1
|
Adams HR, Svistunenko DA, Wilson MT, Fujii S, Strange RW, Hardy ZA, Vazquez PA, Dabritz T, Streblow GJ, Andrew CR, Hough MA. A Heme Pocket Aromatic Quadrupole Modulates Gas Binding to Cytochrome c'-β: Implications for NO Sensors. J Biol Chem 2023:104742. [PMID: 37100286 DOI: 10.1016/j.jbc.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2, is fundamental to enzymology, biotechnology and human health. Cytochromes c´ (cyts c´) are a group of putative NO-binding heme proteins that fall into two families: the well characterised four alpha helix bundle fold (cyts c´-α) and an unrelated family with a largely beta sheet fold (cyts c´-β) resembling that of cytochromes P460. A recent structure of cyt c´-β from Methylococcus capsulatus Bath (McCP-β) revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas binding site. This feature, dubbed the "Phe cap", is highly conserved within the sequences of other cyts c´-β, but is absent in their close homologues, the hydroxylamine oxidizing cytochromes P460, although some do contain a single Phe residue. Here we report an integrated structural, spectroscopic, and kinetic characterization of McCP-β complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron rich aromatic ring face of Phe 32 towards distally-bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO-sensor, soluble guanylate cyclase (sGC). Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-β, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Richard W Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Zoe A Hardy
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Priscilla A Vazquez
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Tyler Dabritz
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Gabriel J Streblow
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Colin R Andrew
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA.
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
2
|
Foley EL, Hvitved AN, Eich RF, Olson JS. Mechanisms of nitric oxide reactions with Globins using mammalian myoglobin as a model system. J Inorg Biochem 2022; 233:111839. [DOI: 10.1016/j.jinorgbio.2022.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
|
3
|
Wang Y, Li S, Rentfrow G, Chen J, Zhu H, Suman SP. Myoglobin Post-Translational Modifications Influence Color Stability of Beef Longissimus Lumborum. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTM) of proteins play critical roles in biological processes. PTM of muscle proteins influence meat quality. Nonetheless, myoglobin (Mb) PTM and their impact on fresh beef color stability have not been characterized yet. Therefore, our objectives were to identify Mb PTM in beef longissimus lumborum muscle during postmortem aging and to characterize their influence on color stability. The longissimus lumborum muscles from 9 (n = 9) beef carcasses (24 h postmortem) were subjected to wet aging for 0, 7, 14, and 21 d. At the end of each wet-aging period, steaks were fabricated. One steak for analyses of PTM was immediately frozen at −80°C, whereas other steaks were assigned to refrigerated storage in the darkness under aerobic packaging. Instrumental color and biochemical attributes were evaluated on day 0, 3, or 6 of storage. Mb PTM were analyzed using two-dimensional electrophoresis and tandem mass spectrometry. Surface redness (a* value), color stability, and Mb concentration decreased (P < 0.05) upon aging. Gel image analyses identified 6 Mb spots with similar molecular weight (17 kDa) but different isoelectric pH. Tandem mass spectrometry identified multiple PTM (phosphorylation, methylation, carboxymethylation, acetylation, and 4-hydroxynonenal alkylation) in these 6 isoforms. The amino acids susceptible to phosphorylation were serine (S), threonine (T), and tyrosine, whereas other PTM were detected in lysine (K), arginine (R), and histidine residues. Additionally, distal histidine (position 64), critical to heme stability, was found to be alkylated. Overall, Mb PTM increased with aging. The aging-induced PTM, especially those occurring close to hydrophobic heme pocket, could disrupt Mb tertiary structure, influence heme affinity, and compromise oxygen binding capacity, leading to decreased color stability of fresh beef. Furthermore, PTM at K45, K47, and K87 were unique to Mb from non-aged beef, whereas PTM at R31, T51, K96, K98, S121, R139, and K147 were unique to Mb from aged counterparts, indicating that these Mb PTM could be used as novel biomarkers for fresh beef color stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Gregg Rentfrow
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | | |
Collapse
|
4
|
Freindorf M, Kraka E. Critical assessment of the FeC and CO bond strength in carboxymyoglobin: a QM/MM local vibrational mode study. J Mol Model 2020; 26:281. [DOI: 10.1007/s00894-020-04519-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
|
5
|
Bacon BA, Liu Y, Kincaid JR, Boon EM. Spectral Characterization of a Novel NO Sensing Protein in Bacteria: NosP. Biochemistry 2018; 57:6187-6200. [PMID: 30272959 DOI: 10.1021/acs.biochem.8b00451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel family of bacterial hemoproteins named NosP has been discovered recently; its members are proposed to function as nitric oxide (NO) responsive proteins involved in bacterial group behaviors such as quorum sensing and biofilm growth and dispersal. Currently, little is known about molecular activation mechanisms in NosP. Here, functional studies were performed utilizing the distinct spectroscopic characteristics associated with the NosP heme cofactor. NosPs from Pseudomonas aeruginosa ( Pa), Vibrio cholerae ( Vc), and Legionella pneumophila ( Lpg) were studied in their ferrous unligated forms as well as their ferrous CO, ferrous NO, and ferric CN adducts. The resonance Raman (rR) data collected on the ferric forms strongly support the existence of a distorted heme cofactor, which is a common feature in NO sensors. The ferrous spectra exhibit a 213 cm-1 feature, which is assigned to the Fe-Nhis stretching mode. The Fe-C and C-O frequencies in the spectra of ferrous CO NosP complexes are inversely correlated with relatively similar frequencies, consistent with a proximal histidine ligand and a relatively hydrophobic environment. The rR spectra obtained for isotopically labeled ferrous NO adducts provide evidence of formation of a 5-coordinate NO complex, resulting from proximal Fe-Nhis cleavage, which is believed to play a role in biological heme-NO signal transduction. Additionally, we found that of the three NosPs studied, Lpg NosP contains the most electropositive ligand binding pocket, while Pa NosP has the most electronegative ligand binding pocket. This pattern is also observed in the measured heme reduction potentials for these three proteins, which may indicate distinct functions for each.
Collapse
Affiliation(s)
- Bezalel A Bacon
- Graduate program in Biochemistry and Structural Biology , Stony Brook University , Stony Brook , New York 11790-3400 , United States
| | - Yilin Liu
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53233 , United States
| | - James R Kincaid
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53233 , United States
| | - Elizabeth M Boon
- Graduate program in Biochemistry and Structural Biology , Stony Brook University , Stony Brook , New York 11790-3400 , United States.,Department of Chemistry and Institute of Chemical Biology and Drug Discovery , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
6
|
Shinomiya R, Katahira Y, Araki H, Shibata T, Momotake A, Yanagisawa S, Ogura T, Suzuki A, Neya S, Yamamoto Y. Characterization of Catalytic Activities and Heme Coordination Structures of Heme-DNA Complexes Composed of Some Chemically Modified Hemes and an All Parallel-Stranded Tetrameric G-Quadruplex DNA Formed from d(TTAGGG). Biochemistry 2018; 57:5930-5937. [PMID: 30207701 DOI: 10.1021/acs.biochem.8b00793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heme binds selectively to the 3'-terminal G-quartet (G6 G-quartet) of an all parallel-stranded tetrameric G-quadruplex DNA, [d(TTAGGG)]4, to form a heme-DNA complex. Complexes between [d(TTAGGG)]4 and a series of chemically modified hemes possessing a heme Fe atom with a variety of electron densities were characterized in terms of their peroxidase activities to evaluate the effect of a change in the electron density of the heme Fe atom (ρFe) on their activities. The peroxidase activity of a complex decreased with a decreasing ρFe, supporting the idea that the activity of the complex is elicited through a reaction mechanism similar to that of a peroxidase. In the ferrous heme-DNA complex, carbon monoxide (CO) can bind to the heme Fe atom on the side of the heme opposite the G6 G-quartet, and a water molecule (H2O) is coordinated to the Fe atom as another axial ligand, trans to the CO. The stretching frequencies of Fe-bound CO (νCO) and the Fe-C bond (νFe-C) of CO adducts of the heme-DNA complexes were determined to investigate the structural and electronic natures of the axial ligands coordinated to the heme Fe atom. Comparison of the νCO and νFe-C values of the heme-DNA complexes with those of myoglobin (Mb) revealed that the donor strength of the axial ligation trans to the CO in a complex is considerably weaker than that of the proximal histidine in Mb, as expected from the coordination of H2O trans to the CO in the complex.
