1
|
Makwana P, Rahul K, Ito K, Subhadra B. Diversity of Antimicrobial Peptides in Silkworm. Life (Basel) 2023; 13:life13051161. [PMID: 37240807 DOI: 10.3390/life13051161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance is a phenomenon that the present-day world is witnessing that poses a serious threat to global health. The decline in the development of novel therapeutics over the last couple of decades has exacerbated the situation further. In this scenario, the pursuit of new alternative therapeutics to commonly used antibiotics has gained predominance amongst researchers across the world. Antimicrobial peptides (AMPs) from natural sources have drawn significant interest in the recent years as promising pharmacological substitutes over the conventional antibiotics. The most notable advantage of AMPs is that microorganisms cannot develop resistance to them. Insects represent one of the potential sources of AMPs, which are synthesized as part of an innate immune defence against invading pathogens. AMPs from different insects have been extensively studied, and silkworm is one of them. Diverse classes of AMPs (including attacins, cecropins, defensins, enbocins, gloverins, lebocins and moricins) were identified from silkworm that exhibit antimicrobial property against bacteria, fungi and viruses, indicating their potential therapeutic benefits. This review briefs about the immune responses of silkworm to invading pathogens, the isolation of AMPs from silkworms, AMPs reported in silkworms and their activity against various microorganisms.
Collapse
Affiliation(s)
- Pooja Makwana
- Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Berhampore, Murshidabad 742101, West Bengal, India
| | - Kamidi Rahul
- Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Berhampore, Murshidabad 742101, West Bengal, India
| | - Katsuhiko Ito
- Laboratory of Sericultural Science, Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, NY 11548, USA
| |
Collapse
|
2
|
Ouyang J, Sheng Y, Wang W. Recent Advances of Studies on Cell-Penetrating Peptides Based on Molecular Dynamics Simulations. Cells 2022; 11:cells11244016. [PMID: 36552778 PMCID: PMC9776715 DOI: 10.3390/cells11244016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
With the ability to transport cargo molecules across cell membranes with low toxicity, cell-penetrating peptides (CPPs) have become promising candidates for next generation peptide-based drug delivery vectors. Over the past three decades since the first CPP was discovered, a great deal of work has been done on the cellular uptake mechanisms and the applications for the delivery of therapeutic molecules, and significant advances have been made. But so far, we still do not have a precise and unified understanding of the structure-activity relationship of the CPPs. Molecular dynamics (MD) simulations provide a method to reveal peptide-membrane interactions at the atomistic level and have become an effective complement to experiments. In this paper, we review the progress of the MD simulations on CPP-membrane interactions, including the computational methods and technical improvements in the MD simulations, the research achievements in the CPP internalization mechanism, CPP decoration and coupling, and the peptide-induced membrane reactions during the penetration process, as well as the comparison of simulated and experimental results.
Collapse
Affiliation(s)
- Jun Ouyang
- School of Public Courses, Bengbu Medical College, Bengbu 233030, China
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuebiao Sheng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- High Performance Computing Center, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.S.); (W.W.)
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.S.); (W.W.)
| |
Collapse
|
3
|
Brzeski J, Wyrzykowski D, Chylewska A, Makowski M, Papini AM, Makowska J. Metal-Ion Interactions with Dodecapeptide Fragments of Human Cationic Antimicrobial Protein LL-37 [hCAP(134-170)]. J Phys Chem B 2022; 126:6911-6921. [PMID: 36047059 PMCID: PMC9483913 DOI: 10.1021/acs.jpcb.2c05200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Indexed: 12/31/2022]
Abstract
Isothermal titration calorimetry, circular dichroism (CD) techniques, and in silico analysis were used to determine potential metal binding sites in human cationic antimicrobial protein (hCAP) corresponding to overlapping the dodecapeptide sequences of hCAP(134-170) referred to as LL-37. The correct antibacterial action of LL-37 is closely related to its established unique structure. Disturbances in the LL-37 structure (e.g., unwanted presence of metal ions) lead to a radical change in its biological functions. Five fragments of the LL-37 [hCAP(134-170)], namely, hCAP(134-145) (A1), hCAP(140-151) (A2), hCAP(146-157) (A3), hCAP(152-163) (A4), and hCAP(159-170) (A5), were taken into account and their affinity to Mn(II) and Zn(II) ions was rigorously assessed. We prove that only three of the investigated peptides (A1, A2, and A5) are capable of forming thermodynamically stable complexes with metal ions. Additionally, based on density functional theory (DFT) calculations, we propose the most likely coordination modes of metal(II) to peptides as well as discuss the chemical nature of the interactions. Finally, we present the structural features of the strongest binding peptide, hCAP(159-170), responsible for the metal binding. The presented results provide important structural and thermodynamic information to understand the influence of some metal ions on the activity of hCAP(134-170).
Collapse
Affiliation(s)
- Jakub Brzeski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15218, United States
| | - Dariusz Wyrzykowski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Agnieszka Chylewska
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Maria Papini
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Joanna Makowska
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Silva S, Kurrikoff K, Langel Ü, Almeida AJ, Vale N. A Second Life for MAP, a Model Amphipathic Peptide. Int J Mol Sci 2022; 23:8322. [PMID: 35955457 PMCID: PMC9368858 DOI: 10.3390/ijms23158322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Cell-penetrating peptides (CPP) have been shown to be efficient in the transport of cargoes into the cells, namely siRNA and DNA, proteins and peptides, and in some cases, small therapeutics. These peptides have emerged as a solution to increase drug concentrations in different tissues and various cell types, therefore having a relevant therapeutic relevance which led to clinical trials. One of them, MAP, is a model amphipathic peptide with an α-helical conformation and both hydrophilic and hydrophobic residues in opposite sides of the helix. It is composed of a mixture of alanines, leucines, and lysines (KLALKLALKALKAALKLA). The CPP MAP has the ability to translocate oligonucleotides, peptides and small proteins. However, taking advantage of its unique properties, in recent years innovative concepts were developed, such as in silico studies of modelling with receptors, coupling and repurposing drugs in the central nervous system and oncology, or involving the construction of dual-drug delivery systems using nanoparticles. In addition to designs of MAP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy, this review will be focused on unique molecular structure and how it determines its cellular activity, and also intends to address the most recent and frankly motivating issues for the future.
Collapse
Affiliation(s)
- Sara Silva
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Kaido Kurrikoff
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.K.); (Ü.L.)
| | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.K.); (Ü.L.)
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Hornemann A, Eichert DM, Hoehl A, Tiersch B, Ulm G, Ryadnov MG, Beckhoff B. Investigating Membrane‐Mediated Antimicrobial Peptide Interactions with Synchrotron Radiation Far‐Infrared Spectroscopy. Chemphyschem 2022; 23:e202100815. [PMID: 35032089 PMCID: PMC9303692 DOI: 10.1002/cphc.202100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Indexed: 11/30/2022]
Abstract
Synchrotron radiation‐based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio‐molecular phenomena including folding‐mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near‐THz 400–40 cm−1 range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature‐dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane‐induced and folding‐mediated activity of AMPs. The far‐FTIR study offers a direct and information‐rich probe of membrane‐related antimicrobial interactions.
