1
|
Ononye O, Surendran S, Battapadi T, VanderVere-Carozza P, Howald OK, Kantartzis-Petrides A, Jordan MR, Ainembabazi D, Wold MS, Turchi JJ, Balakrishnan L. Biochemical Impact of p300-Mediated Acetylation of Replication Protein A: Implications for DNA Metabolic Pathway Choice. J Biol Chem 2025:110250. [PMID: 40389081 DOI: 10.1016/j.jbc.2025.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025] Open
Abstract
Replication Protein A (RPA), a single-stranded DNA (ssDNA) binding protein, is vital for various aspects of genome maintenance such as replication, recombination, repair and cell cycle checkpoint activation. Binding of RPA to ssDNA protects it from degradation by cellular nucleases, prevents secondary structure formation and suppresses illegitimate recombination. In our current study, we identified the acetyltransferase p300 to be capable of acetylating the 70kDa subunit of RPA in vitro and within cells. The acetylation status of RPA changes throughout the cell cycle, increasing during the S and G2/M phases, and after UV-induced damage. Furthermore, we were able to specifically identify RPA directly associated with the replication fork during the S phase and UV damage to be acetylated. Based on these observations, we evaluated the impact of lysine acetylation on the biochemical properties of RPA. Investigation of binding properties of RPA revealed that acetylation of RPA increased its binding affinity to ssDNA compared to unmodified RPA. The improvement in binding efficiency was a function of DNA length with the greatest increases observed on shorter length ssDNA oligomers. Enzymatic assays further revealed that upon acetylation RPA governs the switch between the short and long flap pathway for Okazaki fragment processing. Our findings demonstrate that p300-dependent, site-specific acetylation enhances RPA's DNA binding properties, potentially regulating its function during various DNA transactions.
Collapse
Affiliation(s)
- Onyekachi Ononye
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202
| | - Sneha Surendran
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202
| | - Tripthi Battapadi
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202
| | | | - Olivia K Howald
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202
| | | | - Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Diana Ainembabazi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Marc S Wold
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202,.
| |
Collapse
|
2
|
Norris JL, Rogers LO, Young G, Pytko KG, Dannenberg RL, Perreault S, Kaushik V, Antony E, Hedglin M. PCNA encircling primer/template junctions is eliminated by exchange of RPA for Rad51: Implications for the interplay between human DNA damage tolerance pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645792. [PMID: 40236028 PMCID: PMC11996364 DOI: 10.1101/2025.03.27.645792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The DNA genome is constantly exposed to agents, such as ultraviolet radiation (UVR), that can alter or eliminate its coding properties through covalent modifications of the template bases. Many of these damaging modifications (i.e., lesions) persist into S-phase of the cell cycle where they may stall the canonical DNA replication machinery. In humans, these stalling events are circumvented by one of at least three interconnected DNA damage tolerance (DDT) pathways; translesion DNA synthesis (TLS), Template Switching (TS), and Homology-dependent Recombination (HDR). Currently, the functional interplay between these pathways is unclear, leaving wide gaps in our fundamental understanding of human DDT. To gain insights, we focus on the activation mechanisms of the DDT pathways. PCNA sliding clamps encircling primer/template (P/T) junctions of stalled replication sites are central to the activation of both TLS and TS whereas exchange of RPA for Rad51 filaments on the single strand DNA (ssDNA) sequences of stalled replication sites is central to HDR activation. Utilizing direct, ensemble FRET approaches developed by our lab, we independently monitor and directly compare PCNA occupancy and RPA/Rad51 exchange at P/T junctions under a variety of conditions that mimic in vivo scenarios. Collectively, the results reveal that assembly of stable Rad51 filaments at P/T junctions via RPA/Rad51 exchange causes complete and irreversible unloading of the resident PCNA, both in the presence and absence of an abundant PCNA-binding protein complex. Further investigations decipher the mechanism of RPA/Rad51 exchange-dependent unloading of PCNA. Collectively, these studies provide critical insights into the interplay between human DDT pathways and direction for future studies.
Collapse
|
3
|
Träger LK, Degen M, Pereira J, Durairaj J, Teixeira R, Hiller S, Huguenin-Dezot N. Structural basis for cooperative ssDNA binding by bacteriophage protein filament P12. Nucleic Acids Res 2025; 53:gkaf132. [PMID: 40052821 PMCID: PMC11886824 DOI: 10.1093/nar/gkaf132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
Protein-primed DNA replication is a unique mechanism, bioorthogonal to other known DNA replication modes. It relies on specialised single-stranded DNA (ssDNA)-binding proteins (SSBs) to stabilise ssDNA intermediates by unknown mechanisms. Here, we present the structural and biochemical characterisation of P12, an SSB from bacteriophage PRD1. High-resolution cryo-electron microscopy reveals that P12 forms a unique, cooperative filament along ssDNA. Each protomer binds the phosphate backbone of 6 nucleotides in a sequence-independent manner, protecting ssDNA from nuclease degradation. Filament formation is driven by an intrinsically disordered C-terminal tail, facilitating cooperative binding. We identify residues essential for ssDNA interaction and link the ssDNA-binding ability of P12 to toxicity in host cells. Bioinformatic analyses place the P12 fold as a distinct branch within the OB-like fold family. This work offers new insights into protein-primed DNA replication and lays a foundation for biotechnological applications.