Collapse
Affiliation(s)
- Ryosuke Shinomiya
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Yuya Katahira
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Haruka Araki
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Tomokazu Shibata
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Atsuya Momotake
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science , University of Hyogo , Hyogo 678-1297 , Japan
| | - Takashi Ogura
- Graduate School of Life Science , University of Hyogo , Hyogo 678-1297 , Japan
| | - Akihiro Suzuki
- Department of Materials Engineering, National Institute of Technology , Nagaoka College , Nagaoka 940-8532 , Japan
| | - Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences , Chiba University , Chuoh-Inohana , Chiba 260-8675 , Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry , University of Tsukuba , Tsukuba 305-8571 , Japan.,Tsukuba Research Center for Energy Materials Science (TREMS) , University of Tsukuba , Tsukuba 305-8571 , Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) , University of Tsukuba , Tsukuba 305-8577 , Japan
| |
Collapse
|
7
|
Zhao J, de Serrano V, Franzen S. A model for the flexibility of the distal histidine in dehaloperoxidase-hemoglobin A based on X-ray crystal structures of the carbon monoxide adduct. Biochemistry 2014; 53:2474-82. [PMID: 24670063 PMCID: PMC4203366 DOI: 10.1021/bi5001905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Dehaloperoxidase
hemoglobin A (DHP A) is a multifunctional hemoglobin
that appears to have evolved oxidative pathways for the degradation
of xenobiotics as a protective function that complements the oxygen
transport function. DHP A possesses at least two internal binding
sites, one for substrates and one for inhibitors, which include various
halogenated phenols and indoles. Herein, we report the X-ray crystallographic
structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures
with 6-coordinated heme, the conformation of the distal histidine
(H55) in DHPCO is primarily external or solvent exposed, despite the
fact that the heme Fe is 6-coordinated. As observed generally in globins,
DHP exhibits two distal histidine conformations (one internal and
one external). In previous structural studies, we have shown that
the distribution of H55 conformations is weighted strongly toward
the external position when the DHP heme Fe is 5-coordinated. The large
population of the external conformation of the distal histidine observed
in DHPCO crystals at pH 6.0 indicates that some structural factor
in DHP must account for the difference from other globins, which exhibit
a significant external conformation only when pH < 4.5. While the
original hypothesis suggested that interaction with a heme-Fe-bound
ligand was the determinant of H55 conformation, the current study
forces a refinement of that hypothesis. The external or open conformation
of H55 is observed to have interactions with two propionate groups
in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively
weak hydrogen bonding interaction between H55 and CO, combined with
strong interactions with heme propionate (position 6), is hypothesized
to strengthen the external conformation of H55. Density function theory
(DFT) calculations were conducted to test whether there is a weaker
hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine
how the tautomeric forms of H55 affect the dynamic motions of the
distal histidine that govern the switching between open and closed
conformations. The calculations support the modified hypothesis suggesting
a competition between the strength of interactions with heme ligand
and the heme propionates as the factors that determine the conformation
of the distal histidine.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
8
|
Spiro TG, Soldatova AV, Balakrishnan G. CO, NO and O 2 as Vibrational Probes of Heme Protein Interactions. Coord Chem Rev 2013; 257:511-527. [PMID: 23471138 PMCID: PMC3587108 DOI: 10.1016/j.ccr.2012.05.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The gaseous XO molecules (X = C, N or O) bind to the heme prosthetic group of heme proteins, and thereby activate or inhibit key biological processes. These events depend on interactions of the surrounding protein with the FeXO adduct, interactions that can be monitored via the frequencies of the Fe-X and X-O bond stretching modes, νFeX and νXO. The frequencies can be determined by vibrational spectroscopy, especially resonance Raman spectroscopy. Backbonding, the donation of Fe dπ electrons to the XO π* orbitals, is a major bonding feature in all the FeXO adducts. Variations in backbonding produce negative νFeX/νXO correlations, which can be used to gauge electrostatic and H-bonding effects in the protein binding pocket. Backbonding correlations have been established for all the FeXO adducts, using porphyrins with electron donating and withdrawing substituents. However the adducts differ in their response to variations in the nature of the axial ligand, and to specific distal interactions. These variations provide differing vantages for evaluating the nature of protein-heme interactions. We review experimental studies that explore these variations, and DFT computational studies that illuminate the underlying physical mechanisms.
Collapse
Affiliation(s)
- Thomas G. Spiro
- Department of Chemistry, University of Washington Box 351700, Seattle, Washington 98195
| | | | - Gurusamy Balakrishnan
- Department of Chemistry, University of Washington Box 351700, Seattle, Washington 98195
| |
Collapse
|
9
|
Alisaraie L, Fu Y, Tuszynski JA. Dynamic change of heme environment in soluble guanylate cyclase and complexation of NO-independent drug agents with H-NOX domain. Chem Biol Drug Des 2012; 81:359-81. [PMID: 23095288 DOI: 10.1111/cbdd.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble guanylate cyclase is a heterodimer receptor that functions in several signal transduction pathways. Conversion of guanosine 5'-triphosphate to 3',5'-cyclic monophosphate second messenger at the catalytic domain is regulated by the changes at heme nitric oxide/oxygen domain of the β-subunit. To better understand conformational changes at heme site that may impact on activities of catalytic domain, three soluble guanylate cyclase homolog proteins with heme at Fe-His state were investigated, and their dynamic behaviors were monitored in both unliganded (apo) and complex with heme. As a result of dynamic conformational changes, Lys110, Asp45, Arg135, and Glu41 were found interacting with the site gate, which may interfere with transportation of small molecules in and out of the heme site. An alternative binding site adjacent to that of heme was identified. Binding affinity of several nitric oxide-independent activators and heme-dependent stimulators was examined, and their binding modes in the heme site and in the alternative binding site in the human soluble guanylate cyclase enzyme were computationally simulated. The calculated binding energies were used as criteria to filter results of virtual high-throughput screenings based on FlexX ligand-docking algorithm and absorption, distribution, metabolism, excretion, and toxicity properties on databases of available drugs. The identified drugs from virtual high-throughput screening have been suggested for experimental investigations, based on which they may either be directly repurposed or require structural modifications for better physico-chemical and pharmacological properties.
Collapse
Affiliation(s)
- Laleh Alisaraie
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | | | | |
Collapse
|
10
|
Giordano D, Russo R, Ciaccio C, Howes BD, di Prisco G, Marden MC, Hui Bon Hoa G, Smulevich G, Coletta M, Verde C. Ligand- and proton-linked conformational changes of the ferrous 2/2 hemoglobin of Pseudoalteromonas haloplanktis TAC125. IUBMB Life 2012; 63:566-73. [PMID: 21698762 DOI: 10.1002/iub.492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spectroscopic and ligand-binding properties of a 2/2 globin from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 have been studied in the ferrous state. It displays two major conformations characterized by CO-association rates that differ by a factor of 20, with relative fractions that depend on pH. A dynamic equilibrium is found between the two conformations, as indicated by an enhanced slower phase when lower CO levels were used to allow a longer time to facilitate the transition. The deoxy form, in the absence of external ligands, is a mixture of a predominant six-coordinate low spin form and a five-coordinate high-spin state; the proportion of low spin increasing at alkaline pH. In addition, at temperatures above the physiological temperature of 1 °C, an enhanced tendency of the protein to oxidize is observed.
Collapse
|
11
|
Droghetti E, Nicoletti FP, Bonamore A, Boechi L, Arroyo Mañez P, Estrin DA, Boffi A, Smulevich G, Feis A. Heme pocket structural properties of a bacterial truncated hemoglobin from Thermobifida fusca. Biochemistry 2010; 49:10394-402. [PMID: 21049911 DOI: 10.1021/bi101452k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acidic surface variant (ASV) of the "truncated" hemoglobin from Thermobifida fusca was designed with the aim of creating a versatile globin scaffold endowed with thermostability and a high level of recombinant expression in its soluble form while keeping the active site unmodified. This engineered protein was obtained by mutating the surface-exposed residues Phe107 and Arg91 to Glu. Molecular dynamics simulations showed that the mutated residues remain solvent-exposed, not affecting the overall protein structure. Thus, the ASV was used in a combinatorial mutagenesis of the distal heme pocket residues in which one, two, or three of the conserved polar residues [TyrB10(54), TyrCD1(67), and TrpG8(119)] were substituted with Phe. Mutants were characterized by infrared and resonance Raman spectroscopy and compared with the wild-type protein. Similar Fe-proximal His stretching frequencies suggest that none of the mutations alters the proximal side of the heme cavity. Two conformers were observed in the spectra of the CO complexes of both wild-type and ASV protein: form 1 with ν(FeC) and ν(CO) at 509 and 1938 cm(-1) and form 2 with ν(FeC) and ν(CO) at 518 and 1920 cm(-1), respectively. Molecular dynamics simulations were performed for the wild-type and ASV forms, as well as for the TyrB10 mutant. The spectroscopic and computational results demonstrate that CO interacts with TrpG8 in form 1 and interacts with both TrpG8 and TyrCD1 in form 2. TyrB10 does not directly interact with the bound CO.
