1
|
Mussagy CU, Ribeiro HF, Santos-Ebinuma VC, Schuur B, Pereira JFB. Rhodotorula sp.-based biorefinery: a source of valuable biomolecules. Appl Microbiol Biotechnol 2022; 106:7431-7447. [PMID: 36255447 DOI: 10.1007/s00253-022-12221-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
The development of an effective, realistic, and sustainable microbial biorefinery depends on several factors, including as one of the key aspects an adequate selection of microbial strain. The oleaginous red yeast Rhodotorula sp. has been studied as one powerful source for a plethora of high added-value biomolecules, such as carotenoids, lipids, and enzymes. Although known for over a century, the use of Rhodotorula sp. as resource for valuable products has not yet commercialized. Current interests for Rhodotorula sp. yeast have sparked from its high nutritional versatility and ability to convert agro-food residues into added-value biomolecules, two attractive characteristics for designing new biorefineries. In addition, as for other yeast-based bioprocesses, the overall process sustainability can be maximized by a proper integration with subsequent downstream processing stages, for example, by using eco-friendly solvents for the recovery of intracellular products from yeast biomass. This review intends to reflect on the current state of the art of microbial bioprocesses using Rhodotorula species. Therefore, we will provide an analysis of bioproduction performance with some insights regarding downstream separation steps for the extraction of high added-value biomolecules (specifically using efficient and sustainable platforms), providing information regarding the potential applications of biomolecules produced by Rhodotorula sp, as well as detailing the strengths and limitations of yeast-based biorefinery approaches. Novel genetic engineering technologies are further discussed, indicating some directions on their possible use for maximizing the potential of Rhodotorula sp. as cell factories. KEY POINTS: • Rhodotorula sp. are valuable source of high value-added compounds. • Potential of employing Rhodotorula sp. in a multiple product biorefinery. • Future perspectives in the biorefining of Rhodotorula sp. were discussed.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile.
| | - Helena F Ribeiro
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Valeria C Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Boelo Schuur
- Sustainable Process Technology Group, Process and Catalysis Engineering Cluster, Faculty of Science and Technology, University of Twente, PO Box 217, 7500, Enschede, AE, Netherlands
| | - Jorge F B Pereira
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal.
| |
Collapse
|
2
|
Waheed SO, Varghese A, Chaturvedi SS, Karabencheva-Christova TG, Christov CZ. How Human TET2 Enzyme Catalyzes the Oxidation of Unnatural Cytosine Modifications in Double-Stranded DNA. ACS Catal 2022; 12:5327-5344. [PMID: 36339349 PMCID: PMC9629818 DOI: 10.1021/acscatal.2c00024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine bases is strongly linked to gene expression, imprinting, aging, and carcinogenesis. The Ten-eleven translocation (TET) family of enzymes, which are Fe(II)/2-oxoglutarate (2OG)-dependent enzymes, employ Fe(IV)=O species to dealkylate the lesioned bases to an unmodified cytosine. Recently, it has been shown that the TET2 enzyme can catalyze promiscuously DNA substrates containing unnatural alkylated cytosine. Such unnatural substrates of TET can be used as direct probes for measuring the TET activity or capturing TET from cellular samples. Herein, we studied the catalytic mechanisms during the oxidation of the unnatural C5-position modifications (5-ethylcytosine (5eC), 5-vinylcytosine (5vC) and 5-ethynylcytosine (5eyC)) and the demethylation of N4-methylated lesions (4-methylcytosine (4mC) and 4,4-dimethylcytosine(4dmC)) of the cytosine base by the TET2 enzyme using molecular dynamics (MD) and combined quantum mechanics and molecular mechanics (QM/MM) computational approaches. The results reveal that the chemical nature of the alkylation of the double-stranded (ds) DNA substrates induces distinct changes in the interactions in the binding site, the second coordination sphere, and long-range correlated motions of the ES complexes. The rate-determining hydrogen atom transfer (HAT) is faster in N4-methyl substituent substrates than in the C5-alkylations. Importantly, the calculations show the preference of hydroxylation over desaturation in both 5eC and 5vC substrates. The studies elucidate the post-hydroxylation rearrangements of the hydroxylated intermediates of 5eyC and 5vC to ketene and 5-formylmethylcytosine (5fmC), respectively, and hydrolysis of hemiaminal intermediate of 4mC to formaldehyde and unmodified cytosine proceed exclusively in aqueous solution outside of the enzyme environment. Overall, the studies show that the chemical nature of the unnatural alkylated cytosine substrates exercises distinct effects on the binding interactions, reaction mechanism, and dynamics of TET2.
Collapse
Affiliation(s)
- Sodiq O. Waheed
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shobhit S. Chaturvedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
3
|
Wojdyla Z, Borowski T. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Chemistry 2022; 28:e202104106. [PMID: 34986268 DOI: 10.1002/chem.202104106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate dependent dioxygenases (ODDs) share a double stranded beta helix (DSBH) fold and utilise a common reactive intermediate, ferryl species, to catalyse oxidative transformations of substrates. Despite the structural similarities, ODDs accept a variety of substrates and facilitate a wide range of reactions, that is hydroxylations, desaturations, (oxa)cyclisations and ring rearrangements. In this review we present and discuss the factors contributing to the observed (regio)selectivities of ODDs. They span from inherent properties of the reactants, that is, substrate molecule and iron cofactor, to the interactions between the substrate and the enzyme's binding cavity; the latter can counterbalance the effect of the former. Based on results of both experimental and computational studies dedicated to ODDs, we also line out the properties of the reactants which promote reaction outcomes other than the "default" hydroxylation. It turns out that the reaction selectivity depends on a delicate balance of interactions between the components of the investigated system.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| |
Collapse
|
4
|
Liu H, Wang Y, Zhou X. Labeling and sequencing nucleic acid modifications using bio-orthogonal tools. RSC Chem Biol 2022; 3:994-1007. [PMID: 35975003 PMCID: PMC9347354 DOI: 10.1039/d2cb00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
The bio-orthogonal reaction is a type of reaction that can occur within a cell without interfering with the active components of the cell. Bio-orthogonal reaction techniques have been used to label and track the synthesis, metabolism, and interactions of distinct biomacromolecules in cells. Thus, it is a handy tool for analyzing biological macromolecules within cells. Nucleic acid modifications are widely distributed in DNA and RNA in cells and play a critical role in regulating physiological and pathological cellular activities. Utilizing bio-orthogonal tools to study modified bases is a critical and worthwhile research direction. The development of bio-orthogonal reactions focusing on nucleic acid modifications has enabled the mapping of nucleic acid modifications in DNA and RNA. This review discusses the recent advances in bio-orthogonal labeling and sequencing nucleic acid modifications in DNA and RNA. Labeling nucleic acid modifications using bio-orthogonal tools, then sequencing and imaging the labeled modifications in DNA and RNA.![]()
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yafen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Yang W, Han S, Zhang X, Wang Y, Zou G, Liu C, Xu M, Zhou X. Sequencing 5-Formyluracil in Genomic DNA at Single-Base Resolution. Anal Chem 2021; 93:15445-15451. [PMID: 34775754 DOI: 10.1021/acs.analchem.1c03339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Albeit with low content, 5-formyluracil has been an important modification in genomic DNA. 5-formyluracil was found to be widely distributed among living bodies. Due to the equilibrium of keto-enol form, 5-formyluracil could be base-paired with guanine, thus inducing mutations in DNA. The highly reactive aldehyde group of 5-formyluracil could also cross-link with proteins nearby, preventing gene replication and expression. In certain cancerous tissues, the content of 5-formyluracil was found to be higher than the normal tissues adjacent to the tumor, and 5-formyluracil might be an important potential epigenetic mark. Nevertheless, the lack of a higher resolution sequencing technique has hampered the studies of 5-formyluracil. We adjusted the base-pairing of 5-formyluracil during the PCR amplification by changing the pH. Hence, we adopted the Alkaline Modulated 5-formyluracil Sequencing (AMfU-Seq), a single-base resolution analysis method, to profile 5-formyluracil at the genome scale. We analyzed the distribution of 5-formyluracil in the human thyroid carcinoma cells using AMfU-Seq. This technique can be used in the future investigations of 5-formyluracil.