Collapse
Affiliation(s)
- Lena K Träger
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Morris Degen
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Joana Pereira
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Basel, Elisabethenstrasse 43, 4051 Basel, Switzerland
| | - Janani Durairaj
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Basel, Elisabethenstrasse 43, 4051 Basel, Switzerland
| | | | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Nicolas Huguenin-Dezot
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Archasappawat S, Al-Musawi F, Liu P, Lee E, Hwang CI. Familial Pancreatic Cancer Research: Bridging Gaps in Basic Research and Clinical Application. Biomolecules 2024; 14:1381. [PMID: 39595558 PMCID: PMC11592027 DOI: 10.3390/biom14111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Familial pancreatic cancer (FPC) represents a significant yet underexplored area in pancreatic cancer research. Basic research efforts are notably limited, and when present, they are predominantly centered on the BRCA1 and BRCA2 mutations due to the scarcity of other genetic variants associated with FPC, leading to a limited understanding of the broader genetic landscape of FPC. This review examines the current state of FPC research, focusing on the molecular mechanisms driving pancreatic ductal adenocarcinoma (PDAC) progression. It highlights the role of homologous recombination (HR) and its therapeutic exploitation via synthetic lethality with PARP inhibitors in BRCA1/2-deficient tumors. The review discusses various pre-clinical models of FPC, including conventional two-dimensional (2D) cell lines, patient-derived organoids (PDOs), patient-derived xenografts (PDXs), and genetically engineered mouse models (GEMMs), as well as new advancements in FPC research.
Collapse
Affiliation(s)
- Suyakarn Archasappawat
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | - Fatimah Al-Musawi
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - EunJung Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - Chang-il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Chadda R, Kaushik V, Ahmad IM, Deveryshetty J, Holehouse A, Sigurdsson S, Biswas G, Levy Y, Bothner B, Cooley R, Mehl R, Dastvan R, Origanti S, Antony E. Partial wrapping of single-stranded DNA by replication protein A and modulation through phosphorylation. Nucleic Acids Res 2024; 52:11626-11640. [PMID: 38989614 PMCID: PMC11514480 DOI: 10.1093/nar/gkae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Single-stranded DNA (ssDNA) intermediates which emerge during DNA metabolic processes are shielded by replication protein A (RPA). RPA binds to ssDNA and acts as a gatekeeper to direct the ssDNA towards downstream DNA metabolic pathways with exceptional specificity. Understanding the mechanistic basis for such RPA-dependent functional specificity requires knowledge of the structural conformation of ssDNA when RPA-bound. Previous studies suggested a stretching of ssDNA by RPA. However, structural investigations uncovered a partial wrapping of ssDNA around RPA. Therefore, to reconcile the models, in this study, we measured the end-to-end distances of free ssDNA and RPA-ssDNA complexes using single-molecule FRET and double electron-electron resonance (DEER) spectroscopy and found only a small systematic increase in the end-to-end distance of ssDNA upon RPA binding. This change does not align with a linear stretching model but rather supports partial wrapping of ssDNA around the contour of DNA binding domains of RPA. Furthermore, we reveal how phosphorylation at the key Ser-384 site in the RPA70 subunit provides access to the wrapped ssDNA by remodeling the DNA-binding domains. These findings establish a precise structural model for RPA-bound ssDNA, providing valuable insights into how RPA facilitates the remodeling of ssDNA for subsequent downstream processes.
Collapse
Affiliation(s)
- Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Iram Munir Ahmad
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Gargi Biswas
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Reza Dastvan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
6
|
Norris JL, Hedglin M. Direct, ensemble FRET approaches to monitor transient state kinetics of human DNA polymerase δ holoenzyme assembly and initiation of DNA synthesis. Methods Enzymol 2024; 705:271-309. [PMID: 39389667 PMCID: PMC11998599 DOI: 10.1016/bs.mie.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In humans, DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand replication, the initiation of leading strand DNA replication as well as most of the major DNA damage repair pathways. In each of these contexts, pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process that involves the PCNA clamp loader, replication factor C and, depending on the DNA synthesis pathway, the major single strand DNA-binding protein complex, replication protein A (RPA). In a recent report from our laboratory, we designed and utilized direct, ensemble Förster Resonance Energy Transfer approaches to monitor the transient state kinetics of pol δ holoenzyme assembly and initiation of DNA synthesis on P/T junctions engaged by RPA. In this chapter, we detail the original approaches and discuss adaptations that can be utilized to monitor fast kinetic reactions in the millisecond (ms) timescale. All approaches described in this chapter utilize a commercially-available fluorescence spectrophotometer, can be readily evolved for alternative DNA polymerases and P/T DNA substrates, and permit incorporation of protein posttranslational modifications, accessory factors, DNA covalent modifications, accessory factors, enzymes, etc. Hence, these approaches are widely accessible and broadly applicable for characterizing DNA polymerase holoenzyme assembly and initiation of DNA synthesis during any PCNA-dependent DNA synthesis pathway.
Collapse
Affiliation(s)
- Jessica L Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
7
|
Jordan MR, Oakley GG, Mayo LD, Balakrishnan L, Turchi JJ. The effect of replication protein A inhibition and post-translational modification on ATR kinase signaling. Sci Rep 2024; 14:19791. [PMID: 39187637 PMCID: PMC11347632 DOI: 10.1038/s41598-024-70589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair to ensure genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1. We have developed chemical RPA inhibitors (RPAi) that block RPA-ssDNA interactions (RPA-DBi) and RPA protein-protein interactions (RPA-PPIi); both activities are required for ATR activation. Here, we biochemically reconstitute the ATR kinase signaling pathway and demonstrate that RPA-DBi and RPA-PPIi abrogate ATR-dependent phosphorylation of target proteins with selectivity advantages over active site ATR inhibitors. We demonstrate that RPA post-translational modifications (PTMs) impact ATR kinase activation but do not alter sensitivity to RPAi. Specifically, phosphorylation of RPA32 and TopBP1 stimulate, while RPA70 acetylation does not affect ATR phosphorylation of target proteins. Collectively, this work reveals the RPAi mechanism of action to inhibit ATR signaling that can be regulated by RPA PTMs and offers insight into the anti-cancer activity of ATR pathway-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 64202, USA
| | - Greg G Oakley
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 64202, USA.