Collapse
Affiliation(s)
- Andrea Hornemann
- Department 7.1 Radiometry with Synchrotron Radiation and Department 7.2 X-Ray Metrology with Synchrotron Radiation Physikalisch-Technische Bundesanstalt (PTB) Abbestr. 2–12 10587 Berlin Germany
| | - Diane M. Eichert
- ELETTRA – Sincrotrone Trieste S.S.14 Km 163.5 in Area Science Park 34149 Basovizza Trieste Italy
| | - Arne Hoehl
- Department 7.1 Radiometry with Synchrotron Radiation and Department 7.2 X-Ray Metrology with Synchrotron Radiation Physikalisch-Technische Bundesanstalt (PTB) Abbestr. 2–12 10587 Berlin Germany
| | - Brigitte Tiersch
- Universität Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam Germany
| | - Gerhard Ulm
- Department 7.1 Radiometry with Synchrotron Radiation and Department 7.2 X-Ray Metrology with Synchrotron Radiation Physikalisch-Technische Bundesanstalt (PTB) Abbestr. 2–12 10587 Berlin Germany
| | - Maxim G. Ryadnov
- National Physical Laboratory Hampton Rd Teddington Middlesex TW11 0LW UK
| | - Burkhard Beckhoff
- Department 7.1 Radiometry with Synchrotron Radiation and Department 7.2 X-Ray Metrology with Synchrotron Radiation Physikalisch-Technische Bundesanstalt (PTB) Abbestr. 2–12 10587 Berlin Germany
| |
Collapse
|
6
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
7
|
DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183395. [PMID: 32526177 DOI: 10.1016/j.bbamem.2020.183395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 11/23/2022]
Abstract
Over 3000 membrane-active antimicrobial peptides (AMPs) have been discovered, but only three of them have been approved by the U.S. Food and Drug Administration (FDA) for therapeutic applications, i.e., gramicidin, daptomycin and colistin. Of the three approved AMPs, daptomycin is a last-line-of-defense antibiotic for treating Gram-positive infections. However its use has already created bacterial resistance. To search for its substitutes that might counter the resistance, we need to understand its molecular mechanism. The mode of action of daptomycin appears to be causing bacterial membrane depolarization through ion leakage. Daptomycin forms a unique complex with calcium ions and phosphatidylglycerol molecules in membrane at a specific stoichiometric ratio: Dap2Ca3PG2. How does this complex promote ion conduction across the membrane? We hope that biophysics of peptide-membrane interaction can answer this question. This review summarizes the biophysical works that have been done on membrane-active AMPs to understand their mechanisms of action, including gramicidin, daptomycin, and underdeveloped pore-forming AMPs. The analysis suggests that daptomycin forms transient ionophores in the target membranes. We discuss questions that remain to be answered.
Collapse
|
8
|
Recombinant expression of sericin-cecropin fusion protein and its functional activity. Biotechnol Lett 2020; 42:1673-1682. [PMID: 32418030 DOI: 10.1007/s10529-020-02911-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Silk sericin is a natural polymer with potential utility in biomedical and biotechnological applications. Recombinantly expressed sericin ensures a source of pure protein with no contamination and with multiple properties when expressed as a fusion protein. Hence, the present paper aims to recombinantly express a functional silk sericin fusion protein. RESULTS In order to develop a more effective sericin protein, we have attempted to recombinantly express a part of sericin sequence, which represents a highly conserved and internally repetitive unit of the sericin1 protein, and its fusion with cecropin B, a potent antimicrobial peptide. Both difficult-to-express proteins were expressed in Escherichia coli and purified by nickel-charged affinity resin. Further, functional assay demonstrated that both proteins were individually active against Gram-positive and negative bacteria, with enhanced bactericidal activity observed in sericin-cecropin B fusion protein. CONCLUSIONS To our knowledge, this is the first report not only on the recombinant expression of sericin as a fusion protein but also the bactericidal possibility of the 38-amino acid serine-rich motif of sericin protein. We also discuss the potential biomedical and biotechnological applications of this sericin hybrid protein.
Collapse
|
9
|
Fang YT, Li SY, Hu NJ, Yang J, Liu JH, Liu YC. Study on Cecropin B2 Production via Construct Bearing Intein Oligopeptide Cleavage Variants. Molecules 2020; 25:E1005. [PMID: 32102349 PMCID: PMC7070832 DOI: 10.3390/molecules25041005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, genetic engineering was applied to the overexpression of the antimicrobial peptide (AMP) cecropin B2 (cecB2). pTWIN1 vector with a chitin-binding domain (CBD) and an auto-cleavage Ssp DnaB intein (INT) was coupled to the cecB2 to form a fusion protein construct and expressed via Escherichia coli ER2566. The cecB2 was obtained via the INT cleavage reaction, which was highly related to its adjacent amino acids. Three oligopeptide cleavage variants (OCVs), i.e., GRA, CRA, and SRA, were used as the inserts located at the C-terminus of the INT to facilitate the cleavage reaction. SRA showed the most efficient performance in accelerating the INT self-cleavage reaction. In addition, in order to treat the INT as a biocatalyst, a first-order rate equation was applied to fit the INT cleavage reaction. A possible inference was proposed for the INT cleavage promotion with varied OCVs using a molecular dynamics (MD) simulation. The production and purification via the CBD-INT-SRA-cecB2 fusion protein resulted in a cecB2 yield of 58.7 mg/L with antimicrobial activity.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-T.F.); (S.-Y.L.)
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-T.F.); (S.-Y.L.)
- Innovation and Development Center of Sustainable Agriculture, NCHU, Taichung 40227, Taiwan
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan; (N.-J.H.); (J.Y.)
| | - Jie Yang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan; (N.-J.H.); (J.Y.)