Collapse
Affiliation(s)
- Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Chaoxing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Muxin Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| |
Collapse
|
6
|
Ghanty U, DeNizio JE, Liu MY, Kohli RM. Exploiting Substrate Promiscuity To Develop Activity-Based Probes for Ten-Eleven Translocation Family Enzymes. J Am Chem Soc 2018; 140:17329-17332. [PMID: 30518204 PMCID: PMC6470038 DOI: 10.1021/jacs.8b04722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ten-eleven translocation (TET) enzymes catalyze repeated oxidations of 5-methylcytosine in genomic DNA. Because of the challenges of tracking reactivity within a complex DNA substrate, chemical tools to probe TET activity are limited, despite these enzyme's crucial role in epigenetic regulation. Here, building on precedents from related Fe(II)/α-ketoglutarate-dependent dioxygenases, we show that TET enzymes can promiscuously act upon cytosine bases with unnatural 5-position modifications. Oxidation of 5-vinylcytosine (vC) in DNA results in the predominant formation of a 5-formylmethylcytosine product that can be efficiently labeled to provide an end-point read-out for TET activity. The reaction with 5-ethynylcytosine (eyC), moreover, results in the formation of a high-energy ketene intermediate that can selectively trap any active TET isoform as a covalent enzyme-DNA complex, even in the complex milieu of a total cell lysate. Exploiting substrate promiscuity therefore offers a new and needed means to directly track TET activity in vitro or in vivo.
Collapse
Affiliation(s)
- Uday Ghanty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jamie E. DeNizio
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Monica Yun Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rahul M. Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Kal S, Que L. Dioxygen activation by nonheme iron enzymes with the 2-His-1-carboxylate facial triad that generate high-valent oxoiron oxidants. J Biol Inorg Chem 2017; 22:339-365. [PMID: 28074299 DOI: 10.1007/s00775-016-1431-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
Abstract
The 2-His-1-carboxylate facial triad is a widely used scaffold to bind the iron center in mononuclear nonheme iron enzymes for activating dioxygen in a variety of oxidative transformations of metabolic significance. Since the 1990s, over a hundred different iron enzymes have been identified to use this platform. This structural motif consists of two histidines and the side chain carboxylate of an aspartate or a glutamate arranged in a facial array that binds iron(II) at the active site. This triad occupies one face of an iron-centered octahedron and makes the opposite face available for the coordination of O2 and, in many cases, substrate, allowing the tailoring of the iron-dioxygen chemistry to carry out a plethora of diverse reactions. Activated dioxygen-derived species involved in the enzyme mechanisms include iron(III)-superoxo, iron(III)-peroxo, and high-valent iron(IV)-oxo intermediates. In this article, we highlight the major crystallographic, spectroscopic, and mechanistic advances of the past 20 years that have significantly enhanced our understanding of the mechanisms of O2 activation and the key roles played by iron-based oxidants.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Gong SS, Sun J, You YH, Chen JZ, Liu GD, Sun Q. Efficient Synthesis of 5-Carboxy-2'-Deoxypyrimidine Nucleoside 5'-Triphosphates. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:295-304. [PMID: 27104859 DOI: 10.1080/15257770.2016.1154971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An efficient P(V)-N activation method for the synthesis of 5-carboxy-2'-deoxyuridine and 5-carboxy-2'-deoxycytidine triphosphates directly from the corresponding phosphoropiperidate precursors has been developed.
Collapse
Affiliation(s)
- Shan-Shan Gong
- a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University , Nanchang , Jiangxi , PR China
| | - Jian Sun
- a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University , Nanchang , Jiangxi , PR China
| | - Yue-Hai You
- a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University , Nanchang , Jiangxi , PR China
| | - Ji-Zong Chen
- a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University , Nanchang , Jiangxi , PR China
| | - Guo-Dong Liu
- a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University , Nanchang , Jiangxi , PR China
| | - Qi Sun
- a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University , Nanchang , Jiangxi , PR China
| |
Collapse
|
9
|
Li W, Zhang T, Ding J. Molecular basis for the substrate specificity and catalytic mechanism of thymine-7-hydroxylase in fungi. Nucleic Acids Res 2015; 43:10026-38. [PMID: 26429971 PMCID: PMC4787775 DOI: 10.1093/nar/gkv979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
TET proteins play a vital role in active DNA demethylation in mammals and thus have important functions in many essential cellular processes. The chemistry for the conversion of 5mC to 5hmC, 5fC and 5caC catalysed by TET proteins is similar to that of T to 5hmU, 5fU and 5caU catalysed by thymine-7-hydroxylase (T7H) in the nucleotide anabolism in fungi. Here, we report the crystal structures and biochemical properties of Neurospora crassa T7H. T7H can bind the substrates only in the presence of cosubstrate, and binding of different substrates does not induce notable conformational changes. T7H exhibits comparable binding affinity for T and 5hmU, but 3-fold lower affinity for 5fU. Residues Phe292, Tyr217 and Arg190 play critical roles in substrate binding and catalysis, and the interactions of the C5 modification group of substrates with the cosubstrate and enzyme contribute to the slightly varied binding affinity and activity towards different substrates. After the catalysis, the products are released and new cosubstrate and substrate are reloaded to conduct the next oxidation reaction. Our data reveal the molecular basis for substrate specificity and catalytic mechanism of T7H and provide new insights into the molecular mechanism of substrate recognition and catalysis of TET proteins.