- NERx Biosciences Inc., Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Jordan MR, Oakley GG, Mayo LD, Balakrishnan L, Turchi JJ. The Effect of Replication Protein A Inhibition and Post-Translational Modification on ATR Kinase Signaling. RESEARCH SQUARE 2024:rs.3.rs-4570504. [PMID: 39108493 PMCID: PMC11302688 DOI: 10.21203/rs.3.rs-4570504/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair towards ensuring genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1. We have developed chemical RPA inhibitors (RPAi) that block RPA-ssDNA interactions, termed RPA-DBi, and RPA protein-protein interactions, termed RPA-PPIi; both activities are required for ATR activation. Here, we employ a biochemically reconstituted ATR kinase signaling pathway and demonstrate that both RPA-DBi and RPA-PPIi abrogate ATR-dependent phosphorylation of downstream target proteins. We demonstrate that RPA post-translational modifications (PTMs) impact ATR kinase activation but do not alter sensitivity to RPAi. Specifically, phosphorylation of RPA32 and TopBP1 stimulate, while RPA70 acetylation has no effect on ATR phosphorylation of target proteins. Collectively, this work reveals the RPAi mechanism of action to inhibit ATR signaling that can be regulated by RPA PTMs and offers insight into the anti-cancer activity of ATR pathway targeted cancer therapeutics.
Collapse
|
9
|
Norris J, Rogers L, Pytko K, Dannenberg R, Perreault S, Kaushik V, Kuppa S, Antony E, Hedglin M. Replication protein A dynamically re-organizes on primer/template junctions to permit DNA polymerase δ holoenzyme assembly and initiation of DNA synthesis. Nucleic Acids Res 2024; 52:7650-7664. [PMID: 38842913 PMCID: PMC11260492 DOI: 10.1093/nar/gkae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, PCNA, carry out DNA synthesis during lagging strand replication, initiation of leading strand replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process involving the major single strand DNA (ssDNA)-binding protein complex, RPA, the processivity sliding clamp loader, RFC, PCNA and pol δ. During this process, the interactions of RPA, RFC and pol δ with a P/T junction all significantly overlap. A burning issue that has yet to be resolved is how these overlapping interactions are accommodated during this process. To address this, we design and utilize novel, ensemble FRET assays that continuously monitor the interactions of RPA, RFC, PCNA and pol δ with DNA as pol δ holoenzymes are assembled and initiate DNA synthesis. Results from the present study reveal that RPA remains engaged with P/T junctions throughout this process and the RPA•DNA complexes dynamically re-organize to allow successive binding of RFC and pol δ. These results have broad implications as they highlight and distinguish the functional consequences of dynamic RPA•DNA interactions in RPA-dependent DNA metabolic processes.
Collapse
Affiliation(s)
- Jessica L Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey O Rogers
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Samuel Perreault
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vikas Kaushik
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis, MO 63104, USA
| | - Sahiti Kuppa
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis, MO 63104, USA
| | - Edwin Antony
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis, MO 63104, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Hanswillemenke A, Hofacker DT, Sorgenfrei M, Fruhner C, Franz-Wachtel M, Schwarzer D, Maček B, Stafforst T. Profiling the interactome of oligonucleotide drugs by proximity biotinylation. Nat Chem Biol 2024; 20:555-565. [PMID: 38233583 PMCID: PMC11062921 DOI: 10.1038/s41589-023-01530-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Drug-ID is a novel method applying proximity biotinylation to identify drug-protein interactions inside living cells. The covalent conjugation of a drug with a biotin ligase enables targeted biotinylation and identification of the drug-bound proteome. We established Drug-ID for two small-molecule drugs, JQ1 and SAHA, and applied it for RNaseH-recruiting antisense oligonucleotides (ASOs). Drug-ID profiles the drug-protein interactome de novo under native conditions, directly inside living cells and at pharmacologically effective drug concentrations. It requires minimal amounts of cell material and might even become applicable in vivo. We studied the dose-dependent aggregation of ASOs and the effect of different wing chemistries (locked nucleic acid, 2'-methoxyethyl and 2'-Fluoro) and ASO lengths on the interactome. Finally, we demonstrate the detection of stress-induced, intracellular interactome changes (actinomycin D treatment) with an in situ variant of the approach, which uses a recombinant biotin ligase and does not require genetic manipulation of the target cell.
Collapse
Affiliation(s)
| | | | - Michèle Sorgenfrei
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Boris Maček
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 Microsatellite Sequences by Human DNA Polymerase δ Holoenzymes Is Dependent on dNTP and RPA Levels. Biochemistry 2024; 63:969-983. [PMID: 38623046 PMCID: PMC12121678 DOI: 10.1021/acs.biochem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.
Collapse
Affiliation(s)
- Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kristin A Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
12
|
Chadda R, Kaushik V, Ahmad IM, Deveryshetty J, Holehouse A, Sigurdsson ST, Bothner B, Dastvan R, Origanti S, Antony E. Wrapping of single-stranded DNA by Replication Protein A and modulation through phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587234. [PMID: 38585962 PMCID: PMC10996701 DOI: 10.1101/2024.03.28.587234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Single-stranded DNA (ssDNA) intermediates, which emerge during DNA metabolic processes are shielded by Replication Protein A (RPA). RPA binds to ssDNA and acts as a gatekeeper, directing the ssDNA towards downstream DNA metabolic pathways with exceptional specificity. Understanding the mechanistic basis for such RPA-dependent specificity requires a comprehensive understanding of the structural conformation of ssDNA when bound to RPA. Previous studies suggested a stretching of ssDNA by RPA. However, structural investigations uncovered a partial wrapping of ssDNA around RPA. Therefore, to reconcile the models, in this study, we measured the end-to-end distances of free ssDNA and RPA-ssDNA complexes using single-molecule FRET and Double Electron-Electron Resonance (DEER) spectroscopy and found only a small systematic increase in the end-to-end distance of ssDNA upon RPA binding. This change does not align with a linear stretching model but rather supports partial wrapping of ssDNA around the contour of DNA binding domains of RPA. Furthermore, we reveal how phosphorylation at the key Ser-384 site in the RPA70 subunit provides access to the wrapped ssDNA by remodeling the DNA-binding domains. These findings establish a precise structural model for RPA-bound ssDNA, providing valuable insights into how RPA facilitates the remodeling of ssDNA for subsequent downstream processes.