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, NCHU, Taichung 40227, Taiwan
- PhD program in Medical Biotechnology, NCHU, Taichung 40227, Taiwan
- Department of Life Sciences, NCHU, Taichung 40227, Taiwan
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-T.F.); (S.-Y.L.)
| |
Collapse
|
10
|
Romoli O, Mukherjee S, Mohid SA, Dutta A, Montali A, Franzolin E, Brady D, Zito F, Bergantino E, Rampazzo C, Tettamanti G, Bhunia A, Sandrelli F. Enhanced Silkworm Cecropin B Antimicrobial Activity against Pseudomonas aeruginosa from Single Amino Acid Variation. ACS Infect Dis 2019; 5:1200-1213. [PMID: 31045339 DOI: 10.1021/acsinfecdis.9b00042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen causing severe infections in hospitalized and immunosuppressed patients, particularly individuals affected by cystic fibrosis. Several clinically isolated P. aeruginosa strains were found to be resistant to three or more antimicrobial classes indicating the importance of identifying new antimicrobials active against this pathogen. Here, we characterized the antimicrobial activity and the action mechanisms against P. aeruginosa of two natural isoforms of the antimicrobial peptide cecropin B, both isolated from the silkworm Bombyx mori. These cecropin B isoforms differ in a single amino acid substitution within the active portion of the peptide, so that the glutamic acid of the E53 CecB variant is replaced by a glutamine in the Q53 CecB isoform. Both peptides showed a high antimicrobial and membranolytic activity against P. aeruginosa, with Q53 CecB displaying greater activity compared with the E53 CecB isoform. Biophysical analyses, live-cell NMR, and molecular-dynamic-simulation studies indicated that both peptides might act as membrane-interacting elements, which can disrupt outer-membrane organization, facilitating their translocation toward the inner membrane of the bacterial cell. Our data also suggest that the amino acid variation of the Q53 CecB isoform represents a critical factor in stabilizing the hydrophobic segment that interacts with the bacterial membrane, determining the highest antimicrobial activity of the whole peptide. Its high stability to pH and temperature variations, tolerance to high salt concentrations, and low toxicity against human cells make Q53 CecB a promising candidate in the development of CecB-derived compounds against P. aeruginosa.
Collapse
Affiliation(s)
- Ottavia Romoli
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Shruti Mukherjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700 054 Kolkata, India
| | - Sk Abdul Mohid
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700 054 Kolkata, India
| | - Arkajyoti Dutta
- Department of Chemistry, Bose Institute, 93/1 A P C Road, 700 009 Kolkata, India
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Via Jean Henry Dunant, 3, 21100 Varese, Italy
| | - Elisa Franzolin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Daniel Brady
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Francesca Zito
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, UMR7099, University Paris Diderot, Sorbonne Paris Cité, Paris Sciences et Lettres Research University, F-75005 Paris, France
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Chiara Rampazzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via Jean Henry Dunant, 3, 21100 Varese, Italy
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700 054 Kolkata, India
| | - Federica Sandrelli
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
11
|
Losasso V, Hsiao YW, Martelli F, Winn MD, Crain J. Modulation of Antimicrobial Peptide Potency in Stressed Lipid Bilayers. PHYSICAL REVIEW LETTERS 2019; 122:208103. [PMID: 31172786 DOI: 10.1103/physrevlett.122.208103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/09/2023]
Abstract
It is shown that the tendency of an archetypal antimicrobial peptide to insert into and perforate a simple lipid bilayer is strongly modulated by tensile stress in the membrane. The results, obtained through molecular dynamics simulations, have been demonstrated with several lipid compositions and appear to be general, although quantitative details differ. The findings imply that the potency of antimicrobial peptides may not be a purely intrinsic chemical property and, instead, depends on the mechanical state of the target membrane.
Collapse
Affiliation(s)
- Valeria Losasso
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Ya-Wen Hsiao
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Fausto Martelli
- IBM Research, Hartree Centre, Daresbury, England WA4 4AD, United Kingdom
| | - Martyn D Winn
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Jason Crain
- IBM Research, Hartree Centre, Daresbury, England WA4 4AD, United Kingdom
- Dept. of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, England
| |
Collapse
|
12
|
Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application: A Review. Biomolecules 2019; 9:biom9010022. [PMID: 30634689 PMCID: PMC6359287 DOI: 10.3390/biom9010022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/03/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein translocation domains, membrane translocating sequences or Trojan peptides, are small molecules of 6 to 30 amino acid residues capable of penetrating biological barriers and cellular membranes. Furthermore, CPP have become an alternative strategy to overcome some of the current drug limitations and combat resistant strains since CPPs are capable of delivering different therapeutic molecules against a wide range of diseases. In this review, we address the recent conjugation of CPPs with nanoparticles, which constitutes a new class of delivery vectors with high pharmaceutical potential in a variety of diseases.
Collapse
|
13
|
Lee MR, Raman N, Ortiz-Bermúdez P, Lynn DM, Palecek SP. 14-Helical β-Peptides Elicit Toxicity against C. albicans by Forming Pores in the Cell Membrane and Subsequently Disrupting Intracellular Organelles. Cell Chem Biol 2018; 26:289-299.e4. [PMID: 30581136 DOI: 10.1016/j.chembiol.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/16/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Synthetic peptidomimetics of antimicrobial peptides (AMPs) are promising antimicrobial drug candidates because they promote membrane disruption and exhibit greater structural and proteolytic stability than natural AMPs. We previously reported selective antifungal 14-helical β-peptides, but the mechanism of antifungal toxicity of β-peptides remains unknown. To provide insight into the mechanism, we studied antifungal β-peptide binding to artificial membranes and living Candida albicans cells. We investigated the ability of β-peptides to interact with and permeate small unilamellar vesicle models of fungal membranes. The partition coefficient supported a pore-mediated mechanism characterized by the existence of a critical β-peptide concentration separating low- and high-partition coefficient regimes. Live cell intracellular tracking of β-peptides showed that β-peptides translocated into the cytoplasm, and then disrupted the nucleus and vacuole sequentially, leading to cell death. This understanding of the mechanisms of antifungal activity will facilitate design and development of peptidomimetic AMPs, including 14-helical β-peptides, for antifungal applications.
Collapse
Affiliation(s)
- Myung-Ryul Lee
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Namrata Raman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Patricia Ortiz-Bermúdez
- Department of Chemical Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA.
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Fang YT, Lai WS, Liu JH, Liu YC. Enhanced cecropin B2 production via chitin-binding domain and intein self-cleavage system. Biotechnol Appl Biochem 2018; 66:209-215. [PMID: 30471160 DOI: 10.1002/bab.1716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 11/06/2022]
Abstract
In this study, various constructs and hosts were used to produce high levels of cecropin B2 (cecB2). To mitigate cecB2's toxic inhibition of host cells, various cecB2 constructs were built. Results showed that the combination of a chitin-binding domain and an intein self-cleavage motif in front of cecropin B2, without a His-tag, was best for cecB2 expression. E. coli ER2566 was the best host, and 2YT was the best medium for cultivation. Under these conditions, a cecB2 yield of 98.2 mg/L could be obtained after purification. The purified cecB2 expressed a wide antimicrobial effect on most Gram-negative strains, including multidrug-resistant Acinetobactor baumannii and Staphylococcus aureus. This study provides a systematic approach to the efficient production of the antimicrobial peptide (AMP) cecB2 via the recombinant E. coli process, which is expected to be an efficient way for the production of other AMPs.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wei-Shiang Lai
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
15
|
Pfeil MP, Pyne ALB, Losasso V, Ravi J, Lamarre B, Faruqui N, Alkassem H, Hammond K, Judge PJ, Winn M, Martyna GJ, Crain J, Watts A, Hoogenboom BW, Ryadnov MG. Tuneable poration: host defense peptides as sequence probes for antimicrobial mechanisms. Sci Rep 2018; 8:14926. [PMID: 30297841 PMCID: PMC6175903 DOI: 10.1038/s41598-018-33289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/26/2018] [Indexed: 02/02/2023] Open
Abstract
The spread of antimicrobial resistance stimulates discovery strategies that place emphasis on mechanisms circumventing the drawbacks of traditional antibiotics and on agents that hit multiple targets. Host defense peptides (HDPs) are promising candidates in this regard. Here we demonstrate that a given HDP sequence intrinsically encodes for tuneable mechanisms of membrane disruption. Using an archetypal HDP (cecropin B) we show that subtle structural alterations convert antimicrobial mechanisms from native carpet-like scenarios to poration and non-porating membrane exfoliation. Such distinct mechanisms, studied using low- and high-resolution spectroscopy, nanoscale imaging and molecular dynamics simulations, all maintain strong antimicrobial effects, albeit with diminished activity against pathogens resistant to HDPs. The strategy offers an effective search paradigm for the sequence probing of discrete antimicrobial mechanisms within a single HDP.