Collapse
Affiliation(s)
- Wenjing Li
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Tianlong Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jianping Ding
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China Collaborative Innovation Center for Genetics and Development, Fudan University, 2005 Song-Hu Road, Shanghai 200438, China
| |
Collapse
|
10
|
Kundu S. Co-operative intermolecular kinetics of 2-oxoglutarate dependent dioxygenases may be essential for system-level regulation of plant cell physiology. FRONTIERS IN PLANT SCIENCE 2015; 6:489. [PMID: 26236316 PMCID: PMC4502536 DOI: 10.3389/fpls.2015.00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/19/2015] [Indexed: 05/24/2023]
Abstract
Can the stimulus-driven synergistic association of 2-oxoglutarate dependent dioxygenases be influenced by the kinetic parameters of binding and catalysis?In this manuscript, I posit that these indices are necessary and specific for a particular stimulus, and are key determinants of a dynamic clustering that may function to mitigate the effects of this trigger. The protein(s)/sequence(s) that comprise this group are representative of all major kingdoms of life, and catalyze a generic hydroxylation, which is, in most cases accompanied by a specialized conversion of the substrate molecule. Iron is an essential co-factor for this transformation and the response to waning levels is systemic, and mandates the simultaneous participation of molecular sensors, transporters, and signal transducers. Here, I present a proof-of-concept model, that an evolving molecular network of 2OG-dependent enzymes can maintain iron homeostasis in the cytosol of root hair cells of members of the family Gramineae by actuating a non-reductive compensatory chelation by the phytosiderophores. Regression models of empirically available kinetic data (iron and alpha-ketoglutarate) were formulated, analyzed, and compared. The results, when viewed in context of the superfamily responding as a unit, suggest that members can indeed, work together to accomplish system-level function. This is achieved by the establishment of transient metabolic conduits, wherein the flux is dictated by kinetic compatibility of the participating enzymes. The approach adopted, i.e., predictive mathematical modeling, is integral to the hypothesis-driven acquisition of experimental data points and, in association with suitable visualization aids may be utilized for exploring complex plant biochemical systems.
Collapse
Affiliation(s)
- Siddhartha Kundu
- *Correspondence: Siddhartha Kundu, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India ;
| |
Collapse
|
11
|
Lu X, Zhao BS, He C. TET family proteins: oxidation activity, interacting molecules, and functions in diseases. Chem Rev 2015; 115:2225-39. [PMID: 25675246 DOI: 10.1021/cr500470n] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xingyu Lu
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Boxuan Simen Zhao
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Chuan He
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Hangasky JA, Gandhi H, Valliere MA, Ostrom NE, Knapp MJ. The rate-limiting step of O2 activation in the α-ketoglutarate oxygenase factor inhibiting hypoxia inducible factor. Biochemistry 2014; 53:8077-84. [PMID: 25423620 PMCID: PMC4283935 DOI: 10.1021/bi501246v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Factor
inhibiting HIF (FIH) is a cellular O2-sensing enzyme, which
hydroxylates the hypoxia inducible factor-1α. Previously reported
inverse solvent kinetic isotope effects indicated that FIH limits
its overall turnover through an O2 activation step (HangaskyJ. A., SabanE.,
and KnappM. J. (2013) 52, 1594−160223351038). Here we characterize the rate-limiting step for O2 activation by FIH using a suite of mechanistic probes on
the second order rate constant kcat/KM(O2). Steady-state kinetics showed
that the rate constant for O2 activation was slow (kcat/KM(O2)app = 3500 M–1 s–1) compared with other non-heme iron oxygenases,
and solvent viscosity assays further excluded diffusional encounter
with O2 from being rate limiting on kcat/KM(O2). Competitive
oxygen-18 kinetic isotope effect measurements (18kcat/KM(O2) = 1.0114(5)) indicated that the transition state for O2 activation resembled a cyclic peroxohemiketal, which precedes the
formation of the ferryl intermediate observed in related enzymes.
We interpret this data to indicate that FIH limits its overall activity
at the point of the nucleophilic attack of Fe-bound O2— on the C-2 carbon of αKG. Overall, these results
show that FIH follows the consensus mechanism for αKG oxygenases,
suggesting that FIH may be an ideal enzyme to directly access steps
involved in O2 activation among the broad family of αKG
oxygenases.
Collapse
Affiliation(s)
- John A Hangasky
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | | | | | | | |
Collapse
|
13
|
Hangasky JA, Ivison GT, Knapp MJ. Substrate positioning by Gln(239) stimulates turnover in factor inhibiting HIF, an αKG-dependent hydroxylase. Biochemistry 2014; 53:5750-8. [PMID: 25119663 PMCID: PMC4165446 DOI: 10.1021/bi500703s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonheme Fe(II)/αKG-dependent
oxygenases catalyze diverse
reactions, typically inserting an O atom from O2 into a
C–H bond. Although the key to their catalytic cycle is the
fact that binding and positioning of primary substrate precede O2 activation, the means by which substrate binding stimulates
turnover is not well understood. Factor Inhibiting HIF (FIH) is a
Fe(II)/αKG-dependent oxygenase that acts as a cellular oxygen
sensor in humans by hydroxylating the target residue Asn803, found in the C-terminal transactivation domain (CTAD) of hypoxia
inducible factor-1. FIH-Gln239 makes two hydrogen bonds
with CTAD-Asn803, positioning this target residue over
the Fe(II). We hypothesized the positioning of the side chain of CTAD-Asn803 by FIH-Gln239 was critical for stimulating O2 activation and subsequent substrate hydroxylation. The steady-state
characterization of five FIH-Gln239 variants (Ala, Asn,
Glu, His, and Leu) tested the role of hydrogen bonding potential and
sterics near the target residue. Each variant exhibited a 20–1200-fold
decrease in kcat and kcat/KM(CTAD), but no change
in KM(CTAD), indicating that the step
after CTAD binding was affected by point mutation. Uncoupled O2 activation was prominent in these variants, as shown by large
coupling ratios (C = [succinate]/[CTAD-OH] = 3–5)
for each of the FIH-Gln239 → X variants. The coupling
ratios decreased in D2O, indicating an isotope-sensitive
inactivation for variants, not observed in the wild type. The data
presented indicate that the proper positioning of CTAD-Asn803 by FIH-Gln239 is necessary to suppress uncoupled turnover
and to support substrate hydroxylation, suggesting substrate positioning
may be crucial for directing O2 reactivity within the broader
class of αKG hydroxylases.
Collapse
Affiliation(s)
- John A Hangasky
- Department of Chemistry, University of Massachusetts at Amherst , Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
14
|
Wang P, Williams RT, Guerrero CR, Ji D, Wang Y. Fragmentation of electrospray-produced deprotonated ions of oligodeoxyribonucleotides containing an alkylated or oxidized thymidine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1167-1176. [PMID: 24664806 PMCID: PMC4057974 DOI: 10.1007/s13361-014-0848-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O(2), N3, and O(4)) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3'-O3' bond, the incorporation of an alkyl group to the O(2) position and, to a much lesser extent, the O(4) position, but not the N3 position of thymine, led to facile cleavage of the C3'-O3' bond on the 3' side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation.