Collapse
Affiliation(s)
- Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Iram Munir Ahmad
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Alex Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Snorri Th.d Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Reza Dastvan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| |
Collapse
|
13
|
Zhao Y, Liu W, Li Y, Ma J, Liu T, Cui H, Deng Y, Liao X, Wang Z. Human Bocavirus 1 NP1 acts as an ssDNA-binding protein to help AAV2 DNA replication and cooperates with RPA to regulate AAV2 capsid expression. J Virol 2024; 98:e0151523. [PMID: 38323812 PMCID: PMC10949510 DOI: 10.1128/jvi.01515-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024] Open
Abstract
Adeno-associated virus (AAV) requires co-infection with helper virus for efficient replication. We previously reported that Human Bocavirus 1 (HBoV1) genes, including NP1, NS2, and BocaSR, were critical for AAV2 replication. Here, we first demonstrate the essential roles of the NP1 protein in AAV2 DNA replication and protein expression. We show that NP1 binds to single-strand DNA (ssDNA) at least 30 nucleotides (nt) in length in a sequence-independent manner. Furthermore, NP1 colocalized with the BrdU-labeled AAV2 DNA replication center, and the loss of the ssDNA-binding ability of NP1 by site-directed mutation completely abolished AAV2 DNA replication. We used affinity-tagged NP1 protein to identify host cellular proteins associated with NP1 in cells cotransfected with the HBoV1 helper genes and AAV2 duplex genome. Of the identified proteins, we demonstrate that NP1 directly binds to the DBD-F domain of the RPA70 subunit with a high affinity through the residues 101-121. By reconstituting the heterotrimer protein RPA in vitro using gel filtration, we demonstrate that NP1 physically associates with RPA to form a heterologous complex characterized by typical fast-on/fast-off kinetics. Following a dominant-negative strategy, we found that NP1-RPA complex mainly plays a role in expressing AAV2 capsid protein by enhancing the transcriptional activity of the p40 promoter. Our study revealed a novel mechanism by which HBoV1 NP1 protein supports AAV2 DNA replication and capsid protein expression through its ssDNA-binding ability and direct interaction with RPA, respectively.IMPORTANCERecombinant adeno-associated virus (rAAV) vectors have been extensively used in clinical gene therapy strategies. However, a limitation of these gene therapy strategies is the efficient production of the required vectors, as AAV alone is replication-deficient in the host cells. HBoV1 provides the simplest AAV2 helper genes consisting of NP1, NS2, and BocaSR. An important question regarding the helper function of HBoV1 is whether it provides any direct function that supports AAV2 DNA replication and protein expression. Also of interest is how HBoV1 interplays with potential host factors to constitute a permissive environment for AAV2 replication. Our studies revealed that the multifunctional protein NP1 plays important roles in AAV2 DNA replication via its sequence-independent ssDNA-binding ability and in regulating AAV2 capsid protein expression by physically interacting with host protein RPA. Our findings present theoretical guidance for the future application of the HBoV1 helper genes in the rAAV vector production.
Collapse
Affiliation(s)
- Yanqun Zhao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Wei Liu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Yanjie Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Jing Ma
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Ting Liu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Huichan Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Yongheng Deng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| |
Collapse
|
14
|
Pangeni S, Biswas G, Kaushik V, Kuppa S, Yang O, Lin CT, Mishra G, Levy Y, Antony E, Ha T. Rapid Long-distance Migration of RPA on Single Stranded DNA Occurs Through Intersegmental Transfer Utilizing Multivalent Interactions. J Mol Biol 2024; 436:168491. [PMID: 38360091 PMCID: PMC10949852 DOI: 10.1016/j.jmb.2024.168491] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Replication Protein A (RPA) is asingle strandedDNA(ssDNA)binding protein that coordinates diverse DNA metabolic processes including DNA replication, repair, and recombination. RPA is a heterotrimeric protein with six functional oligosaccharide/oligonucleotide (OB) domains and flexible linkers. Flexibility enables RPA to adopt multiple configurations andis thought to modulate its function. Here, usingsingle moleculeconfocal fluorescencemicroscopy combinedwith optical tweezers and coarse-grained molecular dynamics simulations, we investigated the diffusional migration of single RPA molecules on ssDNA undertension.The diffusioncoefficientDis the highest (20,000nucleotides2/s) at 3pNtension and in 100 mMKCl and markedly decreases whentensionor salt concentrationincreases. We attribute the tension effect to intersegmental transfer which is hindered by DNA stretching and the salt effect to an increase in binding site size and interaction energy of RPA-ssDNA. Our integrative study allowed us to estimate the size and frequency of intersegmental transfer events that occur through transient bridging of distant sites on DNA by multiple binding sites on RPA. Interestingly, deletion of RPA trimeric core still allowed significant ssDNA binding although the reduced contact area made RPA 15-fold more mobile. Finally, we characterized the effect of RPA crowding on RPA migration. These findings reveal how the high affinity RPA-ssDNA interactions are remodeled to yield access, a key step in several DNA metabolic processes.