Collapse
Affiliation(s)
- Marc-Philipp Pfeil
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alice L B Pyne
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Valeria Losasso
- STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Hasan Alkassem
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Peter J Judge
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Martyn Winn
- STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
| | | | - Jason Crain
- IBM Research, Yorktown Heights, NY, 10598, USA
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| |
Collapse
|
16
|
Hsiao YW, Hedström M, Losasso V, Metz S, Crain J, Winn M. Cooperative Modes of Action of Antimicrobial Peptides Characterized with Atomistic Simulations: A Study on Cecropin B. J Phys Chem B 2018; 122:5908-5921. [PMID: 29737852 DOI: 10.1021/acs.jpcb.8b01957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides (AMPs) are widely occurring host defense agents of interest as one route for addressing the growing problem of multidrug-resistant pathogens. Understanding the mechanisms behind their antipathogen activity is instrumental in designing new AMPs. Herein, we present an all-atom molecular dynamics and free energy study on cecropin B (CB) and its constituent domains. We find a cooperative mechanism in which CB inserts into an anionic model membrane with its amphipathic N-terminal segment, supported by the hydrophobic C-terminal segment of a second peptide. The two peptides interact via a Glu···Lys salt bridge and together sustain a pore in the membrane. Using a modified membrane composition, we demonstrate that when the lower leaflet is overall neutral, insertion of the cationic segment is retarded and thus this mode of action is membrane specific. The observed mode of action utilizes a flexible hinge, a common structural motif among AMPs, which allows CB to insert into the membrane using either or both termini. Data from both unbiased trajectories and enhanced sampling simulations indicate that a requirement for CB to be an effective AMP is the interaction of its hydrophobic C-terminal segment with the membrane. Simulations of these segments in isolation reveal their aggregation in the membrane and a different mechanism of supporting pore formation. Together, our results show the complex interaction of different structural motifs of AMPs and, in particular, a potential role for electronegative side chains in an overall cationic AMP.
Collapse
Affiliation(s)
- Ya-Wen Hsiao
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , U.K
| | - Magnus Hedström
- Clay Technology AB , Ideon Science Park , SE-223 70 Lund , Sweden
| | - Valeria Losasso
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , U.K
| | - Sebastian Metz
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , U.K
| | - Jason Crain
- IBM Research , Hartree Centre , Daresbury WA4 4AD , U.K
| | - Martyn Winn
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , U.K
| |
Collapse
|
17
|
Abstract
Bacterial membranes represent an attractive target for the design of new antibiotics to combat widespread bacterial resistance to traditional inhibitor-based antibiotics. Understanding how antimicrobial peptides (AMPs) and other membrane-active agents attack membranes could facilitate the design of new, effective antimicrobials. AMPs, which are small, gene-encoded host defense proteins, offer a promising basis for the study of membrane-active antimicrobial agents. These peptides are cationic and amphipathic, spontaneously binding to bacterial membranes and inducing transmembrane permeability to small molecules. Yet there are often confusions surrounding the details of the molecular mechanisms of AMPs. Following the doctrine of structure-function relationship, AMPs are often viewed as the molecular scaffolding of pores in membranes. Instead we believe that the full mechanism of AMPs is understandable if we consider the interactions of AMPs with the whole membrane domain, where interactions induce structural transformations of the entire membrane, rather than forming localized molecular structures. We believe that it is necessary to consider the entire soft matter peptide-membrane system as it evolves through several distinct states. Accordingly, we have developed experimental techniques to investigate the state and structure of the membrane as a function of the bound peptide to lipid ratio, exactly as AMPs in solution progressively bind to the membrane and induce structural changes to the entire system. The results from these studies suggest that global interactions of AMPs with the membrane domain are of fundamental importance to understanding the antimicrobial mechanisms of AMPs.
Collapse
|
18
|
Loffredo MR, Ghosh A, Harmouche N, Casciaro B, Luca V, Bortolotti A, Cappiello F, Stella L, Bhunia A, Bechinger B, Mangoni ML. Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin-1a(1-21)NH2 and its Diastereomer Esc(1-21)-1c: Correlation with their antipseudomonal and cytotoxic activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2327-2339. [DOI: 10.1016/j.bbamem.2017.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 01/21/2023]
|
19
|
Casciaro B, Dutta D, Loffredo MR, Marcheggiani S, McDermott AM, Willcox MD, Mangoni ML. Esculentin-1a derived peptides kill Pseudomonas aeruginosa biofilm on soft contact lenses and retain antibacterial activity upon immobilization to the lens surface. Biopolymers 2017; 110. [PMID: 29086910 DOI: 10.1002/bip.23074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/14/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Contact lens (CL) wear is a risk factor for development of microbial keratitis, a vision threatening infection of the eye. Adverse events associated with colonization of lenses, especially by the multi-drug resistant and biofilm forming bacterium Pseudomonas aeruginosa remain a major safety issue. Therefore, novel strategies and compounds to reduce the onset of CL-associated ocular infections are needed. Recently, the activity of the frog skin-derived antimicrobial peptide Esc(1-21) and its diastereomer Esc(1-21)-1c was evaluated against both planktonic and sessile forms of this pathogen. Furthermore, Esc(1-21) was found to significantly reduce the severity of P. aeruginosa keratitis in a mouse model and preserve antipseudomonal activity in the presence of human basal tears. Here, we have analyzed the activity of the peptides on P. aeruginosa biofilm formed on soft CLs. Microbiological assays and scanning electron microscopy analysis indicated that the peptides were able to disrupt the bacterial biofilm, with the diastereomer having the greater efficacy (up to 85% killing vs no killing at 4 μM for some strains). Furthermore, upon covalent immobilization to the CL, the two peptides were found to cause more than four log reduction in the number of bacterial cells within 20 minutes and to reduce bacterial adhesion to the CL surface (77%-97% reduction) in 24 hours. Importantly, peptide immobilization was not toxic to mammalian cells and did not affect the lens characteristics. Overall, our data suggest that both peptides have great potential to be developed as novel pharmaceuticals for prevention and treatment of CL-associated P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Alison M McDermott