Collapse
Affiliation(s)
- Enrica Droghetti
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bianchetti CM, Blouin GC, Bitto E, Olson JS, Phillips GN. The structure and NO binding properties of the nitrophorin-like heme-binding protein from Arabidopsis thaliana gene locus At1g79260.1. Proteins 2010; 78:917-31. [PMID: 19938152 PMCID: PMC2811769 DOI: 10.1002/prot.22617] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The protein from Arabidopsis thaliana gene locus At1g79260.1 is comprised of 166-residues and is of previously unknown function. Initial structural studies by the Center for Eukaryotic Structural Genomics (CESG) suggested that this protein might bind heme, and consequently, the crystal structures of apo and heme-bound forms were solved to near atomic resolution of 1.32 A and 1.36 A, respectively. The rate of hemin loss from the protein was measured to be 3.6 x 10(-5) s(-1), demonstrating that it binds heme specifically and with high affinity. The protein forms a compact 10-stranded beta-barrel that is structurally similar to the lipocalins and fatty acid binding proteins (FABPs). One group of lipocalins, the nitrophorins (NP), are heme proteins involved in nitric oxide (NO) transport and show both sequence and structural similarity to the protein from At1g79260.1 and two human homologues, all of which contain a proximal histidine capable of coordinating a heme iron. Rapid-mixing and laser photolysis techniques were used to determine the rate constants for carbon monoxide (CO) binding to the ferrous form of the protein (k'(CO) = 0.23 microM(-1) s(-1), k(CO) = 0.050 s(-1)) and NO binding to the ferric form (k'(NO) = 1.2 microM(-1) s(-1), k(NO) = 73 s(-1)). Based on both structural and functional similarity to the nitrophorins, we have named the protein nitrobindin and hypothesized that it plays a role in NO transport. However, one of the two human homologs of nitrobindin contains a THAP domain, implying a possible role in apoptosis. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Christopher M. Bianchetti
- Departments of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Centers for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| | - George C. Blouin
- Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005
| | - Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood NJ 08701
| | - John S. Olson
- Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005
| | - George N. Phillips
- Departments of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Centers for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
13
|
Zahran ZN, Chooback L, Copeland DM, West AH, Richter-Addo GB. Crystal structures of manganese- and cobalt-substituted myoglobin in complex with NO and nitrite reveal unusual ligand conformations. J Inorg Biochem 2008; 102:216-33. [PMID: 17905436 PMCID: PMC2771112 DOI: 10.1016/j.jinorgbio.2007.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 08/03/2007] [Accepted: 08/16/2007] [Indexed: 01/17/2023]
Abstract
Nitrite is now recognized as a storage pool of bioactive nitric oxide (NO). Hemoglobin (Hb) and myoglobin (Mb) convert, under certain conditions, nitrite to NO. This newly discovered nitrite reductase activity of Hb and Mb provides an attractive alternative to mammalian NO synthesis from the NO synthase pathway that requires dioxygen. We recently reported the X-ray crystal structure of the nitrite adduct of ferric horse heart Mb, and showed that the nitrite ligand binds in an unprecedented O-binding (nitrito) mode to the d(5) ferric center in Mb(III)(ONO) [D.M. Copeland, A. Soares, A.H. West, G.B. Richter-Addo, J. Inorg. Biochem. 100 (2006) 1413-1425]. We also showed that the distal pocket in Mb allows for different conformations of the NO ligand (120 degrees and 144 degrees ) in Mb(II)NO depending on the mode of preparation of the compound. In this article, we report the crystal structures of the nitrite and NO adducts of manganese-substituted hh Mb (a d(4) system) and of the nitrite adduct of cobalt-substituted hh Mb (a d(6) system). We show that the distal His64 residue directs the nitrite ligand towards the rare nitrito O-binding mode in Mn(III)Mb and Co(III)Mb. We also report that the distal pocket residues allow a stabilization of an unprecendented bent MnNO moiety in Mn(II)MbNO. These crystal structural data, when combined with the data for the aquo, methanol, and azide MnMb derivatives, provide information on the role of distal pocket residues in the observed binding modes of nitrite and NO ligands to wild-type and metal-substituted Mb.
Collapse
Affiliation(s)
- Zaki N. Zahran
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019
| | - Lilian Chooback
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019
| | - Daniel M. Copeland
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019
| | - Ann H. West
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019
| | - George B. Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019
| |
Collapse
|
14
|
Xu C, Ibrahim M, Spiro TG. DFT analysis of axial and equatorial effects on heme-CO vibrational modes: applications to CooA and H-NOX heme sensor proteins. Biochemistry 2008; 47:2379-87. [PMID: 18217776 DOI: 10.1021/bi702254y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Determinants of the Fe-CO and C-O stretching frequencies in (imidazole)heme-CO adducts have been investigated via density functional theory (DFT) analysis, in connection with puzzling characteristics of the heme sensor protein CooA and of the H-NOX (Heme-Nitric Oxide and/or OXygen binding) family of proteins, including soluble guanylate cyclase (sGC). The computations show that two mechanisms of Fe-histidine bond weakening have opposite effects on the nuFeC/nuCO pattern. Mechanical tension is expected to raise nuFeC with little change in nuCO whereas the weakening of H-bond donation from the imidazole ligand has the opposite effect. Data on CooA indicate imidazole H-bond weakening associated with heme displacement, as part of the activation mechanism. The computations also reveal that protein-induced distortion of the porphyrin ring, a prominent structural feature of the H-NOX protein TtTar4H (Thermoanaerobacter tengcongensis Tar4 protein heme domain), has surprisingly little effect on nuFeC or nuCO. However, another structural feature, strong H-bonding to the propionates, is suggested to account for the weakened back bonding that is evident in sGC. TtTar4H-CO itself has an elevated nuFeC, which is successfully modeled as a compression effect, resulting from steric crowding in the distal pocket. nuFeC/nuCO data, in conjunction with modeling, can provide valuable insight into mechanisms for heme-protein modulation.
Collapse
Affiliation(s)
- Changliang Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
15
|
Das TK, Dewilde S, Friedman JM, Moens L, Rousseau DL. Multiple active site conformers in the carbon monoxide complexes of trematode hemoglobins. J Biol Chem 2006; 281:11471-9. [PMID: 16481317 DOI: 10.1074/jbc.m512054200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sequence alignment of hemoglobins of the trematodes Paramphistomum epiclitum and Gastrothylax crumenifer with myoglobin suggests the presence of an unusual active site structure in which two tyrosine residues occupy the E7 and B10 helical positions. In the crystal structure of P. epiclitum hemoglobin, such an E7-B10 tyrosine pair at the putative helical positions has been observed, although the E7 Tyr is displaced toward CD region of the polypeptide. Resonance Raman data on both P. epiclitum and G. crumenifer hemoglobins show that interactions of heme-bound ligands with neighboring amino acid residues are unusual. Multiple conformers in the CO complex, termed the C, O, and N conformers, are observed. The conformers are separated by a large difference (approximately 60 cm(-1)) in the frequencies of their Fe-CO stretching modes. In the C conformer the Fe-CO stretching frequency is very high, 539 and 535 cm(-1), for the P. epiclitum and G. crumenifer hemoglobins, respectively. The Fe-CO stretching of the N conformer appears at an unusually low frequency, 479 and 476 cm(-1), respectively, for the two globins. A population of an O conformer is seen in both hemoglobins, at 496 and 492 cm(-1), respectively. The C conformer is stabilized by a strong polar interaction of the CO with the distal B10 tyrosine residue. The O conformer is similar to the ones typically seen in mutant myoglobins in which there are no strong interactions between the CO and residues in the distal pocket. The N conformer possesses an unusual configuration in which a negatively charged group, assigned as the oxygen atom of the B10 Tyr side chain, interacts with the CO. In this conformer, the B10 Tyr assumes an alternative conformation consistent with one of the conformers seen the crystal structure. Implications of the multiple configurations on the ligand kinetics are discussed.
Collapse
Affiliation(s)
- Tapan K Das
- Pfizer Global Biologics, Chesterfield, Missouri 63017, USA
| | | | | | | | | |
Collapse
|
16
|
Karow DS, Pan D, Davis JH, Behrends S, Mathies RA, Marletta MA. Characterization of functional heme domains from soluble guanylate cyclase. Biochemistry 2005; 44:16266-74. [PMID: 16331987 PMCID: PMC2572136 DOI: 10.1021/bi051601b] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble guanylate cyclase (sGC) is a heterodimeric, nitric oxide (NO)-sensing hemoprotein composed of two subunits, alpha1 and beta1. NO binds to the heme cofactor in the beta1 subunit, forming a five-coordinate NO complex that activates the enzyme several hundred-fold. In this paper, the heme domain has been localized to the N-terminal 194 residues of the beta1 subunit. This fragment represents the smallest construct of the beta1 subunit that retains the ligand-binding characteristics of the native enzyme, namely, tight affinity for NO and no observable binding of O(2). A functional heme domain from the rat beta2 subunit has been localized to the first 217 amino acids beta2(1-217). These proteins are approximately 40% identical to the rat beta1 heme domain and form five-coordinate, low-spin NO complexes and six-coordinate, low-spin CO complexes. Similar to sGC, these constructs have a weak Fe-His stretch [208 and 207 cm(-)(1) for beta1(1-194) and beta2(1-217), respectively]. beta2(1-217) forms a CO complex that is very similar to sGC and has a high nu(CO) stretching frequency at 1994 cm(-)(1). The autoxidation rate of beta1(1-194) was 0.073/min, while the beta2(1-217) was substantially more stable in the ferrous form with an autoxidation rate of 0.003/min at 37 degrees C. This paper has identified and characterized the minimum functional ligand-binding heme domain derived from sGC, providing key details toward a comprehensive characterization.