Collapse
Affiliation(s)
- Sushil Pangeni
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Gargi Biswas
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chang-Ting Lin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Garima Mishra
- Department of Physics, Ashoka University, Sonepet, Haryana, India
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, USA.
| | - Taekjip Ha
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Yang SF, Nelson CB, Wells JK, Fernando M, Lu R, Allen JAM, Malloy L, Lamm N, Murphy VJ, Mackay JP, Deans AJ, Cesare AJ, Sobinoff AP, Pickett HA. ZNF827 is a single-stranded DNA binding protein that regulates the ATR-CHK1 DNA damage response pathway. Nat Commun 2024; 15:2210. [PMID: 38472229 PMCID: PMC10933417 DOI: 10.1038/s41467-024-46578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.
Collapse
Affiliation(s)
- Sile F Yang
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Jadon K Wells
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Madushan Fernando
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Lisa Malloy
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Noa Lamm
- Nuclear Dynamics Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
16
|
Kaushik V, Chadda R, Kuppa S, Pokhrel N, Vayyeti A, Grady S, Arnatt C, Antony E. Fluorescent human RPA to track assembly dynamics on DNA. Methods 2024; 223:95-105. [PMID: 38301751 PMCID: PMC10923064 DOI: 10.1016/j.ymeth.2024.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.
Collapse
Affiliation(s)
- Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Abhinav Vayyeti
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Scott Grady
- Department of Chemistry, St. Louis University, St. Louis, MO 63103, USA
| | - Chris Arnatt
- Department of Chemistry, St. Louis University, St. Louis, MO 63103, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
17
|
Kaushik V, Chadda R, Kuppa S, Pokhrel N, Vayyeti A, Grady S, Arnatt C, Antony E. Fluorescent human RPA to track assembly dynamics on DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568455. [PMID: 38045304 PMCID: PMC10690285 DOI: 10.1101/2023.11.23.568455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described.
Collapse
Affiliation(s)
- Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Abhinav Vayyeti
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Scott Grady
- Department of Chemistry, St. Louis University, St. Louis, MO 63103
| | - Chris Arnatt
- Department of Chemistry, St. Louis University, St. Louis, MO 63103
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
18
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 microsatellite sequences by human DNA polymerase δ holoenzymes is dependent on dNTP and RPA levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566133. [PMID: 37986888 PMCID: PMC10659299 DOI: 10.1101/2023.11.07.566133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Difficult-to-Replicate Sequences (DiToRS) are natural impediments in the human genome that inhibit DNA replication under endogenous replication. Some of the most widely-studied DiToRS are A+T-rich, high "flexibility regions," including long stretches of perfect [AT/TA] microsatellite repeats that have the potential to collapse into hairpin structures when in single-stranded DNA (ssDNA) form and are sites of recurrent structural variation and double-stranded DNA (dsDNA) breaks. Currently, it is unclear how these flexibility regions impact DNA replication, greatly limiting our fundamental understanding of human genome stability. To investigate replication through flexibility regions, we utilized FRET to characterize the effects of the major ssDNA-binding complex, RPA, on the structure of perfect [AT/TA]25 microsatellite repeats and also re-constituted human lagging strand replication to quantitatively characterize initial encounters of pol δ holoenzymes with A+T-rich DNA template sequences. The results indicate that [AT/TA]25 sequences adopt hairpin structures that are unwound by RPA and pol δ holoenzymes support dNTP incorporation through the [AT/TA]25 sequences as well as an A+T-rich, non-structure forming sequence. Furthermore, the extent of dNTP incorporation is dependent on the sequence of the DNA template and the concentration of dNTPs. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on the concentration of dNTPs, whereas the effects of RPA on the replication of an A+T-rich, non-structure forming sequence are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how flexibility regions contribute to genome instability.
Collapse
Affiliation(s)
- Kara G. Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kristin A. Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
19
|
Wu Y, Fu W, Zang N, Zhou C. Structural characterization of human RPA70N association with DNA damage response proteins. eLife 2023; 12:e81639. [PMID: 37668474 PMCID: PMC10479964 DOI: 10.7554/elife.81639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
The heterotrimeric Replication protein A (RPA) is the ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein and participates in nearly all aspects of DNA metabolism, especially DNA damage response. The N-terminal OB domain of the RPA70 subunit (RPA70N) is a major protein-protein interaction element for RPA and binds to more than 20 partner proteins. Previous crystallography studies of RPA70N with p53, DNA2 and PrimPol fragments revealed that RPA70N binds to amphipathic peptides that mimic ssDNA. NMR chemical-shift studies also provided valuable information on the interaction of RPA70N residues with target sequences. However, it is still unclear how RPA70N recognizes and distinguishes such a diverse group of target proteins. Here, we present high-resolution crystal structures of RPA70N in complex with peptides from eight DNA damage response proteins. The structures show that, in addition to the ssDNA mimicry mode of interaction, RPA70N employs multiple ways to bind its partners. Our results advance the mechanistic understanding of RPA70N-mediated recruitment of DNA damage response proteins.
Collapse
Affiliation(s)
- Yeyao Wu
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Wangmi Fu
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Ning Zang
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Chun Zhou
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| |
Collapse
|
20
|
Boldinova EO, Makarova AV. Regulation of Human DNA Primase-Polymerase PrimPol. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1139-1155. [PMID: 37758313 DOI: 10.1134/s0006297923080084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alena V Makarova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
21
|
Barbour AT, Wuttke DS. RPA-like single-stranded DNA-binding protein complexes including CST serve as specialized processivity factors for polymerases. Curr Opin Struct Biol 2023; 81:102611. [PMID: 37245465 PMCID: PMC10524659 DOI: 10.1016/j.sbi.2023.102611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Telomeres and other single-stranded regions of the genome require specialized management to maintain stability and for proper progression of DNA metabolism pathways. Human Replication Protein A and CTC1-STN1-TEN1 are structurally similar heterotrimeric protein complexes that have essential ssDNA-binding roles in DNA replication, repair, and telomeres. Yeast and ciliates have related ssDNA-binding proteins with strikingly conserved structural features to these human heterotrimeric protein complexes. Recent breakthrough structures have extended our understanding of these commonalities by illuminating a common mechanism used by these proteins to act as processivity factors for their partner polymerases through their ability to manage ssDNA.