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Mark Dp Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Faust JE, Yang PY, Huang HW. Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison. Biophys J 2017; 112:1663-1672. [PMID: 28445757 PMCID: PMC5406281 DOI: 10.1016/j.bpj.2017.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/29/2022] Open
Abstract
The bacterial membrane represents an attractive target for the design of new antibiotics to combat widespread bacterial resistance. Understanding how antimicrobial peptides (AMPs) and other membrane-active agents attack membranes could facilitate the design of new, effective antimicrobials. Despite intense study of AMPs on model membranes, we do not know how well the mechanism of attack translates to real biological membranes. To that end, we have characterized the attack of AMPs on Escherichia coli cytoplasmic membranes and directly compared this action to model membranes. AMPs induce membrane permeability in E. coli spheroplasts or giant unilamellar vesicles (GUVs) under well-defined concentrations of AMPs and fluorescent molecules. The action of AMPs on spheroplasts is unique in producing an intracellular fluorescence intensity time curve that increases in a sigmoidal fashion to a steady state. This regular pattern is reproducible by melittin, LL37, and alamethicin but not by CCCP or daptomycin, agents known to cause ion leakage. Remarkably, a similar pattern was also reproduced in GUVs. Indeed the steady-state membrane permeability induced by AMPs is quantitatively the same in spheroplasts and GUVs. There are, however, interesting dissimilarities in details that reveal differences between bacterial and lipid membranes. Spheroplast membranes are permeabilized by a wide range of AMP concentrations to the same steady-state membrane permeability. In contrast, only a narrow range of AMP concentrations permeabilized GUVs to a steady state. Tension in GUVs also influences the action of AMPs, whereas the spheroplast membranes are tensionless. Despite these differences, our results provide a strong support for using model membranes to study the molecular interactions of AMPs with bacterial membranes. As far as we know, this is the first time the actions of AMPs, on bacterial membranes and on model membranes, have been directly and quantitatively compared.
Collapse
Affiliation(s)
- Joseph E Faust
- Department of Physics and Astronomy, Rice University, Houston, Texas
| | - Pei-Yin Yang
- Department of Physics and Astronomy, Rice University, Houston, Texas
| | - Huey W Huang
- Department of Physics and Astronomy, Rice University, Houston, Texas.
| |
Collapse
|
21
|
Lombardi L, Stellato MI, Oliva R, Falanga A, Galdiero M, Petraccone L, D'Errico G, De Santis A, Galdiero S, Del Vecchio P. Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes. Sci Rep 2017; 7:44425. [PMID: 28294185 PMCID: PMC5353584 DOI: 10.1038/srep44425] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides are promising candidates as future therapeutics in order to face the problem of antibiotic resistance caused by pathogenic bacteria. Myxinidin is a peptide derived from the hagfish mucus displaying activity against a broad range of bacteria. We have focused our studies on the physico-chemical characterization of the interaction of myxinidin and its mutant WMR, which contains a tryptophan residue at the N-terminus and four additional positive charges, with two model biological membranes (DOPE/DOPG 80/20 and DOPE/DOPG/CL 65/23/12), mimicking respectively Escherichia coli and Pseudomonas aeruginosa membrane bilayers. All our results have coherently shown that, although both myxinidin and WMR interact with the two membranes, their effect on membrane microstructure and stability are different. We further have shown that the presence of cardiolipin plays a key role in the WMR-membrane interaction. Particularly, WMR drastically perturbs the DOPE/DOPG/CL membrane stability inducing a segregation of anionic lipids. On the contrary, myxinidin is not able to significantly perturb the DOPE/DOPG/CL bilayer whereas interacts better with the DOPE/DOPG bilayer causing a significant perturbing effect of the lipid acyl chains. These findings are fully consistent with the reported greater antimicrobial activity of WMR against P. aeruginosa compared with myxinidin.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Experimental Medicine, Università della Campania "Luigi Vanvitelli", via De Crecchio, 80134 Naples, Italy
| | - Marco Ignazio Stellato
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Università della Campania "Luigi Vanvitelli", via De Crecchio, 80134 Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Geradino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| |
Collapse
|
22
|
Effects of Aib residues insertion on the structural–functional properties of the frog skin-derived peptide esculentin-1a(1–21)NH2. Amino Acids 2016; 49:139-150. [DOI: 10.1007/s00726-016-2341-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
|
23
|
Ponnappan N, Budagavi DP, Yadav BK, Chugh A. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects. Probiotics Antimicrob Proteins 2016; 7:75-89. [PMID: 25559972 DOI: 10.1007/s12602-014-9182-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.
Collapse
Affiliation(s)
- Nisha Ponnappan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | | |
Collapse
|
24
|
Interaction of Cecropin B with Zwitterionic and Negatively Charged Lipid Bilayers Immobilized at Gold Electrode Surface. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0253-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids 2015; 47:2505-19. [PMID: 26162435 DOI: 10.1007/s00726-015-2041-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
Abstract
Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.
Collapse
|
27
|
Kwon SS, Kim SY, Kong BJ, Kim KJ, Noh GY, Im NR, Lim JW, Ha JH, Kim J, Park SN. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int J Pharm 2015; 483:26-37. [PMID: 25623491 DOI: 10.1016/j.ijpharm.2015.01.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/31/2014] [Accepted: 01/18/2015] [Indexed: 01/01/2023]
Abstract
In this study, Polygonum aviculare L. extract, which has superior antioxidative and cellular membrane protective activity, was loaded onto cell penetrating peptide (CPP) conjugated liposomes to enhance transdermal delivery. The physical characteristics of typical liposomes and CPP-conjugated liposomes containing P. aviculare extract were evaluated. The particle sizes of both liposomes were approximately 150 nm. Whereas the zeta potential of typical liposomes was -45 mV, that of CPP-conjugated liposomes was +42 mV. The loading efficiency of P. aviculare extract in both liposomes was calculated to be about 83%. Fluorescent-labeled liposomes were prepared to evaluate cellular uptake and skin permeation efficiency. Using flow cytometry, we found that CPP-conjugated liposomes improved cellular uptake of the fluorescent dye as compared with the typical liposomes. In addition, the skin permeation of CPP-conjugated liposomes was proved higher than that of typical liposomes by confocal laser scanning microscopy studies and Franz diffusion cell experiments. The improved cellular uptake and skin permeation of the CPP-conjugated liposomes were due to the cationic arginine-rich peptide. In vivo studies also determined that the CPP-conjugated liposomes were more effective in depigmentation and anti-wrinkle studies than typical liposomes. These results indicate that the CPP-conjugated liposomes could be effective for transdermal drug delivery of antioxidant and anti-aging therapeutics.