Collapse
Affiliation(s)
- Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
| | - Renee T. Williams
- Department of Chemistry, University of California, Riverside, California 92521-0403
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0343
| | - Candace R. Guerrero
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Debin Ji
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
15
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Ye Fu
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Chuan He
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| |
Collapse
|
16
|
Hernández-Almanza A, Cesar Montanez J, Aguilar-González MA, Martínez-Ávila C, Rodríguez-Herrera R, Aguilar CN. Rhodotorula glutinis as source of pigments and metabolites for food industry. FOOD BIOSCI 2014. [DOI: 10.1016/j.fbio.2013.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | | | | |
Collapse
|
18
|
Franchini DM, Schmitz KM, Petersen-Mahrt SK. 5-Methylcytosine DNA demethylation: more than losing a methyl group. Annu Rev Genet 2012; 46:419-41. [PMID: 22974304 DOI: 10.1146/annurev-genet-110711-155451] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Demethylation of 5-methylcytosine in DNA is integral to the maintenance of an intact epigenome. The balance between the presence or absence of 5-methylcytosine determines many physiological aspects of cell metabolism, with a turnover that can be measured in minutes to years. Biochemically, addition of the methyl group is shared among all living kingdoms and has been well characterized, whereas the removal or reversion of this mark seems diverse and much less understood. Here, we present a summary of how DNA demethylation can be initiated directly, utilizing the ten-eleven translocation (TET) family of proteins, activation-induced deaminase (AID), or other DNA modifying enzymes, or indirectly, via transcription, RNA metabolism, or DNA repair; how intermediates in those pathways are substrates of the DNA repair machinery; and how demethylation pathways are linked and possibly balanced, avoiding mutations.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milano, Italy.
| | | | | |
Collapse
|
19
|
Iyer LM, Abhiman S, de Souza RF, Aravind L. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase. Nucleic Acids Res 2010; 38:5261-79. [PMID: 20423905 PMCID: PMC2938197 DOI: 10.1093/nar/gkq265] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unlike classical 2-oxoglutarate and iron-dependent dioxygenases, which include several nucleic acid modifiers, the structurally similar jumonji-related dioxygenase superfamily was only known to catalyze peptide modifications. Using comparative genomics methods, we predict that a family of jumonji-related enzymes catalyzes wybutosine hydroxylation/peroxidation at position 37 of eukaryotic tRNAPhe. Identification of this enzyme raised questions regarding the emergence of protein- and nucleic acid-modifying activities among jumonji-related domains. We addressed these with a natural classification of DSBH domains and reconstructed the precursor of the dioxygenases as a sugar-binding domain. This precursor gave rise to sugar epimerases and metal-binding sugar isomerases. The sugar isomerase active site was exapted for catalysis of oxygenation, with a radiation of these enzymes in bacteria, probably due to impetus from the primary oxygenation event in Earth’s history. 2-Oxoglutarate-dependent versions appear to have further expanded with rise of the tricarboxylic acid cycle. We identify previously under-appreciated aspects of their active site and multiple independent innovations of 2-oxoacid-binding basic residues among these superfamilies. We show that double-stranded β-helix dioxygenases diversified extensively in biosynthesis and modification of halogenated siderophores, antibiotics, peptide secondary metabolites and glycine-rich collagen-like proteins in bacteria. Jumonji-related domains diversified into three distinct lineages in bacterial secondary metabolism systems and these were precursors of the three major clades of eukaryotic enzymes. The specificity of wybutosine hydroxylase/peroxidase probably relates to the structural similarity of the modified moiety to the ancestral amino acid substrate of this superfamily.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
20
|
Neidigh JW, Darwanto A, Williams AA, Wall NR, Sowers LC. Cloning and characterization of Rhodotorula glutinis thymine hydroxylase. Chem Res Toxicol 2009; 22:885-93. [PMID: 19341313 DOI: 10.1021/tx8004482] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymine hydroxylase (TH) is a member of the alpha-ketoglutarate-dependent nonheme iron dioxygenase family that includes a series of DNA repair proteins including alkB. Substantial interest in this family of enzymes derives from their capacity to modify DNA bases and precursors by oxidation. Previously, a sequence has been published for cloned Rhodotorula glutinis TH. However, the minimal reported activity of this enzyme, coupled with inconsistencies with previously published mass spectrometry data, compelled us to reexamine TH. The sequence reported here differs from the previously reported sequence at two amino acid positions and is consistent with previously reported mass spectrometry data. The cloned enzyme characterized in this report displayed substantial activity, indicating that the sequence differences are critical for activity. The substrate selectivity of TH against a series of pyrimidine analogues is consistent with that reported for the wild-type enzyme and, in part, explains the mode of selection of uracil analogues. A preliminary model of the active site has been constructed for the purposes of comparing TH with other members of this family. TH and alkB share in common the capacity to oxidize N-methyl groups. However, TH has the added capacity to oxidize the 5-methyl group of thymine, a property that is potentially important for enzymes that could act on DNA and modify DNA-protein interactions.
Collapse
Affiliation(s)
- Jonathan W Neidigh
- Department of Basic Sciences, Loma Linda University School of Medicine, Alumni Hall for Basic Science, Room 101, 11021 Campus Street, Loma Linda, California 92350, USA
| | | | | | | | | |
Collapse
|
21
|
Cliffe LJ, Kieft R, Southern T, Birkeland SR, Marshall M, Sweeney K, Sabatini R. JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Nucleic Acids Res 2009; 37:1452-62. [PMID: 19136460 PMCID: PMC2655668 DOI: 10.1093/nar/gkn1067] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic DNA of African trypanosomes contains a hypermodified thymidine residue termed base J (beta-d-glucosyl-HOMedU). This modified base is localized primarily to repetitive DNA, namely the telomeres, and is implicated in the regulation of antigenic variation. The base is synthesized in a two-step pathway. Initially, a thymidine residue in DNA is hydroxylated by a thymidine hydroxylase (TH). This intermediate (HOMedU) is then glucosylated to form base J. Two proteins involved in J synthesis, JBP1 (J binding protein 1) and JBP2, contain a putative TH domain related to the family of Fe(2+)/2-oxoglutarate-dependent hydroxylases. We have previously shown that mutations in the TH domain of JBP1 kill its ability to stimulate J synthesis. Here we show that mutation of key residues in the TH domain of JBP2 ablate its ability to induce de novo J synthesis. While the individual JBP1 null and JBP2 null trypanosomes have reduced J levels, the deletion of both JBP1 and JBP2 generates a cell line that completely lacks base J but still contains glucosyl-transferase activity. Reintroduction of JBP2 in the J-null trypanosome stimulates HOMedU formation and site-specific synthesis of base J. We conclude that JBP2 and JBP1 are the TH enzymes involved in J biosynthesis.
Collapse
Affiliation(s)
- Laura J Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Simmons JM, Müller TA, Hausinger RP. Fe(II)/alpha-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. Dalton Trans 2008:5132-42. [PMID: 18813363 PMCID: PMC2907160 DOI: 10.1039/b803512a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe(II)/alpha-ketoglutarate-dependent hydroxylases uniformly possess a double-stranded beta-helix fold with two conserved histidines and one carboxylate coordinating their mononuclear ferrous ions. Oxidative decomposition of the alpha-keto acid is proposed to generate a ferryl-oxo intermediate capable of hydroxylating unactivated carbon atoms in a myriad of substrates. This Perspective focuses on a subgroup of these enzymes that are involved in pyrimidine salvage, purine decomposition, nucleoside and nucleotide hydroxylation, DNA/RNA repair, and chromatin modification. The varied reaction schemes are presented, and selected structural and kinetic information is summarized.