Collapse
Affiliation(s)
- Alexandra T Barbour
- Department of Biochemistry, University of Colorado Bouder, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Bouder, Boulder, CO 80309, USA.
| |
Collapse
|
22
|
Hoitsma NM, Norris J, Khoang TH, Kaushik V, Chadda R, Antony E, Hedglin M, Freudenthal BD. Mechanistic insight into AP-endonuclease 1 cleavage of abasic sites at stalled replication fork mimics. Nucleic Acids Res 2023; 51:6738-6753. [PMID: 37264933 PMCID: PMC10359615 DOI: 10.1093/nar/gkad481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023] Open
Abstract
Many types of damage, including abasic sites, block replicative DNA polymerases causing replication fork uncoupling and generating ssDNA. AP-Endonuclease 1 (APE1) has been shown to cleave abasic sites in ssDNA. Importantly, APE1 cleavage of ssDNA at a replication fork has significant biological implications by generating double strand breaks that could collapse the replication fork. Despite this, the molecular basis and efficiency of APE1 processing abasic sites at replication forks remain elusive. Here, we investigate APE1 cleavage of abasic substrates that mimic APE1 interactions at stalled replication forks or gaps. We determine that APE1 has robust activity on these substrates, like dsDNA, and report rates for cleavage and product release. X-ray structures visualize the APE1 active site, highlighting an analogous mechanism is used to process ssDNA substrates as canonical APE1 activity on dsDNA. However, mutational analysis reveals R177 to be uniquely critical for the APE1 ssDNA cleavage mechanism. Additionally, we investigate the interplay between APE1 and Replication Protein A (RPA), the major ssDNA-binding protein at replication forks, revealing that APE1 can cleave an abasic site while RPA is still bound to the DNA. Together, this work provides molecular level insights into abasic ssDNA processing by APE1, including the presence of RPA.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thu H Khoang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
23
|
Ding J, Li X, Shen J, Zhao Y, Zhong S, Lai L, Niu H, Qi Z. ssDNA accessibility of Rad51 is regulated by orchestrating multiple RPA dynamics. Nat Commun 2023; 14:3864. [PMID: 37391417 PMCID: PMC10313831 DOI: 10.1038/s41467-023-39579-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
The eukaryotic single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA) plays a crucial role in various DNA metabolic pathways, including DNA replication and repair, by dynamically associating with ssDNA. While the binding of a single RPA molecule to ssDNA has been thoroughly studied, the accessibility of ssDNA is largely governed by the bimolecular behavior of RPA, the biophysical nature of which remains unclear. In this study, we develop a three-step low-complexity ssDNA Curtains method, which, when combined with biochemical assays and a Markov chain model in non-equilibrium physics, allow us to decipher the dynamics of multiple RPA binding to long ssDNA. Interestingly, our results suggest that Rad52, the mediator protein, can modulate the ssDNA accessibility of Rad51, which is nucleated on RPA coated ssDNA through dynamic ssDNA exposure between neighboring RPA molecules. We find that this process is controlled by the shifting between the protection mode and action mode of RPA ssDNA binding, where tighter RPA spacing and lower ssDNA accessibility are favored under RPA protection mode, which can be facilitated by the Rfa2 WH domain and inhibited by Rad52 RPA interaction.
Collapse
Affiliation(s)
- Jiawei Ding
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiangting Li
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | - Jiangchuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Yiling Zhao
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuchen Zhong
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA.
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
24
|
Cerqueira PG, Meyer D, Zhang L, Mallory B, Liu J, Hua Fu BX, Zhang X, Heyer WD. Saccharomyces cerevisiae DNA polymerase IV overcomes Rad51 inhibition of DNA polymerase δ in Rad52-mediated direct-repeat recombination. Nucleic Acids Res 2023; 51:5547-5564. [PMID: 37070185 PMCID: PMC10287921 DOI: 10.1093/nar/gkad281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Saccharomyces cerevisiae DNA polymerase IV (Pol4) like its homolog, human DNA polymerase lambda (Polλ), is involved in Non-Homologous End-Joining and Microhomology-Mediated Repair. Using genetic analysis, we identified an additional role of Pol4 also in homology-directed DNA repair, specifically in Rad52-dependent/Rad51-independent direct-repeat recombination. Our results reveal that the requirement for Pol4 in repeat recombination was suppressed by the absence of Rad51, suggesting that Pol4 counteracts the Rad51 inhibition of Rad52-mediated repeat recombination events. Using purified proteins and model substrates, we reconstituted in vitro reactions emulating DNA synthesis during direct-repeat recombination and show that Rad51 directly inhibits Polδ DNA synthesis. Interestingly, although Pol4 was not capable of performing extensive DNA synthesis by itself, it aided Polδ in overcoming the DNA synthesis inhibition by Rad51. In addition, Pol4 dependency and stimulation of Polδ DNA synthesis in the presence of Rad51 occurred in reactions containing Rad52 and RPA where DNA strand-annealing was necessary. Mechanistically, yeast Pol4 displaces Rad51 from ssDNA independent of DNA synthesis. Together our in vitro and in vivo data suggest that Rad51 suppresses Rad52-dependent/Rad51-independent direct-repeat recombination by binding to the primer-template and that Rad51 removal by Pol4 is critical for strand-annealing dependent DNA synthesis.