Collapse
Affiliation(s)
- David S Karow
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
17
|
Stewart JM, Blakely JA, Karpowicz PA, Kalanxhi E, Thatcher BJ, Martin BM. Unusually weak oxygen binding, physical properties, partial sequence, autoxidation rate and a potential phosphorylation site of beluga whale (Delphinapterus leucas) myoglobin. Comp Biochem Physiol B Biochem Mol Biol 2005; 137:401-12. [PMID: 15050527 DOI: 10.1016/j.cbpc.2004.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 10/28/2003] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
We purified myoglobin from beluga whale (Delphinapterus leucas) muscle (longissimus dorsi) with size exclusion and cation exchange chromatographies. The molecular mass was determined by mass spectrometry (17,081 Da) and the isoelectric pH (9.4) by capillary isoelectric focusing. The near-complete amino acid sequence was determined and a phylogeny indicated that beluga was in the same clad as Dall's and harbor porpoises. There were consensus motifs for a phosphorylation site on the protein surface with the most likely site at serine-117. This motif was common to all cetacean myoglobins examined. Two oxygen-binding studies at 37 degrees C indicated dissociation constants (20.5 and 23.6 microM) 5.7-6.6 times larger than horse myoglobin (3.6 microM). The autoxidation rate of beluga myoglobin at 37 degrees C, pH 7.2 was 0.218+/-0.028 h(-1), 1/3 larger than reported for myoglobin of terrestrial mammals. There was no clear sequence change to explain the difference in oxygen binding or autoxidation although substitutions (N66 and T67) in an invariant rich sequence (HGNTV) distal to the heme may play a role. Structural models based on the protein sequence and constructed on topologies of known templates (horse and sperm whale crystal structures) were not adequate to assess perturbation of the heme pocket.
Collapse
Affiliation(s)
- J M Stewart
- Biochemistry Programme, Department of Biology, Mount Allison University, Flemington Bldg, 63B York St. Sackville, NB, Canada E4L 1G7.
| | | | | | | | | | | |
Collapse
|
18
|
Uno T, Ryu D, Tsutsumi H, Tomisugi Y, Ishikawa Y, Wilkinson AJ, Sato H, Hayashi T. Residues in the Distal Heme Pocket of Neuroglobin. J Biol Chem 2004; 279:5886-93. [PMID: 14645216 DOI: 10.1074/jbc.m311748200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acid residues in the ligand binding pocket of human neuroglobin have been identified by site-directed mutagenesis and their properties investigated by resonance Raman and flash photolysis methods. Wild-type neuroglobin has been shown to have six-coordinate heme in both ferric and ferrous states. Substitution of His96 by alanine leads to complete loss of heme, indicating that His96 is the proximal ligand. The resonance Raman spectra of M69L and K67T mutants were similar to those of wild-type (WT) neuroglobin in both ferric and ferrous states. By contrast, H64V was six-coordinate high-spin and five-coordinate high-spin in the ferric and ferrous states, respectively, at acidic pH. The spectra were pH-dependent and six-coordinate with the low-spin component dominating at alkaline pH. In a double mutant H64V/K67T, the high-spin component alone was detected in the both ferric and the ferrous states. This implies that His64 is the endogenous ligand and that Lys67 is situated nearby in the distal pocket. In the ferrous H64V and H64V/K67T mutants, the nu(Fe-His) stretching frequency appears at 221 cm(-1), which is similar to that of deoxymyoglobin. In the ferrous CO-bound state, the nu(Fe-CO) stretching frequency was detected at 521 and 494 cm(-1) in WT, M69L, and K67T, while only the 494 cm(-1) component was detected in the H64V and H64V/K67T mutants. Thus, the 521 cm(-1) component is attributed to the presence of polar His64. The CO binding kinetics were biphasic for WT, H64V, and K67T and monophasic for H64V/K67T. Thus, His64 and Lys67 comprise a unique distal heme pocket in neuroglobin.
Collapse
Affiliation(s)
- Tadayuki Uno
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi, Kumamoto 862-0973, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nienhaus K, Deng P, Olson JS, Warren JJ, Nienhaus GU. Structural dynamics of myoglobin: ligand migration and binding in valine 68 mutants. J Biol Chem 2003; 278:42532-44. [PMID: 12907676 DOI: 10.1074/jbc.m306888200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have combined Fourier transform infrared/temperature derivative (FTIR-TDS) spectroscopy at cryogenic temperatures and flash photolysis at ambient temperature to examine the effects of polar and bulky amino acid replacements of the highly conserved distal valine 68 in sperm whale myoglobin. In FTIR-TDS experiments, the CO ligand can serve as an internal voltmeter that monitors the local electrostatic field not only at the active site but also at intermediate ligand docking sites. Mutations of residue 68 alter size, shape, and electric field of the distal pocket, especially in the vicinity of the primary docking site (state B). As a consequence, the infrared bands associated with the ligand at site B are shifted. The effect is most pronounced in mutants with large aromatic side chains. Polar side chains (threonine or serine) have only little effect on the peak frequencies. Ligands that migrate toward more remote sites C and D give rise to IR bands with altered frequencies. TDS experiments separate the photoproducts according to their recombination temperatures. The rates and extent of ligand migration among internal cavities at cryogenic temperatures can be used to interpret geminate and bimolecular O2 and CO recombination at room temperature. The kinetics of geminate recombination can be explained by steric arguments alone, whereas both the polarity and size of the position 68 side chain play major roles in regulating bimolecular ligand binding from the solvent.
Collapse
Affiliation(s)
- Karin Nienhaus
- Department of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Franzen S. An electrostatic model for the frequency shifts in the carbonmonoxy stretching band of myoglobin: correlation of hydrogen bonding and the stark tuning rate. J Am Chem Soc 2002; 124:13271-81. [PMID: 12405856 DOI: 10.1021/ja017708d] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of internal and applied external electric fields on the vibrational stretching frequency for bound CO (nu(CO)) in myoglobin mutants was studied using density functional theory. Geometry optimization and frequency calculations were carried out for an imidazole-iron-porphine-carbonmonoxy adduct with various small molecule hydrogen-bonding groups. Over 70 vibrational frequency calculations of different model geometries and hydrogen-bonding groups were compared to derive overall trends in the C-O stretching frequency (nu(CO)) in terms of the C-O bond length and Mulliken charge. Simple linear functions were derived to predict the Stark tuning rate using an approach analogous to the vibronic theory of activation.(1) Potential energy calculations show that the strongest interaction occurs for C-H or N-H hydrogen bonding nearly perpendicular to the Fe-C-O bond axis. The calculated frequencies are compared to the structural data available from 18 myoglobin crystal structures, supporting the hypothesis that the vast majority of hydrogen-bonding interactions with CO occur from the side, rather than the end, of the bound CO ligand. The nu(CO) frequency shifts agree well with experimental frequency shifts for multiple bands, known as A states, and site-directed mutations in the distal pocket of myoglobin. The model calculations quantitatively explain electrostatic effects in terms of specific hydrogen-bonding interactions with bound CO in heme proteins.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
22
|
Kornblatt JA, Kornblatt MJ. Water as it applies to the function of enzymes. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:49-73. [PMID: 11952237 DOI: 10.1016/s0074-7696(02)15005-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Escherichia coli and Saccharomyces cerevisiae can metabolize, grow, and divide over osmotic pressures ranging from 0.24 atm to about 100 atm [Record, T. M. et al. (1999). Trends Biochem. Sci. 23,143-148,190-194; Wood, J. M. (1999). Microbiol. Mol. Bio. Rev. 63, 230-262; Marachal, P. A., and Gervais, P. (1994). Appl. Microbiol. Biotechnol. 42, 617-622]. At the higher end of the range, they perform their functions with difficulty, but they can survive. Over the full span of pressures, the activity of water goes from 0.9998 to 0.93. Neither of the authors can survive at anything like these extremes; some of their enzymes and enzymatic complexes would "fall apart," would either cease to function or would denature. We would very much like to know just how the two microbes manage.