Collapse
Affiliation(s)
- Jana M. Simmons
- Department of Biochemistry and Molecular Biology, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| | - Tina A. Müller
- Department of Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| | - Robert P. Hausinger
- Department of Biochemistry and Molecular Biology, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
- Department of Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
- Quantitative Biology Program, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| |
Collapse
|
23
|
The Biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 2008; 190:7966-74. [PMID: 18849428 DOI: 10.1128/jb.00985-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002 produces the dicyclic aromatic carotenoid synechoxanthin (chi,chi-caroten-18,18'-dioic acid) as a major pigment (>15% of total carotenoid) and when grown to stationary phase also accumulates small amounts of renierapurpurin (chi,chi-carotene) (J. E. Graham, J. T. J. Lecomte, and D. A. Bryant, J. Nat. Prod. 71:1647-1650, 2008). Two genes that were predicted to encode enzymes involved in the biosynthesis of synechoxanthin were identified by comparative genomics, and these genes were insertionally inactivated in Synechococcus sp. strain PCC 7002 to verify their function. The cruE gene (SYNPCC7002_A1248) encodes beta-carotene desaturase/methyltransferase, which converts beta-carotene to renierapurpurin. The cruH gene (SYNPCC7002_A2246) encodes an enzyme that is minimally responsible for the hydroxylation/oxidation of the C-18 and C-18' methyl groups of renierapurpurin. Based on observed and biochemically characterized intermediates, a complete pathway for synechoxanthin biosynthesis is proposed.
Collapse
|
24
|
Gorres KL, Edupuganti R, Krow GR, Raines RT. Conformational preferences of substrates for human prolyl 4-hydroxylase. Biochemistry 2008; 47:9447-55. [PMID: 18702512 PMCID: PMC2810141 DOI: 10.1021/bi8009373] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prolyl 4-hydroxylase (P4H) catalyzes the posttranslational hydroxylation of (2 S)-proline (Pro) residues in procollagen strands. The resulting (2 S,4 R)-4-hydroxyproline (Hyp) residues are essential for the folding, secretion, and stability of the collagen triple helix. Even though its product (Hyp) differs from its substrate (Pro) by only a single oxygen atom, no product inhibition has been observed for P4H. Here, we examine the basis for the binding and turnover of substrates by human P4H. Synthetic peptides containing (2 S,4 R)-4-fluoroproline (Flp), (2 S,4 S)-4-fluoroproline (flp), (2 S)-4-ketoproline (Kep), (2 S)-4-thiaproline (Thp), and 3,5-methanoproline (Mtp) were evaluated as substrates for P4H. Peptides containing Pro, flp, and Thp were found to be excellent substrates for P4H, forming Hyp, Kep, and (2 S,4 R)-thiaoxoproline, respectively. Thus, P4H is tolerant to some substitutions on C-4 of the pyrrolidine ring. In contrast, peptides containing Flp, Kep, or Mtp did not even bind to the active site of P4H. Each proline analogue that does bind to P4H is also a substrate, indicating that discrimination occurs at the level of binding rather than turnover. As the iron(IV)-oxo species that forms in the active site of P4H is highly reactive, P4H has an imperative for forming a snug complex with its substrate and appears to do so. Most notably, those proline analogues with a greater preference for a C (gamma)- endo pucker and cis peptide bond were the ones recognized by P4H. As Hyp has a strong preference for C (gamma)- exo pucker and trans peptide bond, P4H appears to discriminate against the conformation of proline residues in a manner that diminishes product inhibition during collagen biosynthesis.
Collapse
Affiliation(s)
- Kelly L. Gorres
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Ram Edupuganti
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Grant R. Krow
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
25
|
Maresca JA, Graham JE, Bryant DA. The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. PHOTOSYNTHESIS RESEARCH 2008; 97:121-40. [PMID: 18535920 DOI: 10.1007/s11120-008-9312-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/14/2008] [Indexed: 05/15/2023]
Abstract
Ongoing work has led to the identification of most of the biochemical steps in carotenoid biosynthesis in chlorophototrophic bacteria. In carotenogenesis, a relatively small number of modifications leads to a great diversity of carotenoid structures. This review examines the individual steps in the pathway, discusses how each contributes to structural diversity among carotenoids, and summarizes recent progress in elucidating the biosynthetic pathways for carotenoids in chlorophototrophs.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
26
|
Abstract
High-valent non-heme iron-oxo intermediates have been proposed for decades as the key intermediates in numerous biological oxidation reactions. In the past three years, the first direct characterization of such intermediates has been provided by studies of several alphaKG-dependent oxygenases that catalyze either hydroxylation or halogenation of their substrates. In each case, the Fe(IV)-oxo intermediate is implicated in cleavage of the aliphatic C-H bond to initiate hydroxylation or halogenation. The observation of non-heme Fe(IV)-oxo intermediates and Fe(II)-containing product(s) complexes with almost identical spectroscopic parameters in the reactions of two distantly related alphaKG-dependent hydroxylases suggests that members of this subfamily follow a conserved mechanism for substrate hydroxylation. In contrast, for the alphaKG-dependent non-heme iron halogenase, CytC3, two distinct Fe(IV) complexes form and decay together, suggesting that they are in rapid equilibrium. The existence of two distinct conformers of the Fe site may be the key factor accounting for the divergence of the halogenase reaction from the more usual hydroxylation pathway after C-H bond cleavage. Distinct transformations catalyzed by other mononuclear non-heme enzymes are likely also to involve initial C-H bond cleavage by Fe(IV)-oxo complexes, followed by diverging reactivities of the resulting Fe(III)-hydroxo/substrate radical intermediates.
Collapse
Affiliation(s)
- Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | | | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
27
|
Lee J, Zhao H. Mechanistic studies on the conversion of arylamines into arylnitro compounds by aminopyrrolnitrin oxygenase: identification of intermediates and kinetic studies. Angew Chem Int Ed Engl 2007; 45:622-5. [PMID: 16342311 DOI: 10.1002/anie.200502903] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jungkul Lee
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
28
|
Hoffart LM, Barr EW, Guyer RB, Bollinger JM, Krebs C. Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase. Proc Natl Acad Sci U S A 2006; 103:14738-43. [PMID: 17003127 PMCID: PMC1578498 DOI: 10.1073/pnas.0604005103] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Fe(II)- and alpha-ketoglutarate (alphaKG)-dependent dioxygenases use mononuclear nonheme iron centers to effect hydroxylation of their substrates and decarboxylation of their cosubstrate, alphaKG, to CO(2) and succinate. Our recent dissection of the mechanism of taurine:alphaKG dioxygenase (TauD), a member of this enzyme family, revealed that two transient complexes accumulate during catalysis in the presence of saturating substrates. The first complex contains the long-postulated C-H-cleaving Fe(IV)-oxo intermediate, J, and the second is an enzyme.product(s) complex. Here, we demonstrate the accumulation of two transient complexes in the reaction of a prolyl-4-hydroxylase (P4H), a functional homologue of human alphaKG-dependent dioxygenases with essential roles in collagen biosynthesis and oxygen sensing. The kinetic and spectroscopic properties of these two P4H complexes suggest that they are homologues of the TauD intermediates. Most notably, the first exhibits optical absorption and Mössbauer spectra similar to those of J and, like J, a large substrate deuterium kinetic isotope on its decay. The close correspondence of the accumulating states in the P4H and TauD reactions supports the hypothesis of a conserved mechanism for substrate hydroxylation by enzymes in this family.