Collapse
Affiliation(s)
- Soon Sik Kwon
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Sun Young Kim
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Bong Ju Kong
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Kyeong Jin Kim
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Geun Young Noh
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Na Ri Im
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Ji Won Lim
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Ji Hoon Ha
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Junoh Kim
- R&D Unit, AMOREPACIFIC Co., Yongin-Si, Gyeonggi-Do 446-729, South Korea.
| | - Soo Nam Park
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea.
| |
Collapse
|
28
|
Abou-Zied OK, Barbour A, Al-Sharji NA, Philip K. Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan: perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa. RSC Adv 2015. [DOI: 10.1039/c4ra15246h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism of peptide interaction with bacterial membranes can be studied effectively by using the intrinsic fluorescence of tryptophan.
Collapse
Affiliation(s)
- Osama K. Abou-Zied
- Department of Chemistry
- Faculty of Science
- Sultan Qaboos University
- Muscat
- Sultanate of Oman
| | - Abdelahhad Barbour
- Division of Microbiology
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
| | - Nada A. Al-Sharji
- Department of Chemistry
- Faculty of Science
- Sultan Qaboos University
- Muscat
- Sultanate of Oman
| | - Koshy Philip
- Division of Microbiology
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
| |
Collapse
|
29
|
Zhang M, Zhao J, Zheng J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. SOFT MATTER 2014; 10:7425-7451. [PMID: 25105988 DOI: 10.1039/c4sm00907j] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antimicrobial and amyloid peptides do not share common sequences, typical secondary structures, or normal biological activity but both the classes of peptides exhibit membrane-disruption ability to induce cell toxicity. Different membrane-disruption mechanisms have been proposed for antimicrobial and amyloid peptides, individually, some of which are not exclusive to either peptide type, implying that certain common principles may govern the folding and functions of different cytolytic peptides and associated membrane disruption mechanisms. Particularly, some antimicrobial and amyloid peptides have been identified to have dual complementary amyloid and antimicrobial properties, suggesting a potential functional link between amyloid and antimicrobial peptides. Given that some similar structural and membrane-disruption characteristics exist between the two classes of peptides, this review summarizes major findings, recent advances, and future challenges related to antimicrobial and amyloid peptides and strives to illustrate the similarities, differences, and relationships in the sequences, structures, and membrane interaction modes between amyloid and antimicrobial peptides, with a special focus on direct interactions of the peptides with the membranes. We hope that this review will stimulate further research at the interface of antimicrobial and amyloid peptides - which has been studied less intensively than either type of peptides - to decipher a possible link between both amyloid pathology and antimicrobial activity, which can guide drug design and peptide engineering to influence peptide-membrane interactions important in human health and diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | |
Collapse
|
30
|
A survey on "Trojan Horse" peptides: opportunities, issues and controlled entry to "Troy". J Control Release 2014; 194:53-70. [PMID: 25151981 DOI: 10.1016/j.jconrel.2014.08.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
Abstract
Cell-penetrating peptides (CPPs), often vividly termed as the "Trojan Horse" peptides, have attracted considerable interest for the intracellular delivery of a wide range of cargoes, such as small molecules, peptides, proteins, nucleic acids, contrast agents, nanocarriers and so on. Some preclinical and clinical developments of CPP conjugates demonstrate their promise as therapeutic agents for drug discovery. There is increasing evidence to suggest that CPPs have the potential to cross several bio-barriers (e.g., blood-brain barriers, intestinal mucosa, nasal mucosa and skin barriers). Despite revolutionary process in many aspects, there are a lot of basic issues unclear for these entities, such as internalization mechanisms, translocation efficiency, translocation kinetics, metabolic degradation, toxicity, side effect, distribution and non-specificity. Among them, non-specificity remains a major drawback for the in vivo application of CPPs in the targeted delivery of cargoes. So far, diverse organelle-specific CPPs or controlled delivery strategies have emerged and improved their specificity. In this review, we will look at the opportunities of CPPs in clinical development, bio-barriers penetration and nanocarriers delivery. Then, a series of basic problems of CPPs will be discussed. Finally, this paper will highlight the use of various controlled strategies in the organelle-specific delivery and targeted delivery of CPPs. The purpose of this review will be to emphasize most influential advance in this field and present a fundamental understanding for challenges and utilizations of CPPs. This will accelerate their translation as efficient vectors from the in vitro setting into the clinic arena, and retrieve the entry art to "Troy".
Collapse
|
31
|
Song KD, Lee WK. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:278-83. [PMID: 25049952 PMCID: PMC4093210 DOI: 10.5713/ajas.2013.13615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/21/2013] [Accepted: 11/10/2013] [Indexed: 11/27/2022]
Abstract
Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets.
Collapse
Affiliation(s)
- Ki-Duk Song
- Genomic Informatics Center, Han Kyong National University, Anseong 456-749, Korea
| | - Woon-Kyu Lee
- Genomic Informatics Center, Han Kyong National University, Anseong 456-749, Korea
| |
Collapse
|
32
|
Carmo ACV, Yamasaki LHT, Figueiredo CA, da Silva Giovanni DN, de Oliveira MI, Dos Santos FCP, Curti SP, Rahal P, Mendonça RZ. Discovery of a new antiviral protein isolated Lonomia obliqua analysed by bioinformatics and real-time approaches. Cytotechnology 2014; 67:1011-22. [PMID: 24908059 PMCID: PMC4628924 DOI: 10.1007/s10616-014-9740-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/03/2014] [Indexed: 11/29/2022] Open
Abstract
This study presents a new recombinant protein that acts as a powerful antiviral (rAVLO—recombinant Antiviral protein of Lonomia obliqua). It was able to reduce the replication by 106 fold for herpes virus and by 104 fold for rubella virus. RT-PCR of viral RNA rAVLO treated infected cells also showed similar rate of inhibition in replication. The analysis of this protein by bioinformatics suggests that this protein is globular, secreted with a signal peptide and has the ability to bind to MHC class I. It was found that there are several protein binding sites with various HLA and a prevalence of α-helices in the N-terminal region (overall classified as a α/β protein type). BLAST similarity sequence search for corresponding cDNA did not reveal a similar sequence in Genbank, suggesting that it is from a novel protein family. In this study we have observed that this recombinant protein and hemolymph has a potent antiviral action. This protein was produced in a baculovirus/Sf-9 system. Therefore, these analyses suggest that this novel polypeptide is a candidate as a broad spectrum antiviral.