Collapse
Affiliation(s)
- J A Kornblatt
- Enzyme Research Group, Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
23
|
Matsu-Ura M, Tani F, Naruta Y. Formation and characterization of carbon monoxide adducts of iron "twin coronet" porphyrins. Extremely low CO affinity and a strong negative polar effect on bound CO. J Am Chem Soc 2002; 124:1941-50. [PMID: 11866607 DOI: 10.1021/ja011963g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The carbon monoxide (CO) adducts of iron "twin coronet" porphyrins (TCPs) are characterized by UV-vis, resonance Raman (RR), IR, and 13C NMR spectroscopies. A superstructured porphyrin, designated as TCP, was used as a common framework for the four different types of iron complexes. TCP bears two binaphthalene bridges on each side and creates two hydrophobic pockets surrounded by the bulky aromatic rings. In the CO-binding cavities, the hydroxyl groups are oriented toward the center above the heme. The iron complexes investigated are as follows: TCP (which is without a covalently linked axial ligand), TCP-PY (which has a linked pyridine ligand), and TCP-TB and TCP-TG (both of which have a linked thiolate ligand). These complexes were synthesized as ferric forms and identified by the various spectroscopic methods. The UV-vis spectra of TCP-CO and TCP-PY-CO exhibit lambda(max) at 432, 546 and 428, 541 nm, respectively. On the other hand, the CO adducts of TCP-TB and TCP-TG show typical hyperporphyrin spectra for a thiolate-ligated iron(II) porphyrin-CO complex. In the RR spectra, the nu(Fe-CO) bands were observed at 506, 489 cm(-1) (TCP), 465 cm(-1) (TCP-PY), 458, 437 cm(-1) (TCP-TG) and 429 cm(-1) (TCP-TB). Compared with the reported nu(Fe-CO) frequencies of hemoproteins and their model systems, these observed values are unusually low. Further, abnormally high nu(C-O) bands are observed at 1990 cm(-1) (TCP-CO) and 2008 cm(-1) (TCP-PY-CO) in IR spectra. The lower nu(Fe-CO) and the higher nu(C-O) frequencies can be ascribed to the strong negative polar effect caused by the vicinal hydroxyl groups in the cavity. This prediction is further supported by the observation of significant 13C shieldings exhibited by TCP-CO (delta = 202.6 ppm) and TCP-PY-CO (delta = 202.3 ppm), in comparison to hemoproteins and other heme models. The CO affinity of TCP-PY (P1/2CO = 0.017 Torr at 25 C) is unusually lower than other heme models. The unique behavior of these CO adducts is discussed in context of the TCP structures.
Collapse
Affiliation(s)
- Mikiya Matsu-Ura
- Institute for Fundamental Research of Organic Chemistry, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
24
|
Franzen S. Effect of a charge relay on the vibrational frequencies of carbonmonoxy iron porphine adducts: the coupling of changes in axial ligand bond strength and porphine core size. J Am Chem Soc 2001; 123:12578-89. [PMID: 11741422 DOI: 10.1021/ja0108988] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of a charge relay involving Asp-His-Fe in peroxidase enzymes is explored using density functional theory (DFT) calculations of vibrational spectra and potential energy surfaces of carbonmonoxy model systems. The series of models consists of a carbonmonoxy iron porphine molecule with a trans imidazole ligand hydrogen-bonded to six different partners at the Ndelta position. Calculations on the oxy system and on models of the Asp-His-Ser catalytic triad of serine proteases were also performed to obtain an understanding of how the redistribution of charge in these systems may contribute to enzymatic function. The goal of the study is to relate the experimental frequencies in resonance Raman and Fourier transform infrared studies to bonding that is important for the function of heme enzymes. Calculations of both axial and in-plane modes exhibit trends that agree with experimental data. Comparisons of the charge distribution on the different models show that polarization of iron carbonomonoxy bonds consistent with the mechanism for peroxidase function leads to a frequency reduction in the C-O stretching mode nuCO. The combination of axial trans sigma-bonding and pi-bonding effects that include expansion of the porphine core result in little change in the Fe-C stretching frequency nuFe-CO in the series of molecules studied with different Ndelta-H hydrogen bonding. A particular role for the core size is discussed that demonstrates the applicability of trends observed in vibrational spectroscopy of hemes to the charge relay mechanism and other axial ligation effects. The bonding interactions described account for the increase in electron density on bound diatomic ligands, which is required for peroxidase function.
Collapse
Affiliation(s)
- S Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
25
|
Couture M, Burmester T, Hankeln T, Rousseau DL. The heme environment of mouse neuroglobin. Evidence for the presence of two conformations of the heme pocket. J Biol Chem 2001; 276:36377-82. [PMID: 11473111 DOI: 10.1074/jbc.m103907200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroglobin (Ngb) is a newly discovered oxygen-binding heme protein that is primarily expressed in the brain of humans and other vertebrates. To characterize the structure/function relationships of this new heme protein, we have used resonance Raman spectroscopy to determine the structure of the heme environment in Ngb from mice. In the Fe(2+)CO complex, two conformations of the Fe-CO unit are present, one of which arises from an open conformation of the heme pocket in which the CO is not interacting with any nearby residue, and the other arises from a closed conformation where a positively charged residue near the CO group stabilizes the complex. For the Fe(2+)O(2) complex, we detect a single nu(Fe-OO) stretching mode at a frequency similar to that of oxymyoglobins and oxyhemoglobins of vertebrates (571 cm(-1)). Based on the Fe-C-O frequencies of the closed conformation of Ngb, a highly polar distal environment is indicated from which the O(2) off-rate is predicted to be lower than that of Mb. In the absence of exogenous ligands, a heme pocket residue coordinates to the heme iron, forming a six-coordinate complex, thereby predicting a low on-rate for exogenous ligands. These structural properties of the heme pocket of Ngb are discussed with respect to its proposed in vivo oxygen delivery function.
Collapse
Affiliation(s)
- M Couture
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
26
|
Abstract
An overview of the application of Fourier transform infrared spectroscopy for the analysis of the structure of proteins and protein-ligand recognition is given. The principle of the technique and of the spectra analysis is demonstrated. Spectral signal assignments to vibrational modes of the peptide chromophore, amino acid side chains, cofactors and metal ligands are summarized. Several examples for protein-ligand recognition are discussed. A particular focus is heme proteins and, as an example, studies of cytochrome P450 are reviewed. Fourier transform infrared spectroscopy in combination with the various techniques such as time-resolved and low-temperature methods, site-directed mutagenesis and isotope labeling is a helpful approach to studying protein-ligand recognition.
Collapse
Affiliation(s)
- C Jung
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
27
|
Phillips, GN, Teodoro ML, Li T, Smith B, Olson JS. Bound CO Is A Molecular Probe of Electrostatic Potential in the Distal Pocket of Myoglobin. J Phys Chem B 1999. [DOI: 10.1021/jp9918205] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George N. Phillips,
- W. M. Keck Center for Computational Biology and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Miguel L. Teodoro
- W. M. Keck Center for Computational Biology and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Tiansheng Li
- W. M. Keck Center for Computational Biology and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Benjamin Smith
- W. M. Keck Center for Computational Biology and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - John S. Olson
- W. M. Keck Center for Computational Biology and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| |
Collapse
|
28
|
Kalodimos CG, Gerothanassis IP, Pierattelli R, Ancian B. Carbon-13 and Oxygen-17 Chemical Shifts, (16O/18O) Isotope Effects on 13C Chemical Shifts, and Vibrational Frequencies of Carbon Monoxide in Various Solvents and of the Fe−C−O Unit in Carbonmonoxy Heme Proteins and Synthetic Model Compounds. Inorg Chem 1999. [DOI: 10.1021/ic9814165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charalampos G. Kalodimos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina GR-45110, Greece, Department of Chemistry, University of Florence, Via G. Capponi 7, 50121 Florence, Italy, Department of Chemistry, Université Paris 7Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, and Bruker (UMR 50), Buroparc 1, 3 Avenue du Général de Gaulle, 91090 Lisses, France
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina GR-45110, Greece, Department of Chemistry, University of Florence, Via G. Capponi 7, 50121 Florence, Italy, Department of Chemistry, Université Paris 7Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, and Bruker (UMR 50), Buroparc 1, 3 Avenue du Général de Gaulle, 91090 Lisses, France
| | - Roberta Pierattelli
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina GR-45110, Greece, Department of Chemistry, University of Florence, Via G. Capponi 7, 50121 Florence, Italy, Department of Chemistry, Université Paris 7Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, and Bruker (UMR 50), Buroparc 1, 3 Avenue du Général de Gaulle, 91090 Lisses, France
| | - Bernard Ancian
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina GR-45110, Greece, Department of Chemistry, University of Florence, Via G. Capponi 7, 50121 Florence, Italy, Department of Chemistry, Université Paris 7Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, and Bruker (UMR 50), Buroparc 1, 3 Avenue du Général de Gaulle, 91090 Lisses, France
| |
Collapse
|
29
|
Yamamoto Y, Kurihara N, Egawa T, Shimada H, Ishimura Y. Hydrogen bonding interaction of the amide group of Asn and Gln at distal E7 of bovine myoglobin with bound-ligand and its functional consequences. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1433:27-44. [PMID: 10446357 DOI: 10.1016/s0167-4838(99)00125-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asn and Gln with an amide group at gamma- and delta-positions, respectively, were substituted for distal His-E7 of bovine myoglobin to establish a system where hydrogen bonding interaction between the distal residue and bound-ligand can be altered by changing donor-acceptor distance. Two mutant myoglobins showed nearly identical (1)H-NMR spectral pattern for resolved heme peripheral side-chain and amino acid proton signals and similar two-dimensional NMR connectivities irrespective of cyanide-bound and -unbound states, indicating that the heme electronic structure and the molecular structure of the active site are not affected by a difference in one methylene group at the E7 position. Chemical exchange rate of Asn-E7 N(delta)H proton in met-cyano myoglobin is larger than that of Gln-E7 N(epsilon)H proton by at least two orders of magnitude, suggesting a considerable difference in the strength of hydrogen bond between the E7 side-chain and bound-ligand, due to the differential donor-acceptor distance between the two mutants. Thus a comparative study between the two proteins provides an ideal system to delineate a relationship between the stabilization of bound-ligand by the hydrogen bond and myoglobin's ligand affinity. The Asn-mutant showed a faster dissociation of cyano ion from met-myoglobin than the Gln-mutant by over 30-fold. Similarly, oxygen dissociation is faster in the Asn-mutant than in the Gln-mutant by approximately 100-fold. Association of cyanide anion to the mutant met-myoglobin was accelerated by changing Gln to Asn by a 4-fold. Likewise, oxygen binding was accelerated by approximately 2-fold by the above substitution. The present findings confirm that hydrogen bonding with the distal residue is a dominant factor for determining the ligand dissociation rate, whereas steric hindrance exerted by the distal residue is a primary determinant for the ligand association.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan.