Collapse
Affiliation(s)
| | - Eric W. Barr
- Departments of *Biochemistry and Molecular Biology and
| | | | - J. Martin Bollinger
- Departments of *Biochemistry and Molecular Biology and
- Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| | - Carsten Krebs
- Departments of *Biochemistry and Molecular Biology and
- Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
29
|
Affiliation(s)
- Perry A Frey
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, Wisconsin 53726, USA
| | | | | |
Collapse
|
30
|
Lee J, Zhao H. Mechanistic Studies on the Conversion of Arylamines into Arylnitro Compounds by Aminopyrrolnitrin Oxygenase: Identification of Intermediates and Kinetic Studies. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502903] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Delaney JC, Smeester L, Wong C, Frick LE, Taghizadeh K, Wishnok JS, Drennan CL, Samson LD, Essigmann JM. AlkB reverses etheno DNA lesions caused by lipid oxidation in vitro and in vivo. Nat Struct Mol Biol 2005; 12:855-60. [PMID: 16200073 DOI: 10.1038/nsmb996] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 08/31/2005] [Indexed: 02/08/2023]
Abstract
Oxidative stress converts lipids into DNA-damaging agents. The genomic lesions formed include 1,N(6)-ethenoadenine (epsilonA) and 3,N(4)-ethenocytosine (epsilonC), in which two carbons of the lipid alkyl chain form an exocyclic adduct with a DNA base. Here we show that the newly characterized enzyme AlkB repairs epsilonA and epsilonC. The potent toxicity and mutagenicity of epsilonA in Escherichia coli lacking AlkB was reversed in AlkB(+) cells; AlkB also mitigated the effects of epsilonC. In vitro, AlkB cleaved the lipid-derived alkyl chain from DNA, causing epsilonA and epsilonC to revert to adenine and cytosine, respectively. Biochemically, epsilonA is epoxidized at the etheno bond. The epoxide is putatively hydrolyzed to a glycol, and the glycol moiety is released as glyoxal. These reactions show a previously unrecognized chemical versatility of AlkB. In mammals, the corresponding AlkB homologs may defend against aging, cancer and oxidative stress.
Collapse
Affiliation(s)
- James C Delaney
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Smiley JA, Kundracik M, Landfried DA, Barnes VR, Axhemi AA. Genes of the thymidine salvage pathway: thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa. Biochim Biophys Acta Gen Subj 2005; 1723:256-64. [PMID: 15794921 DOI: 10.1016/j.bbagen.2005.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/24/2022]
Abstract
Genes for two enzymes in the thymidine salvage pathway, thymine-7-hydroxylase (THase; official name thymine dioxygenase) and iso-orotate decarboxylase (IDCase) have been isolated from fungal sources. THase was isolated from a Rhodotorula glutinis cDNA library using a degenerate oligonucleotide based on the published amino acid sequence. The coding sequence was transferred to an Escherichia coli expression system, from which recombinant THase activity was measured using 14C-labeled thymine. The THase sequence shows an almost complete avoidance of codons ending in A or T: 95.8% GC content is present in the third position of codons. A connection between this codon bias and the role of the thymidine salvage pathway in pyrimidine metabolism is proposed. The THase sequence is similar to Group I Fe+2-dependent, alphaKG-dependent dioxygenases. The R. glutinis THase gene was used to locate the probable THase genes in the sequenced genomes of Neurospora crassa and Aspergillus nidulans. The genes neighboring THase in these two genomes are similar to each other, and are similar to the mammalian 2-amino-3-carboxymuconate-6-semialdhyde decarboxylase (ACMSD), leading to their identification as IDCase genes. The N. crassa version was isolated by PCR of genomic DNA, and IDCase activity was measured in recombinant E. coli carrying this gene. A new family of decarboxylases, using similar substrates, is identified by virtue of the protein sequence similarity.
Collapse
Affiliation(s)
- Jeffrey A Smiley
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555, United States.
| | | | | | | | | |
Collapse
|
33
|
McNeill LA, Bethge L, Hewitson KS, Schofield CJ. A fluorescence-based assay for 2-oxoglutarate-dependent oxygenases. Anal Biochem 2005; 336:125-31. [PMID: 15582567 DOI: 10.1016/j.ab.2004.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Indexed: 11/26/2022]
Abstract
A widely used generic assay for 2-oxoglutarate-dependent oxygenases relies upon monitoring the release of 14CO2 from labeled [1-14C]-2-oxoglutarate. We report an alternative assay in which depletion of 2-oxoglutarate is monitored by its postincubation derivatization with o-phenylenediamine to form a product amenable to fluorescence analysis. The utility of the procedure is demonstrated by assays with hypoxia-inducible factor hydroxylases where it was shown to give results similar to those reported with the radioactive assay, but it is more efficient and readily adapted to a multiwell format. The process should be amenable to the assay of other 2-oxoglutarate-consuming enzymes and to the discovery of inhibitors.
Collapse
Affiliation(s)
- L A McNeill
- Chemistry Research Laboratory, The Department of Chemistry and the Oxford Centre for Molecular Sciences, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | |
Collapse
|
34
|
Abstract
Methylating agents modify DNA at many different sites, thereby producing lethal and mutagenic lesions. To remove all the main harmful base lesions, at least three types of DNA-repair activities can be used, each of which involves a different reaction mechanism. These activities include DNA-glycosylases, DNA-methyltransferases and the recently characterized DNA-dioxygenases. The Escherichia coli AlkB dioxygenase and the two human homologues, ABH2 and ABH3, represent a novel mechanism of DNA repair. They use iron-oxo intermediates to oxidize stable methylated bases in DNA and directly revert them to the unmodified form.