Collapse
Affiliation(s)
| | | | | | - Dalton Nogueira da Silva Giovanni
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Cep. 05503-000, Brazil.,Laboratório de Estudos Genômicos, IBILCE-UNESP, São Paulo, Brazil.,Núcleo de Doenças Respiratórias, Centro de Virologia, Instituto Adolfo Lutz, São Paulo, Brazil.,Núcleo de Doenças de Transmissão Vetorial, Centro de Virologia, Instituto Adolfo Lutz, São Paulo, Brazil
| | | | | | - Suely Pires Curti
- Núcleo de Doenças de Transmissão Vetorial, Centro de Virologia, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, IBILCE-UNESP, São Paulo, Brazil
| | | |
Collapse
|
33
|
Lin J, Alexander-Katz A. Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS NANO 2013; 7:10799-808. [PMID: 24251827 DOI: 10.1021/nn4040553] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cationic nanoparticles (NPs) and cell-penetrating peptides (CPPs) can enter cells in an energy-independent fashion, escaping the traditional endocytosis route, which is known as direct translocation. This unconventional entry, usually complementary to endocytosis, features rapid uptake and thus makes both cationic NPs and CPPs fascinating intracellular delivery agents. However, the mechanisms of the direct translocation of both cationic NPs and CPPs across cell membranes into the cytosol are not understood. Moreover, the relationship between direct translocation and endocytosis is also unclear. Here, using coarse-grained molecular dynamics simulations we show that a model cell membrane generates a nanoscale hole to assist the spontaneous translocation of cationic gold nanoparticles (AuNPs) as well as HIV-1 Tat peptides to the cytoplasm side under a transmembrane (TM) potential. After translocation, the AuNPs/Tat peptides move freely in the "cytoplasm" region and the membrane reseals itself within a microsecond, while the TM potential is strongly diminished. Furthermore, we show that the shape of the cationic object is crucial in determining if it can translocate or not across. The results provide insights into the uptake kinetics of cationic NPs/CPPs, which features the relationship between direction translocation and endocytosis. The mechanism put forward here establishes fundamental principles of the intracellular delivery of cationic nanocarriers.
Collapse
Affiliation(s)
- Jiaqi Lin
- Department of Material Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
34
|
Lee JK, Gopal R, Park SC, Ko HS, Kim Y, Hahm KS, Park Y. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs. PLoS One 2013; 8:e67597. [PMID: 23935838 PMCID: PMC3720801 DOI: 10.1371/journal.pone.0067597] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/20/2013] [Indexed: 12/03/2022] Open
Abstract
HP (2-20) is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20) by substituting Trp for Gln(17) and Asp(19) (Anal 3) increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and an extended helical region (residues 6-20). To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9) (Anal 3-Pro) and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE) and sodium dodecyl sulfate (SDS). NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10) was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore <1.8 nm in diameter, which is similar to buforin II. Notably, scanning electron microscopic observation of Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly bound to DNA. These results indicate that the bending region of Anal 3- Pro peptide is prerequisite for effective antibiotic activity and may facilitate easy penetration of the lipid bilayers of the cell membrane.
Collapse
Affiliation(s)
- Jong Kook Lee
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
| | - Ramamourthy Gopal
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
| | - Seong-Cheol Park
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
| | - Hyun Sook Ko
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Kyung-Soo Hahm
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
| | - Yoonkyung Park
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
- Department of Biotechnology, Chosun University, Kwangju, Korea
| |
Collapse
|
35
|
Ryan L, Lamarre B, Diu T, Ravi J, Judge PJ, Temple A, Carr M, Cerasoli E, Su B, Jenkinson HF, Martyna G, Crain J, Watts A, Ryadnov MG. Anti-antimicrobial peptides: folding-mediated host defense antagonists. J Biol Chem 2013; 288:20162-72. [PMID: 23737519 PMCID: PMC3711284 DOI: 10.1074/jbc.m113.459560] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance.
Collapse
Affiliation(s)
- Lloyd Ryan
- National Physical Laboratory, Teddington, Middlesex TW11 0WL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saar-Dover R, Ashkenazi A, Shai Y. Peptide interaction with and insertion into membranes. Methods Mol Biol 2013; 1033:173-83. [PMID: 23996178 DOI: 10.1007/978-1-62703-487-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Natural and synthetic membrane active peptides as well as fragments from membrane proteins interact with membranes. In several cases, such interactions cause the insertion of the peptides to the membrane and their assembly within the lipid bilayer. Here we present spectroscopic approaches utilizing NBD and rhodamine fluorescently labeled peptides to measure peptide-membrane interaction and peptide-peptide interaction within the membrane. The usage of the physical properties of NBD and rhodamine in solution and in membranes provides useful information on the interplay between peptides and lipids.
Collapse
Affiliation(s)
- Ron Saar-Dover
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
37
|
Lee JK, Park SC, Hahm KS, Park Y. Antimicrobial HPA3NT3 peptide analogs: placement of aromatic rings and positive charges are key determinants for cell selectivity and mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:443-54. [PMID: 22982494 DOI: 10.1016/j.bbamem.2012.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/26/2022]
Abstract
In an earlier study, we determined that HP(2-20) (residues 2-20 of parental HP derived from the N-terminus of the Helicobacter pylori ribosomal protein L1) and its analog, HPA3NT3, had potent antimicrobial effects. However, HPA3NT3 also showed undesirable cytotoxicity against HaCaT cells. In the present study, we designed peptide analogs including HPA3NT3-F1A (-F1A), HPA3NT3-F8A (-F8A), HPA3NT3-F1AF8A (-F1AF8A), HPA3NT3-A1 (-A1) and HPA3NT3-A2 (-A2) in an effort to investigate the effects of amino acid substitutions in reducing their hydrophobicity or increasing their cationicity, and any resulting effects on their selectivity in their interactions with human cells and pathogens, as well as their mechanism of antimicrobial action. With the exception of HPA3NT3-A1, all of these peptides showed potent antimicrobial activity. Moreover, substitution of Ala for Phe at positions 1 and/or 8 of the HPA3NT3 peptides (-F1A, -F8A and -F1AF8A) dramatically reduced their cytotoxicity. Thus the cytotoxicity of HPA3NT3 appears to be related to its Phe residues (positions 1 and 8), which strongly interact with sphingomyelin in the mammalian cell membrane. HPA3NT3 exerted its bactericidal effects through membrane permeabilization mediated by pore formation. In contrast, fluorescent dye leakage and nucleic acid gel retardation assays showed that -A2 acted by penetrating into the cytoplasm, where it bound to nucleic acids and inhibited protein synthesis. Notably, Staphylococcus aureus did not develop resistance to -A2 as it did with rifampin. These results suggest that the -A2 peptide could potentially serve as an effective antibiotic agent against multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Jong-Kook Lee
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Joshi S, Bisht GS, Rawat DS, Maiti S, Pasha S. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a. FEBS J 2012; 279:3776-90. [DOI: 10.1111/j.1742-4658.2012.08738.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Souvik Maiti
- Proteomics and Structural Biology Unit; Institute of Genomics & Integrative Biology; Delhi; India
| | - Santosh Pasha
- Peptide Research Laboratory; Institute of Genomics & Integrative Biology; Delhi; India
| |
Collapse
|
39
|
Lee J, Hwang JS, Hwang IS, Cho J, Lee E, Kim Y, Lee DG. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic Biol Med 2012; 52:2302-11. [PMID: 22542795 DOI: 10.1016/j.freeradbiomed.2012.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/23/2012] [Accepted: 03/10/2012] [Indexed: 11/24/2022]
Abstract
Coprisin is a 43-mer defensin-like peptide from the dung beetle, Copris tripartitus. Here, we investigated the induction of apoptosis by coprisin in Candida albicans cells. Coprisin exerted antifungal and fungicidal activity without any hemolytic effect. Confocal microscopy indicated that coprisin accumulated in the nucleus of cells. The membrane studies, 1,6-diphenyl-1,3,5-hexatriene, calcein-leakage, and giant unilamellar vesicle assays, confirmed that coprisin did not disrupt the fungal plasma membrane at all. Moreover, the activity of coprisin was energy- and salt-dependent. Next, we investigated whether coprisin induced apoptosis in C. albicans. Annexin V-FITC staining and TUNEL assay showed that coprisin was involved with both the early and the late stages of apoptosis. Coprisin also increased the intracellular reactive oxygen species level, and hydroxyl radicals were included at high levels among the species. The effect of thiourea as a hydroxyl radical scavenger further confirmed the existence of the hydroxyl radicals. Furthermore, coprisin induced mitochondrial membrane potential dysfunction, cytochrome c release, and activation of metacaspases. In summary, this study suggests that coprisin could be a model molecule for a large family of novel antimicrobial peptides possessing apoptotic activity.
