelic acid undergoes rapid chiral inversion to R-mandelic acid by an undefined pathway but it has been proposed to proceed via the acyl-CoA esters, S- and R-2-hydroxy-2-phenylacetyl-CoA, in an analogous pathway to that for Ibuprofen. This study investigates chiral inversion of mandelic acid using purified human recombinant enzymes known to be involved in the Ibuprofen chiral inversion pathway. Both S- and R-2-hydroxy-2-phenylacetyl-CoA were hydrolysed to mandelic acid by human acyl-CoA thioesterase-1 and -2 (ACOT1 and ACOT2), consistent with a possible role in the chiral inversion pathway. However, human α-methylacyl-CoA racemase (AMACR; P504S) was not able to catalyse exchange of the α-proton of S- and R-2-hydroxy-2-phenylacetyl-CoA, a requirement for chiral inversion. Both S- and R-2-phenylpropanoyl-CoA were epimerised by AMACR, showing that it is the presence of the hydroxy group that prevents epimerisation of R- and S-2-hydroxy-2-phenylacetyl-CoAs. The results show that it is unlikely that 2-hydroxy-2-phenylacetyl-CoA is an intermediate in the chiral inversion of mandelic acid, and that the chiral inversion of mandelic acid is via a different pathway to that of Ibuprofen and related drugs.
Collapse
Affiliation(s)
- Maksims Yevglevskis
- Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
50
|
Shah DD, Moran GR. 4-Hydroxyphenylpyruvate Dioxygenase and Hydroxymandelate Synthase: 2-Oxo Acid-Dependent Oxygenases of Importance to Agriculture and Medicine. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite a separate evolutionary lineage, 4-hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) are appropriately grouped with the 2-oxo acid-dependent oxygenase (2OADO) family of enzymes. HPPD and HMS accomplish highly similar overall chemistry to that observed in the majority of 2OADOs but require only two substrates rather than three. 2OADOs typically use the 2-oxo acid of 2-oxoglutarate (2OG) as a source of electrons to reduce and activate dioxygen in order to oxidize a third specific substrate. HPPD and HMS use instead the pyruvate substituent of 4-hydroxyphenylpyruvate to activate dioxygen and then proceed to also hydroxylate this substrate, each yielding a distinctly different aromatic product. HPPD catalyses the second and committed step of tyrosine catabolism, a pathway common to nearly all aerobes. Plants require the HPPD reaction to biosynthesize plastoquinones and therefore HPPD inhibitors can have potent herbicidal activity. The ubiquity of the HPPD reaction, however, has meant that HPPD-specific molecules developed as herbicides have other uses in different forms of life. In humans herbicidal HPPD inhibitors can be used therapeutically to alleviate specific inborn defects and also to retard the progress of certain bacterial and fungal infections. This review is intended as a concise overview of the contextual and catalytic chemistries of HPPD and HMS.
Collapse
Affiliation(s)
- Dhara D. Shah
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee 3210 N. Cramer St Milwaukee WI 53211-3209 USA
| | - Graham R. Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee 3210 N. Cramer St Milwaukee WI 53211-3209 USA
| |
Collapse
|