Collapse
Affiliation(s)
- Paula G Cerqueira
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Damon Meyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Lilin Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Benjamin Mallory
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Becky Xu Hua Fu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Xiaoping Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| |
Collapse
|
25
|
Zade NH, Khattar E. POT1 mutations cause differential effects on telomere length leading to opposing disease phenotypes. J Cell Physiol 2023; 238:1237-1255. [PMID: 37183325 DOI: 10.1002/jcp.31034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
The protection of telomere protein (POT1) is a telomere-binding protein and is an essential component of the six-membered shelterin complex, which is associated with the telomeres. POT1 directly binds to the 3' single-stranded telomeric overhang and prevents the activation of DNA damage response at telomeres thus preventing the telomere-telomere fusions and genomic instability. POT1 also plays a pivotal role in maintaining telomere length by regulating telomerase-mediated telomere elongation. Mutations in POT1 proteins result in three different telomere phenotypes, which include long, short, or aberrant telomere length. Long telomeres predispose individuals to cancer, while short or aberrant telomere phenotypes result in pro-aging diseases referred to as telomeropathies. Here, we review the function of POT1 proteins in telomere length hemostasis and how the spectrum of mutations reported in POT1 can be segregated toward developing very distinct disease phenotypes of cancer and telomeropathies.
Collapse
Affiliation(s)
- Nikita Harish Zade
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
26
|
Greenwood SN, Kulkarni RS, Mikhail M, Weiser BP. Replication Protein A Enhances Kinetics of Uracil DNA Glycosylase on ssDNA and Across DNA Junctions: Explored with a DNA Repair Complex Produced with SpyCatcher/SpyTag Ligation. Chembiochem 2023; 24:e202200765. [PMID: 36883884 PMCID: PMC10267839 DOI: 10.1002/cbic.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/09/2023]
Abstract
DNA repair proteins participate in extensive protein-protein interactions that promote the formation of DNA repair complexes. To understand how complex formation affects protein function during base excision repair, we used SpyCatcher/SpyTag ligation to produce a covalent complex between human uracil DNA glycosylase (UNG2) and replication protein A (RPA). Our covalent "RPA-Spy-UNG2" complex could identify and excise uracil bases in duplex areas next to ssDNA-dsDNA junctions slightly faster than the wild-type proteins, but this was highly dependent on DNA structure, as the turnover of the RPA-Spy-UNG2 complex slowed at DNA junctions where RPA tightly engaged long ssDNA sections. Conversely, the enzymes preferred uracil sites in ssDNA where RPA strongly enhanced uracil excision by UNG2 regardless of ssDNA length. Finally, RPA was found to promote UNG2 excision of two uracil sites positioned across a ssDNA-dsDNA junction, and dissociation of UNG2 from RPA enhanced this process. Our approach of ligating together RPA and UNG2 to reveal how complex formation affects enzyme function could be applied to examine other assemblies of DNA repair proteins.
Collapse
Affiliation(s)
- Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Michel Mikhail
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
- Department of Internal Medicine, Newark Beth Israel Medical Center, Newark, NJ 07112, USA
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
27
|
Norris JL, Rogers LO, Pytko KG, Dannenberg RL, Perreault S, Kaushik V, Kuppa S, Antony E, Hedglin M. Interplay of macromolecular interactions during assembly of human DNA polymerase δ holoenzymes and initiation of DNA synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539896. [PMID: 37215012 PMCID: PMC10197535 DOI: 10.1101/2023.05.09.539896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In humans, DNA polymerase δ (Pol δ) holoenzymes, comprised of Pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand DNA replication, initiation of leading strand DNA replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a coordinated process involving the major single strand DNA-binding protein complex, replication protein A (RPA), the processivity sliding clamp loader, replication factor C (RFC), PCNA, and Pol δ. Each of these factors interact uniquely with a P/T junction and most directly engage one another. Currently, the interplay between these macromolecular interactions is largely unknown. In the present study, novel Förster Resonance Energy Transfer (FRET) assays reveal that dynamic interactions of RPA with a P/T junction during assembly of a Pol δ holoenzyme and initiation of DNA synthesis maintain RPA at a P/T junction and accommodate RFC, PCNA, and Pol δ, maximizing the efficiency of each process. Collectively, these studies significantly advance our understanding of human DNA replication and DNA repair.
Collapse
Affiliation(s)
- Jessica L. Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Lindsey O. Rogers
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kara G. Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Samuel Perreault
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Vikas Kaushik
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Sahiti Kuppa
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Edwin Antony
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
28
|
Mansilla SF, Bertolin AP, Venerus Arbilla S, Castaño BA, Jahjah T, Singh JK, Siri SO, Castro MV, de la Vega MB, Quinet A, Wiesmüller L, Gottifredi V. Polymerase iota (Pol ι) prevents PrimPol-mediated nascent DNA synthesis and chromosome instability. SCIENCE ADVANCES 2023; 9:eade7997. [PMID: 37058556 PMCID: PMC10104471 DOI: 10.1126/sciadv.ade7997] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Recent studies have described a DNA damage tolerance pathway choice that involves a competition between PrimPol-mediated repriming and fork reversal. Screening different translesion DNA synthesis (TLS) polymerases by the use of tools for their depletion, we identified a unique role of Pol ι in regulating such a pathway choice. Pol ι deficiency unleashes PrimPol-dependent repriming, which accelerates DNA replication in a pathway that is epistatic with ZRANB3 knockdown. In Pol ι-depleted cells, the excess participation of PrimPol in nascent DNA elongation reduces replication stress signals, but thereby also checkpoint activation in S phase, triggering chromosome instability in M phase. This TLS-independent function of Pol ι requires its PCNA-interacting but not its polymerase domain. Our findings unravel an unanticipated role of Pol ι in protecting the genome stability of cells from detrimental changes in DNA replication dynamics caused by PrimPol.