Collapse
Affiliation(s)
- Barbara Sedgwick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
35
|
Costas M, Mehn MP, Jensen MP, Que L. Dioxygen Activation at Mononuclear Nonheme Iron Active Sites: Enzymes, Models, and Intermediates. Chem Rev 2004; 104:939-86. [PMID: 14871146 DOI: 10.1021/cr020628n] [Citation(s) in RCA: 2039] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miquel Costas
- Departament de Quimica, Universitat de Girona, 17071, Girona, Spain
| | | | | | | |
Collapse
|
36
|
Turnbull JJ, Nakajima JI, Welford RWD, Yamazaki M, Saito K, Schofield CJ. Mechanistic Studies on Three 2-Oxoglutarate-dependent Oxygenases of Flavonoid Biosynthesis. J Biol Chem 2004; 279:1206-16. [PMID: 14570878 DOI: 10.1074/jbc.m309228200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthocyanidin synthase (ANS), flavonol synthase (FLS), and flavanone 3beta-hydroxylase (FHT) are involved in the biosynthesis of flavonoids in plants and are all members of the family of 2-oxoglutarate- and ferrous iron-dependent oxygenases. ANS, FLS, and FHT are closely related by sequence and catalyze oxidation of the flavonoid "C ring"; they have been shown to have overlapping substrate and product selectivities. In the initial steps of catalysis, 2-oxoglutarate and dioxygen are thought to react at the ferrous iron center producing succinate, carbon dioxide, and a reactive ferryl intermediate, the latter of which can then affect oxidation of the flavonoid substrate. Here we describe work on ANS, FLS, and FHT utilizing several different substrates carried out in 18O2/16OH2, 16O2/18OH2, and 18O2/18OH2 atmospheres. In the 18O2/16OH2 atmosphere close to complete incorporation of a single 18O label was observed in the dihydroflavonol products (e.g. (2R,3R)-trans-dihydrokaempferol) from incubations of flavanones (e.g. (2S)naringenin) with FHT, ANS, and FLS. This and other evidence supports the intermediacy of a reactive oxidizing species, the oxygen of which does not exchange with that of water. In the case of products formed by oxidation of flavonoid substrates with a C-3 hydroxyl group (e.g. (2R,3R)-trans-dihydroquercetin), the results imply that oxygen exchange can occur at a stage subsequent to initial oxidation of the C-ring, probably via an enzyme-bound C-3 ketone/3,3-gem-diol intermediate.
Collapse
Affiliation(s)
- Jonathan J Turnbull
- The Dyson Perrins Laboratory and The Oxford Centre for Molecular Sciences, South Parks Road, Oxford OX1 3QY, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Mukherji M, Schofield CJ, Wierzbicki AS, Jansen GA, Wanders RJA, Lloyd MD. The chemical biology of branched-chain lipid metabolism. Prog Lipid Res 2003; 42:359-76. [PMID: 12814641 DOI: 10.1016/s0163-7827(03)00016-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian metabolism of some lipids including 3-methyl and 2-methyl branched-chain fatty acids occurs within peroxisomes. Such lipids, including phytanic and pristanic acids, are commonly found within the human diet and may be derived from chlorophyll in plant extracts. Due to the presence of a methyl group at its beta-carbon, the well-characterised beta-oxidation pathway cannot degrade phytanic acid. Instead its alpha-methylene group is oxidatively excised to give pristanic acid, which can be metabolised by the beta-oxidation pathway. Many defects in the alpha-oxidation pathway result in an accumulation of phytanic acid, leading to neurological distress, deterioration of vision, deafness, loss of coordination and eventual death. Details of the alpha-oxidation pathway have only recently been elucidated, and considerable progress has been made in understanding the detailed enzymology of one of the oxidative steps within this pathway. This review summarises these recent advances and considers the roles and likely mechanisms of the enzymes within the alpha-oxidation pathway.
Collapse
Affiliation(s)
- Mridul Mukherji
- The Oxford Centre for Molecular Sciences & The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, UK
| | | | | | | | | | | |
Collapse
|
38
|
Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci U S A 2002; 99:16660-5. [PMID: 12486230 PMCID: PMC139200 DOI: 10.1073/pnas.262589799] [Citation(s) in RCA: 297] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli AlkB protein protects against the cytotoxicity of methylating agents by repair of the DNA lesions 1-methyladenine and 3-methylcytosine, which are generated in single-stranded stretches of DNA. AlkB is an alpha-ketoglutarate- and Fe(II)-dependent dioxygenase that oxidizes the relevant methyl groups and releases them as formaldehyde. Here, we identify two human AlkB homologs, ABH2 and ABH3, by sequence and fold similarity, functional assays, and complementation of the E. coli alkB mutant phenotype. The levels of their mRNAs do not appear to correlate with cell proliferation but tissue distributions are different. Both enzymes remove 1-methyladenine and 3-methylcytosine from methylated polynucleotides in an alpha-ketoglutarate-dependent reaction, and act by direct damage reversal with the regeneration of the unsubstituted bases. AlkB, ABH2, and ABH3 can also repair 1-ethyladenine residues in DNA with the release of acetaldehyde.
Collapse
Affiliation(s)
- Tod Duncan
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Sedgwick B, Lindahl T. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 2002; 21:8886-94. [PMID: 12483506 DOI: 10.1038/sj.onc.1205998] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Barbara Sedgwick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
40
|
Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 2002; 419:174-8. [PMID: 12226667 DOI: 10.1038/nature00908] [Citation(s) in RCA: 572] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methylating agents generate cytotoxic and mutagenic DNA damage. Cells use 3-methyladenine-DNA glycosylases to excise some methylated bases from DNA, and suicidal O(6)-methylguanine-DNA methyltransferases to transfer alkyl groups from other lesions onto a cysteine residue. Here we report that the highly conserved AlkB protein repairs DNA alkylation damage by means of an unprecedented mechanism. AlkB has no detectable nuclease, DNA glycosylase or methyltransferase activity; however, Escherichia coli alkB mutants are defective in processing methylation damage generated in single-stranded DNA. Theoretical protein fold recognition had suggested that AlkB resembles the Fe(ii)- and alpha-ketoglutarate-dependent dioxygenases, which use iron-oxo intermediates to oxidize chemically inert compounds. We show here that purified AlkB repairs the cytotoxic lesions 1-methyladenine and 3-methylcytosine in single- and double-stranded DNA in a reaction that is dependent on oxygen, alpha-ketoglutarate and Fe(ii). The AlkB enzyme couples oxidative decarboxylation of alpha-ketoglutarate to the hydroxylation of these methylated bases in DNA, resulting in direct reversion to the unmodified base and the release of formaldehyde.
Collapse
Affiliation(s)
- Sarah C Trewick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | |
Collapse
|
41
|
Abstract
5-Formyluracil is a major oxidation product of thymine, formed in DNA in yields comparable to that of 8-oxo-7,8-dihydroguanine by exposure to gamma-irradiation. Whereas the repair pathways for removal and the biological effects of persisting 8-oxo-7,8-dihydroguanine are much elucidated, much less attention has been paid to the cellular implications of 5-formyluracil in DNA. Here we review the present state of knowledge in this important area within research on oxidative DNA damage.
Collapse
Affiliation(s)
- S Bjelland
- School of Science and Technology, Stavanger University College, Ullandhaug, P.O. Box 2557, N-4091 Stavanger, Oslo, Norway.
| | | | | | | |
Collapse
|
42
|
Wu M, Moon HS, Pirskanen A, Myllyharju J, Kivirikko KI, Begley TP. Mechanistic studies on prolyl-4-hydroxylase: the vitamin C requiring uncoupled oxidation. Bioorg Med Chem Lett 2000; 10:1511-4. [PMID: 10915038 DOI: 10.1016/s0960-894x(00)00224-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A deuterated substrate for the human type I prolyl-4-hydroxylase was synthesized and its V/K deuterium isotope effect was determined to be 3.4 +/- 0.2. This isotope effect was attributed to the uncoupled oxidation. A dehydroproline containing tetrapeptide was also found to stimulate the uncoupled oxidation.