| | | | | | | | | |
Collapse
|
30
|
Miyatake H, Mukai M, Adachi S, Nakamura H, Tamura K, Iizuka T, Shiro Y, Strange RW, Hasnain SS. Iron coordination structures of oxygen sensor FixL characterized by Fe K-edge extended x-ray absorption fine structure and resonance raman spectroscopy. J Biol Chem 1999; 274:23176-84. [PMID: 10438488 DOI: 10.1074/jbc.274.33.23176] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FixL is a heme-based O(2) sensor protein involved in a two-component system of a symbiotic bacterium. In the present study, the iron coordination structure in the heme domain of Rhizobium meliloti FixLT (RmFixLT, a soluble truncated FixL) was examined using Fe K-edge extended x-ray absorption fine structure (EXAFS) and resonance Raman spectroscopic techniques. In the EXAFS analyses, the interatomic distances and angles of the Fe-ligand bond and the iron displacement from the heme plane were obtained for RmFixLT in the Fe(2+), Fe(2+)O(2), Fe(2+)CO, Fe(3+), Fe(3+)F(-), and Fe(3+)CN(-) states. An apparent correlation was found between the heme-nitrogen (proximal His-194) distance in the heme domain and the phosphorylation activity of the histidine kinase domain. Comparison of the Fe-CO coordination geometry between RmFixLT and RmFixLH (heme domain of RmFixL), based on the EXAFS and Raman results, has suggested that the kinase domain directly or indirectly influences steric interaction between the iron-bound ligand and the heme pocket. Referring to the crystal structure of the heme domain of Bradyrhizobium japonicum FixL (Gong, W., Hao, B., Mansy, S. S., Gonzalez, G., Gilles-Gonzalez, M. A., and Chan, M. K. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 15177-15182), we discussed details of the iron coordination structure of RmFixLT and RmFixLH in relation to an intramolecular signal transduction mechanism in its O(2) sensing.
Collapse
Affiliation(s)
- H Miyatake
- Institute of Physical and Chemical Research, RIKEN Harima Institute, Mikazuki-cho, Sayo, Hyogo 679-5143, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bonaventura C, Bonaventura J, Shih DT, Iben ET, Friedman J. Altered ligand rebinding kinetics due to distal-side effects in hemoglobin chico (Lysbeta66(E10) --> thr). J Biol Chem 1999; 274:8686-93. [PMID: 10085107 DOI: 10.1074/jbc.274.13.8686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hb Chico is an unusual human hemoglobin variant that has lowered oxygen affinity, but unaltered cooperativity and anion sensitivity. Previous studies showed these features to be associated with distal-side heme pocket alterations that confer increased structural rigidity on the molecule and that increase water content in the beta-chain heme pocket. We report here that the extent of nanosecond geminate rebinding of oxygen to the variant and its isolated beta-chains is appreciably decreased. Structural alterations in this variant decrease its oxygen recombination rates without significantly altering rates of migration out of the heme pocket. Data analysis indicates that one or more barriers that impede rebinding of oxygen from docking sites in the heme pocket are increased, with less consequence for CO rebinding. Resonance Raman spectra show no significant alterations in spectral regions sensitive to interactions between the heme iron and the proximal histidine residue, confirming that the functional differences in the variant are due to distal-side heme pocket alterations. These effects are discussed in the context of a schematic representation of heme pocket wells and barriers that could aid the design of novel hemoglobins with altered ligand affinity without loss of the normal allosteric responses that facilitate unloading of oxygen to respiring tissues.
Collapse
Affiliation(s)
- C Bonaventura
- Duke University Marine/Freshwater Biomedical Center, School of the Environment Marine Laboratory, Beaufort, North Carolina 28516, USA.
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- James P. Collman
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Lei Fu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| |
Collapse
|
33
|
Sugimoto T, Unno M, Shiro Y, Dou Y, Ikeda-Saito M. Myoglobin mutants giving the largest geminate yield in CO rebinding in the nanosecond time domain. Biophys J 1998; 75:2188-94. [PMID: 9788913 PMCID: PMC1299892 DOI: 10.1016/s0006-3495(98)77662-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have measured the rebinding of carbon monoxide (CO) to some distal mutants of myoglobin (Mb) in the time range from 10(-8) to 10(-1) s by flash photolysis, in which the photodissociated CO rebinds to the heme iron without escaping to the solvent water from the protein matrix. We have found that the double mutants [His64-->Val/Val68-->Thr (H64V/V68T) and His64-->Val/Val68-->Ser (H64V/V68S)] have an extremely large geminate yield (70-80%) in water at 5 degreesC, in contrast to the 7% of the geminate yield of wild-type Mb. The CO geminate yields for these two mutants are the largest in those of Mb mutants reported so far, showing that the two mutants have a unique heme environment that favors CO geminate rebinding. Comparing the crystal structures and 1H-NMR and vibrational spectral data of H64V/V68T and H64V/V68S with those of other mutants, we discuss factors that may control the nanosecond geminate CO rebinding and CO migration in the protein matrix.
Collapse
Affiliation(s)
- T Sugimoto
- Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 170, Japan
| | | | | | | | | |
Collapse
|
34
|
Kalodimos CG, Gerothanassis IP, Hawkes GE. 13C- and 57Fe-NMR studies of the Fe-C-O unit of heme proteins and synthetic model compounds in solution: comparison with IR vibrational frequencies and X-ray structural data. BIOSPECTROSCOPY 1998; 4:S57-69. [PMID: 9787915 DOI: 10.1002/(sici)1520-6343(1998)4:5+3.0.co;2-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
13C- and 57Fe-NMR spectra of several carbon monoxide hemoprotein models with varying polar and steric effects of the distal organic superstructure, constraints of the proximal side, and solvent polarity are reported. The 13C shieldings of heme models cover a 4.0 ppm range that is extended to 7.0 ppm when several hemoglobin CO and myoglobin CO species at different pHs are included. Both heme models and heme proteins obey a similar excellent linear delta(13C) versus nu(C-O) relationship that is primarily due to modulation of pi backbonding from Fe d pi to the CO pi* orbital by the distal pocket polar interactions. There is no direct correlation between delta(13C) and Fe-C-O geometry. The poor monotonic relation between delta(13C) and nu(Fe-C) indicates that the iron-carbon pi bonding is not a primary factor influencing delta(13C) and delta(57Fe). The delta(57Fe) was found to be extremely sensitive to deformation of the porphyrin geometry, and increased shielding by more than 600 ppm with increased ruffling was observed for various heme models of known X-ray structures.