Collapse
Affiliation(s)
- Juneyoung Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Buk-gu, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
D'Errico G, Ercole C, Lista M, Pizzo E, Falanga A, Galdiero S, Spadaccini R, Picone D. Enforcing the positive charge of N-termini enhances membrane interaction and antitumor activity of bovine seminal ribonuclease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:3007-15. [DOI: 10.1016/j.bbamem.2011.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 11/29/2022]
|
41
|
Dimeric Cationic Amphiphilic Polyproline Helices for Mitochondrial Targeting. Pharm Res 2011; 28:2797-807. [DOI: 10.1007/s11095-011-0493-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/24/2011] [Indexed: 12/27/2022]
|
42
|
Dupuy F, Morero R. Microcin J25 membrane interaction: Selectivity toward gel phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1764-71. [DOI: 10.1016/j.bbamem.2011.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
43
|
Kawamoto S, Takasu M, Miyakawa T, Morikawa R, Oda T, Futaki S, Nagao H. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: Importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys 2011; 134:095103. [DOI: 10.1063/1.3555531] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Jung HH, Yang ST, Sim JY, Lee S, Lee JY, Kim HH, Shin SY, Kim JI. Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles. BMB Rep 2010; 43:362-8. [PMID: 20510021 DOI: 10.5483/bmbrep.2010.43.5.362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation of the peptide in 50% trifluoroethanol solution. We found that dermcidin adopts a flexible amphipathic alpha-helical structure with a helix-hinge-helix motif, which is a common molecular fold among antimicrobial peptides. Spin-down assays of dermcidin and several related peptides revealed that the affinity with which dermcidin binds to bacterial-mimetic membranes is primarily dependent on its amphipathic alpha-helical structure and its length (>30 residues); its negative net charge and acidic pI have little effect on binding. These findings suggest that the mode of action of dermcidin is similar to that of other membrane-targeting antimicrobial peptides, though the details of its antimicrobial action remain to be determined.
Collapse
Affiliation(s)
- Hyun Ho Jung
- Department of Life Science, Gwangju Institute of Science and Technology, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Park C, Woo ER, Lee DG. Anti-Candida property of a lignan glycoside derived from Styrax japonica S. et Z. via membrane-active mechanisms. Mol Cells 2010; 29:581-4. [PMID: 20496119 DOI: 10.1007/s10059-010-0072-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/26/2022] Open
Abstract
Styraxjaponoside C was investigated with respect to its antifungal activity and mechanisms of action. Devoid of hemolytic activity, Styraxjaponoside C demonstrated an antifungal effect against the human pathogenic yeast Candida albicans in an energy-independent manner. To characterize the mechanisms of the antifungal activity of Styraxjaponoside C, fluorescence analysis with membrane probe 1,6-diphenyl-1,3,5-hexatriene, and flow cytometric analysis on C. albicans were conducted. The results showed that Styraxjaponosdie C induced cytoplasmic membrane perturbation. The current study suggested that Styraxjaponoside C was active against C. albicans with membrane-active mechanisms.
Collapse
Affiliation(s)
- Cana Park
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | | | | |
Collapse
|
46
|
Role of membranotropic sequences from herpes simplex virus type I glycoproteins B and H in the fusion process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:579-91. [PMID: 20085747 DOI: 10.1016/j.bbamem.2010.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 02/03/2023]
Abstract
The entry of enveloped viruses involves attachment followed by close apposition of the viral and plasma membranes. Then, either on the cell surface or in an endocytotic vesicle, the two membranes fuse by an energetically unfavourable process requiring the destabilisation of membrane microenvironment in order to release the viral nucleocapsid into the cytoplasm. The core fusion machinery, conserved throughout the herpesvirus family, involves glycoprotein B (gB) and the non-covalently associated complex of glycoproteins H and L (gH/gL). Both gB and gH possess several hydrophobic domains necessary for efficient induction of fusion, and synthetic peptides corresponding to these regions are able to associate to membranes and induce fusion of artificial liposomes. Here, we describe the first application of surface plasmon resonance (SPR) to the study of the interaction of viral membranotropic peptides with model membranes in order to enhance our molecular understanding of the mechanism of membrane fusion. SPR spectroscopy data are supported by tryptophan fluorescence, circular dichroism and electron spin resonance spectroscopy (ESR). We selected peptides from gB and gH and also analysed the behaviour of HIV gp41 fusion peptide and the cationic antimicrobial peptide melittin. The combined results of SPR and ESR showed a marked difference between the mode of action of the HSV peptides and the HIV fusion peptide compared to melittin, suggesting that viral-derived membrane interacting peptides all act via a similar mechanism, which is substantially different from that of the non-cell selective lytic peptide melittin.
Collapse
|
47
|
Sawant R, Torchilin V. Intracellulartransduction using cell-penetrating peptides. ACTA ACUST UNITED AC 2010; 6:628-40. [DOI: 10.1039/b916297f] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Bechinger B. Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Curr Opin Colloid Interface Sci 2009. [DOI: 10.1016/j.cocis.2009.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Park C, Lee DG. Fungicidal effect of antimicrobial peptide arenicin-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1790-6. [DOI: 10.1016/j.bbamem.2009.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/29/2022]
|
50
|
Lee J, Park C, Park SC, Woo ER, Park Y, Hahm KS, Lee DG. Cell selectivity-membrane phospholipids relationship of the antimicrobial effects shown by pleurocidin enantiomeric peptides. J Pept Sci 2009; 15:601-6. [DOI: 10.1002/psc.1157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|