Collapse
Affiliation(s)
- M Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wu M, Moon HS, Begley TP, Myllyharju J, Kivirikko KI. Mechanism-Based Inactivation of the Human Prolyl-4-hydroxylase by 5-Oxaproline-Containing Peptides: Evidence for a Prolyl Radical Intermediate. J Am Chem Soc 1999. [DOI: 10.1021/ja981193h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Smiley JA, Angelot JM, Cannon RC, Marshall EM, Asch DK. Radioactivity-based and spectrophotometric assays for isoorotate decarboxylase: identification of the thymidine salvage pathway in lower eukaryotes. Anal Biochem 1999; 266:85-92. [PMID: 9887216 DOI: 10.1006/abio.1998.2935] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A few organisms, notably some fungi, have the ability to metabolize thymidine to uracil, thus conserving the pyrimidine ring for subsequent metabolic use. Neurospora crassa possesses this pathway, termed the thymidine salvage pathway, and can utilize thymidine as a total pyrimidine source. The enzyme isoorotate decarboxylase (IDCase) completes this pathway via the enzymatic removal of the carboxylate from isoorotate to yield uracil. We describe in this communication two assays for IDCase and their application to determine activity levels, kinetic constants, and inhibitory properties. One uses [carboxy-14C]isoorotate from which the enzymatically generated 14CO2 is collected and quantitated. The second assay utilizes the spectral difference between 2-thioisoorotate and its decarboxylated product, 2-thiouracil. The spectral difference is greatest at 334 nm, out of the range of absorbance of total protein and thus usable for a spectrophotometric assay. The assays are sufficiently sensitive and accurate to be used in the measurement of Km values for both substrates. IDCase activity is found to be significantly higher in N. crassa strains lacking uc-1, a putative regulatory gene, suggesting a degree of metabolic control over this pathway. 5-Nitrouracil is found to inhibit IDCase with an estimated Ki value that is too low for accurate determination.
Collapse
Affiliation(s)
- J A Smiley
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, 44555,
| | | | | | | | | |
Collapse
|
45
|
Borst P, van Leeuwen F. beta-D-glucosyl-hydroxymethyluracil, a novel base in African trypanosomes and other Kinetoplastida. Mol Biochem Parasitol 1997; 90:1-8. [PMID: 9497027 DOI: 10.1016/s0166-6851(97)00170-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel base, beta-D-glucosyl-hydroxymethyluracil or J for short, was recently discovered in DNA of bloodstream form Trypanosoma brucei. The base is predominantly found in the hexameric repeat arrays of chromosome telomeres and in adjacent repetitive sub-telomeric DNA, and it is made by modification of specific thymines in DNA. J is present in inactive telomeric variant surface glycoprotein (VSG) genes, but not in active ones, suggesting a link between the presence of J and repression of the telomeric expression sites for VSG genes. The presence of J in DNA is specific for bloodstream form trypanosomes, as J is absent in insect form (procyclic) T. brucei. In addition to African trypanosomes, J has been found in DNA from other Kinetoplastida that do not undergo antigenic variation, such as Leishmania and Crithidia. The biological function of J remains to be deciphered.
Collapse
Affiliation(s)
- P Borst
- The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam
| | | |
Collapse
|
46
|
|
47
|
Que L, Ho RYN. Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chem Rev 1996; 96:2607-2624. [PMID: 11848838 DOI: 10.1021/cr960039f] [Citation(s) in RCA: 535] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
48
|
Berthod T, Pétillot Y, Guy A, Cadet J, Molko D. Synthesis of Oligonucleotides Containing 5-Carboxy-2‘-deoxyuridine at Defined Sites. J Org Chem 1996. [DOI: 10.1021/jo960614f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Berthod
- Département de Recherche Fondamentale sur la Matière Condensée/SCIB, Lésions des Acides Nucléiques, CEA/Grenoble, 17, Rue des Martyrs, 38054 Grenoble Cedex 9, France, and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale (CEA/CNRS), 41 Rue des Martyrs, 38027 Grenoble Cedex 1, France
| | - Y. Pétillot
- Département de Recherche Fondamentale sur la Matière Condensée/SCIB, Lésions des Acides Nucléiques, CEA/Grenoble, 17, Rue des Martyrs, 38054 Grenoble Cedex 9, France, and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale (CEA/CNRS), 41 Rue des Martyrs, 38027 Grenoble Cedex 1, France
| | - A. Guy
- Département de Recherche Fondamentale sur la Matière Condensée/SCIB, Lésions des Acides Nucléiques, CEA/Grenoble, 17, Rue des Martyrs, 38054 Grenoble Cedex 9, France, and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale (CEA/CNRS), 41 Rue des Martyrs, 38027 Grenoble Cedex 1, France
| | - J. Cadet
- Département de Recherche Fondamentale sur la Matière Condensée/SCIB, Lésions des Acides Nucléiques, CEA/Grenoble, 17, Rue des Martyrs, 38054 Grenoble Cedex 9, France, and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale (CEA/CNRS), 41 Rue des Martyrs, 38027 Grenoble Cedex 1, France
| | - D. Molko
- Département de Recherche Fondamentale sur la Matière Condensée/SCIB, Lésions des Acides Nucléiques, CEA/Grenoble, 17, Rue des Martyrs, 38054 Grenoble Cedex 9, France, and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale (CEA/CNRS), 41 Rue des Martyrs, 38027 Grenoble Cedex 1, France
| |
Collapse
|
49
|
Abstract
▪ Abstract Dioxygenases are nonheme iron-containing enzymes important in the biosynthesis of plant signaling compounds such as abscisic acid, gibberellins, and ethylene and also of secondary metabolites, notably flavonoids and alkaloids. Plant dioxygenases fall into two classes: lipoxygenases and 2-oxoacid-dependent dioxygenases. The latter catalyze hydroxylation, epoxidation, and desaturation reactions; some enzymes catalyze more than one type of reaction in successive steps in a biosynthetic pathway. This review highlights recent discoveries on both enzyme groups, particularly in relation to gibberellin biosynthesis, in vivo activity of 1-aminocyclopropane-1-carboxylate oxidase, and molecular structure/function relationships. Similarities between the roles of monooxygenases and dioxygenases are also discussed.
Collapse
Affiliation(s)
- Andy G. Prescott
- Department of Applied Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom, Department of Agricultural Botany, Plant Science Laboratories, The University of Reading, Reading RG6 2AS, United Kingdom
| | | |
Collapse
|
50
|
Solomon EI, Pavel EG, Loeb KE, Campochiaro C. Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes. Coord Chem Rev 1995. [DOI: 10.1016/0010-8545(95)01150-n] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|