Collapse
Affiliation(s)
- C G Kalodimos
- Department of Chemistry, University of Ioannina, Greece
| | | | | |
Collapse
|
35
|
Karavitis M, Fronticelli C, Brinigar WS, Vasquez GB, Militello V, Leone M, Cupane A. Properties of human hemoglobins with increased polarity in the alpha- or beta-heme pocket. Carbonmonoxy derivatives. J Biol Chem 1998; 273:23740-9. [PMID: 9726982 DOI: 10.1074/jbc.273.37.23740] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spectroscopic, conformational, and functional properties of mutant carbonmonoxy hemoglobins in which either the beta-globin Val67(E11) or the alpha-globin Val62(E11) is replaced by threonine have been investigated. The thermal evolution of the Soret absorption band and the stretching frequency of the bound CO were used to probe the stereodynamic properties of the heme pocket. The functional properties were investigated by kinetic measurements. The spectroscopic and functional data were related to the conformational properties through molecular analysis. The effects of this nonpolar-to-polar isosteric mutation are: (i) increase of heme pocket anharmonic motions, (ii) stabilization of the A0 conformer in the IR spectrum, (iii) increased CO dissociation rates. The spectroscopic data indicate that for the carbonmonoxy derivatives, the Val --> Thr mutation has a larger conformational effect on the beta-subunits than on the alpha-subunits. This is at variance with the deoxy derivatives where the conformational modification was larger in the heme pocket of the alpha-subunit (Cupane, A., Leone, M., Militello, V., Friedman, R. K., Koley, A. P., Vasquez, G. P., Brinigar, W. S., Karavitis, M., and Fronticelli, C. (1997) J. Biol. Chem. 272, 26271-26278). These effects are attributed to a different electrostatic interaction between Ogamma of Thr(E11) and the bound CO molecule. Molecular analysis indicates a more favorable interaction of the bound CO with Thr Ogamma in the beta-subunit heme pocket.
Collapse
Affiliation(s)
- M Karavitis
- Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Bolognesi M, Bordo D, Rizzi M, Tarricone C, Ascenzi P. Nonvertebrate hemoglobins: structural bases for reactivity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 68:29-68. [PMID: 9481144 DOI: 10.1016/s0079-6107(97)00017-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M Bolognesi
- Centro Biotecnologie Avanzate, IST, Università di Genova, Italy
| | | | | | | | | |
Collapse
|
37
|
Cupane A, Leone M, Militello V, Friedman FK, Koley AP, Vasquez GB, Brinigar WS, Karavitis M, Fronticelli C. Modification of alpha-chain or beta-chain heme pocket polarity by Val(E11) --> thr substitution has different effects on the steric, dynamic, and functional properties of human recombinant hemoglobin. Deoxy derivatives. J Biol Chem 1997; 272:26271-8. [PMID: 9334196 DOI: 10.1074/jbc.272.42.26271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dynamic and functional properties of mutant deoxyhemoglobins in which either the beta-globin Val67(E11) or the alpha-globin Val62(E11) is replaced by threonine have been investigated through the thermal evolution of the Soret absorption band in the temperature range 300 to 20 K and through the kinetics of CO rebinding after flash photolysis at room temperature. The conformational properties of the modified alpha chain and beta chain distal heme pockets were also studied through x-ray crystallography and molecular modeling. The data obtained with the various techniques consistently indicate that the polar isosteric mutation in the distal side of the alpha chain heme pocket has a larger effect on the investigated properties than the analogous mutation on the beta chain. We attribute the observed differences to the presence of a water molecule in the distal heme pocket of the modified alpha chains, interacting with the hydroxyl of the threonine side chain. This is indicated by molecular modeling which showed that the water molecule present in the alpha chain distal heme pocket can bridge by H bonding between Thr62(E11) and His58(E7) without introducing any unfavorable steric interactions. Consistent with the dynamic and functional data, the presence of a water molecule in the distal heme pocket of the modified beta chains is not observed by x-ray crystallography.
Collapse
Affiliation(s)
- A Cupane
- Istituto Nazionale di Fisica della Materia (INFM) and Istituto di Fisica dell'Università, 90123 Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kushkuley B, Stavrov SS. Theoretical study of the electrostatic and steric effects on the spectroscopic characteristics of the metal-ligand unit of heme proteins. 3. Vibrational properties of Fe(III)CN-. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1341:238-50. [PMID: 9357963 DOI: 10.1016/s0167-4838(97)00082-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The vibronic theory of chemical activation and quantum chemical calculations are applied to calculate the stretching vibrational frequency of cyanide, coordinated by the complex of ferric porphyrin with imidazole. The results show that the frequency of the stretching vibration of the cyanide strongly depends on its coordination geometry and is hardly affected by the electrostatic perturbations of reasonable magnitude. The comparison of these results with the experimental data on the cyanide complexes of different heme proteins and their models allows to elucidate the cyanide coordination geometry. The combined infrared and resonance Raman scattering experimental investigation of the cyanide and carbonyl complexes with the same heme protein is proposed to distinguish between the steric and electrostatic contributions to the heme-protein interaction.
Collapse
Affiliation(s)
- B Kushkuley
- Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
39
|
Anderton CL, Hester RE, Moore JN. A chemometric analysis of the resonance Raman spectra of mutant carbonmonoxy-myoglobins reveals the effects of polarity. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:107-20. [PMID: 9074621 DOI: 10.1016/s0167-4838(96)00194-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Resonance Raman spectra of 10 carbonmonoxy-myoglobins have been obtained, including sperm whale native, pig wild-type, and the mutants H64L, H64A, V68T, V68N, H64V/V68T, F43W, F46V, and L29F. This series was chosen in order to study the effect of ligand binding pocket polarity on the positions of the v(Fe-CO) and delta (Fe-C-O) bands. Spectra of both 12CO and 13CO isotopic forms have been obtained and a detailed analysis has facilitated the identification of both the ligand-specific bands and six underlying porphyrin bands which are insensitive to this isotopic substitution. Along with a band-fitting analysis of infrared spectra, these resonance Raman data provide a comprehensive evaluation of the vibrations of the FeCO unit. The band positions of the ligand-specific modes are found to depend on the structure of the ligand binding pocket, arising from the strength of back-bonding within the FeCO unit, and clear correlations exist between the v(Fe-CO), delta (Fe-C-O), and v(C-O) band positions which characterize this synergic bonding. The results are consistent with the proposal that the vibration band positions are determined primarily by the electrostatic potential at the ligand. Five discrete band sets are observed for this set of mutants, suggesting that 5 discrete conformations occur.
Collapse
|
40
|
Kushkuley B, Stavrov SS. Theoretical study of the electrostatic and steric effects on the spectroscopic characteristics of the metal-ligand unit of heme proteins. 2. C-O vibrational frequencies, 17O isotropic chemical shifts, and nuclear quadrupole coupling constants. Biophys J 1997; 72:899-912. [PMID: 9017215 PMCID: PMC1185613 DOI: 10.1016/s0006-3495(97)78724-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view.
Collapse
Affiliation(s)
- B Kushkuley
- Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
41
|
Kim S, Deinum G, Gardner MT, Marletta MA, Babcock GT. Distal Pocket Polarity in the Unusual Ligand Binding Site of Soluble Guanylate Cyclase: Implications for the Control of •NO Binding. J Am Chem Soc 1996. [DOI: 10.1021/ja961411b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seonyoung Kim
- Department of Chemistry and the Laser Laboratory Michigan State University East Lansing, Michigan 48824-1322 Department of Biological Chemistry School of Medicine, and Interdepartmental Program in Medicinal Chemistry College of Pharmacy, The University of Michigan Ann Arbor, Michigan 48109-1065
| | - Geurt Deinum
- Department of Chemistry and the Laser Laboratory Michigan State University East Lansing, Michigan 48824-1322 Department of Biological Chemistry School of Medicine, and Interdepartmental Program in Medicinal Chemistry College of Pharmacy, The University of Michigan Ann Arbor, Michigan 48109-1065
| | - Matthew T. Gardner
- Department of Chemistry and the Laser Laboratory Michigan State University East Lansing, Michigan 48824-1322 Department of Biological Chemistry School of Medicine, and Interdepartmental Program in Medicinal Chemistry College of Pharmacy, The University of Michigan Ann Arbor, Michigan 48109-1065
| | - Michael A. Marletta
- Department of Chemistry and the Laser Laboratory Michigan State University East Lansing, Michigan 48824-1322 Department of Biological Chemistry School of Medicine, and Interdepartmental Program in Medicinal Chemistry College of Pharmacy, The University of Michigan Ann Arbor, Michigan 48109-1065
| | - Gerald T. Babcock
- Department of Chemistry and the Laser Laboratory Michigan State University East Lansing, Michigan 48824-1322 Department of Biological Chemistry School of Medicine, and Interdepartmental Program in Medicinal Chemistry College of Pharmacy, The University of Michigan Ann Arbor, Michigan 48109-1065
| |
Collapse
|
42
|
Slebodnick C, Fettinger JC, Peterson HB, Ibers JA. Structural Characterization of Five Sterically Protected Porphyrins. J Am Chem Soc 1996. [DOI: 10.1021/ja953684x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carla Slebodnick
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - James C. Fettinger
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Heidi B. Peterson
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - James A. Ibers
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
43
|
Kushkuley B, Stavrov SS. Theoretical study of the distal-side steric and electrostatic effects on the vibrational characteristics of the FeCO unit of the carbonylheme proteins and their models. Biophys J 1996; 70:1214-29. [PMID: 8785279 PMCID: PMC1225049 DOI: 10.1016/s0006-3495(96)79680-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The vibronic theory of activation and quantum chemical intermediate neglect of differential overlap (INDO) calculations are used to study the activation of carbon monoxide (change of the C-O bond index and force field constant) by the imidazole complex with heme in dependence on the distortion of the porphyrin ring, geometry of the CO coordination, iron-carbon and iron-imidazole distances, iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that the main contribution to the CO activation stems from the change in the sigma donation from the 5 sigma CO orbital to iron, and back-bonding from the iron to the 2 pi orbital of CO. It follows from the results that none of the studied distortions can explain, by itself, the wide variation of the C-O vibrational frequency in the experimentally studied model compounds and heme proteins. To study the dependence of the properties of the FeCO unit on the presence of charged groups in the heme environment, the latter are simulated by the homogeneous electric field and point charges of different magnitude and location. The results show that charged groups can strongly affect the strength of the C-O bond and its vibrational frequency. It is found that the charges located on the distal side of the heme plane can affect the Fe-C and C-O bond indexes (and, consequently, the Fe-C and C-O vibrational frequencies), both in the same and in opposite directions, depending on their position. The theoretical results allow us to understand the peculiarities of the effect of charged groups on the properties of the FeCO unit both in heme proteins and in their model compounds.
Collapse
Affiliation(s)
- B Kushkuley
- Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
44
|
Syntheses and characterization of the ruthenium carbonyl porphyrin complexes Ru(TPP)(CO)(1-MeIm) and Ru(α-PocPivP)(CO)(1-MeIm). Inorganica Chim Acta 1996. [DOI: 10.1016/0020-1693(95)04892-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Gruenke LD, Konopka K, Cadieu M, Waskell L. The stoichiometry of the cytochrome P-450-catalyzed metabolism of methoxyflurane and benzphetamine in the presence and absence of cytochrome b5. J Biol Chem 1995; 270:24707-18. [PMID: 7559586 DOI: 10.1074/jbc.270.42.24707] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The complete stoichiometry of the metabolism of the cytochrome b5 (cyt b5)-requiring substrate, methoxyflurane, by purified cytochrome P-450 2B4 was compared to that of another substrate, benzphetamine, which does not require cyt b5 for its metabolism. Cyt b5 invariably improved the efficiency of product formation. That is, in the presence of cyt b5 a greater percentage of the reducing equivalents from NADPH were utilized to generate substrate metabolites, primarily at the expense of the side product, superoxide. With methoxyflurane, cyt b5 addition always resulted in an increased rate of product formation, while with benzphetamine the rate of product formation remained unchanged, increased or decreased. The apparently contradictory observations of increased reaction efficiency but decrease in total product formation for benzphetamine can be explained by a second effect of cyt b5. Under some experimental conditions cyt b5 inhibits total NADPH consumption. Whether stimulation, inhibition, or no change in product formation is observed in the presence of cyt b5 depends on the net effect of the stimulatory and inhibitory effects of cyt b5. When total NADPH consumption is inhibited by cyt b5, the rapidly metabolized, highly coupled (approximately equal to 50%) substrate, benzphetamine, undergoes a net decrease in metabolism not counterbalanced by the increase in the efficiency (2-20%) of the reaction. In contrast, in the presence of the slowly metabolized, poorly coupled (approximately equal to 0.5-3%) substrate, methoxyflurane, inhibition of total NADPH consumption by cyt b5 was never sufficient to overcome the stimulation of product formation due to an increase in efficiency of the reaction.
Collapse
Affiliation(s)
- L D Gruenke
- Department of Anesthesia, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
46
|
Dou Y, Admiraal SJ, Ikeda-Saito M, Krzywda S, Wilkinson AJ, Li T, Olson JS, Prince RC, Pickering IJ, George GN. Alteration of axial coordination by protein engineering in myoglobin. Bisimidazole ligation in the His64-->Val/Val68-->His double mutant. J Biol Chem 1995; 270:15993-6001. [PMID: 7608158 DOI: 10.1074/jbc.270.27.15993] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pig and human myoglobin have been engineered to reverse the positions of the distal histidine and valine (i.e. His64(E7)-->Val and Val68(E11)-->His). Spectroscopic and ligand binding properties have been measured for human and pig H64V/V68H myoglobin, and the structure of the pig H64V/V68H double mutant has been determined to 2.07-A resolution by x-ray crystallography. The crystal structure shows that the N epsilon of His68 is located 2.3 A away from the heme iron, resulting in the formation of a hexacoordinate species. The imidazole plane of His68 is tilted relative to the heme normal; moreover it is not parallel to that of His93, in agreement with our previous proposal (Qin, J., La Mar, G. N., Dou, Y., Admiraal, S. J., and Ikeda-Saito, M. (1994) J. Biol. Chem. 269, 1083-1090). At cryogenic temperatures, the heme iron is in a low spin state, which exhibits a highly anisotropic EPR spectrum (g1 = 3.34, g2 = 2.0, and g3 < 1), quite different from that of the imidazole complex of metmyoglobin. The mean iron-nitrogen distance is 2.01 A for the low spin ferric state as determined by x-ray spectroscopy. The ferrous form of H64V/V68H myoglobin shows an optical spectrum that is similar to that of b-type cytochromes and consistent with the hexacoordinate bisimidazole hemin structure determined by the x-ray crystallography. The double mutation lowers the ferric/ferrous couple midpoint potential from +54 mV of the wild-type protein to -128 mV. Ferrous H64V/V68H myoglobin binds CO and NO to form stable complexes, but its reaction with O2 results in a rapid autooxidation to the ferric species. All of these results demonstrate that the three-dimensional positions of His64 and Val68 in the wild-type myoglobin are as important as the chemical nature of the side chains in facilitating reversible O2 binding and inhibiting autooxidation.
Collapse
Affiliation(s)
- Y Dou
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bolduc JM, Dyer DH, Scott WG, Singer P, Sweet RM, Koshland DE, Stoddard BL. Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase. Science 1995; 268:1312-8. [PMID: 7761851 DOI: 10.1126/science.7761851] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Site-directed mutagenesis and Laue diffraction data to 2.5 A resolution were used to solve the structures of two sequential intermediates formed during the catalytic actions of isocitrate dehydrogenase. Both intermediates are distinct from the enzyme-substrate and enzyme-product complexes. Mutation of key catalytic residues changed the rate determining steps so that protein and substrate intermediates within the overall reaction pathway could be visualized.
Collapse
Affiliation(s)
- J M Bolduc
- Fred Hutchinson Cancer Research Center, Program in Structural Biology, Seattle, WA 98104, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Militello V, Cupane A, Leone M, Brinigar WS, Lu AL, Fronticelli C. Dynamic properties of some beta-chain mutant hemoglobins. Proteins 1995; 22:12-9. [PMID: 7675782 DOI: 10.1002/prot.340220103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The thermal behavior of the Soret band relative to the carbonmonoxy derivatives of some beta-chain mutant hemoglobins is studied in the temperature range 300-10 K and compared to that of wild-type carbonmonoxy hemoglobin. The band profile at various temperatures is modeled as a Voigt function that accounts for homogeneous broadening and for the coupling with high- and low-frequency vibrational modes, while inhomogeneous broadening is taken into account with a gaussian distribution of purely electronic transition frequencies. The various contributions to the over-all bandwidth are singled out with this analysis and their temperature dependence, in turn, gives information on structural and dynamic properties of the system studied. In the wild-type and mutant hemoglobins, the values of homogeneous bandwidth and of the coupling constants to high-frequency vibrational modes are not modified with respect to natural human hemoglobin, thus indicating that the local electronic and vibrational properties of the heme-CO complex are not altered by the recombinant procedures. On the contrary, differences in the protein dynamic behavior are observed. The most relevant are those relative to the "polar isosteric" beta Val-67(E11)-->Thr substitution, localized in the heme pocket, which results in decreased coupling with low-frequency modes and increased anharmonic motions. Mutations involving residue beta Lys-144(Hc1) at the C-terminal and residue beta Cys-112(G14) at the alpha 1 beta 1 interface have a smaller effect consisting in an increased coupling with low-frequency modes. Mutations at the beta-N-terminal and at the alpha 1 beta 2 interface have no effect on the dynamic properties of the same heme pocket.
Collapse
Affiliation(s)
- V Militello
- Istituto di Fisica and INFM, Università di Palermo, Italy
| | | | | | | | | | | |
Collapse
|