Collapse
Affiliation(s)
| | - Agostina P. Bertolin
- Fundación Instituto Leloir, CONICET, 1405 Buenos Aires, Argentina
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Bryan A. Castaño
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany
| | - Tiya Jahjah
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| | - Jenny K. Singh
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| | | | | | | | - Annabel Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany
| | | |
Collapse
|
29
|
Phase separation properties of RPA combine high-affinity ssDNA binding with dynamic condensate functions at telomeres. Nat Struct Mol Biol 2023; 30:451-462. [PMID: 36894693 PMCID: PMC10113159 DOI: 10.1038/s41594-023-00932-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/27/2023] [Indexed: 03/11/2023]
Abstract
RPA has been shown to protect single-stranded DNA (ssDNA) intermediates from instability and breakage. RPA binds ssDNA with sub-nanomolar affinity, yet dynamic turnover is required for downstream ssDNA transactions. How ultrahigh-affinity binding and dynamic turnover are achieved simultaneously is not well understood. Here we reveal that RPA has a strong propensity to assemble into dynamic condensates. In solution, purified RPA phase separates into liquid droplets with fusion and surface wetting behavior. Phase separation is stimulated by sub-stoichiometric amounts of ssDNA, but not RNA or double-stranded DNA, and ssDNA gets selectively enriched in RPA condensates. We find the RPA2 subunit required for condensation and multi-site phosphorylation of the RPA2 N-terminal intrinsically disordered region to regulate RPA self-interaction. Functionally, quantitative proximity proteomics links RPA condensation to telomere clustering and integrity in cancer cells. Collectively, our results suggest that RPA-coated ssDNA is contained in dynamic RPA condensates whose properties are important for genome organization and stability.
Collapse
|
30
|
Interdomain dynamics in human Replication Protein A regulates kinetics and thermodynamics of its binding to ssDNA. PLoS One 2023; 18:e0278396. [PMID: 36656834 PMCID: PMC9851514 DOI: 10.1371/journal.pone.0278396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Human Replication Protein A (hRPA) is a multidomain protein that interacts with ssDNA intermediates to provide the latter much-needed stability during DNA metabolism and maintain genomic integrity. Although the ssDNA organization with hRPA was studied recently through experimental means, characterizing the underlying mechanism at the atomic level remains challenging because of the dynamic domain architecture of hRPA and poorly understood heterogeneity of ssDNA-protein interactions. Here, we used a computational framework, precisely tailored to capture protein-ssDNA interactions, and investigated the binding of hRPA with a 60 nt ssDNA. Two distinct binding mechanisms are realized based on the hRPA domain flexibility. For a rigid domain architecture of hRPA, ssDNA binds sequentially with hRPA domains, resulting in slow association kinetics. The binding pathway involves the formation of stable and distinct intermediate states. On contrary, for a flexible domain architecture of hRPA, ssDNA binds synergistically to the A and B domains followed by the rest of hRPA. The domain dynamics in hRPA alleviates the free energy cost of domain orientation necessary for specific binding with ssDNA, leading to fast association kinetics along a downhill binding free energy landscape. An ensemble of free energetically degenerate intermediate states is encountered that makes it arduous to characterize them structurally. An excellent match between our results with the available experimental observations provides new insights into the rich dynamics of hRPA binding to ssDNA and in general paves the way to investigate intricate details of ssDNA-protein interactions, crucial for cellular functioning.
Collapse
|
31
|
Yin J, Fu Y, Rao G, Li Z, Tian K, Chong T, Kuang K, Wang M, Hu Z, Cao S. Structural transitions during the cooperative assembly of baculovirus single-stranded DNA-binding protein on ssDNA. Nucleic Acids Res 2022; 50:13100-13113. [PMID: 36477586 PMCID: PMC9825184 DOI: 10.1093/nar/gkac1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) interact with single-stranded DNA (ssDNA) to form filamentous structures with various degrees of cooperativity, as a result of intermolecular interactions between neighboring SSB subunits on ssDNA. However, it is still challenging to perform structural studies on SSB-ssDNA filaments at high resolution using the most studied SSB models, largely due to the intrinsic flexibility of these nucleoprotein complexes. In this study, HaLEF-3, an SSB protein from Helicoverpa armigera nucleopolyhedrovirus, was used for in vitro assembly of SSB-ssDNA filaments, which were structurally studied at atomic resolution using cryo-electron microscopy. Combined with the crystal structure of ssDNA-free HaLEF-3 octamers, our results revealed that the three-dimensional rearrangement of HaLEF-3 induced by an internal hinge-bending movement is essential for the formation of helical SSB-ssDNA complexes, while the contacting interface between adjacent HaLEF-3 subunits remains basically intact. We proposed a local cooperative SSB-ssDNA binding model, in which, triggered by exposure to oligonucleotides, HaLEF-3 molecules undergo ring-to-helix transition to initiate continuous SSB-SSB interactions along ssDNA. Unique structural features revealed by the assembly of HaLEF-3 on ssDNA suggest that HaLEF-3 may represent a new class of SSB.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kexing Tian
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tingting Chong
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kai Kuang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety, Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety, Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Sheng Cao
- To whom correspondence should be addressed. Tel: +86 27 87198286; Fax: +86 27 87198286;
| |
Collapse
|
32
|
Boldinova EO, Ghodke PP, Sudhakar S, Mishra VK, Manukyan AA, Miropolskaya N, Pradeepkumar PI, Makarova AV. Translesion Synthesis across the N2-Ethyl-deoxyguanosine Adduct by Human PrimPol. ACS Chem Biol 2022; 17:3238-3250. [PMID: 36318733 DOI: 10.1021/acschembio.2c00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primase-DNA polymerase (PrimPol) is involved in reinitiating DNA synthesis at stalled replication forks. PrimPol also possesses DNA translesion (TLS) activity and bypasses several endogenous nonbulky DNA lesions in vitro. Little is known about the TLS activity of PrimPol across bulky carcinogenic adducts. We analyzed the DNA polymerase activity of human PrimPol on DNA templates with seven N2-dG lesions of different steric bulkiness. In the presence of Mg2+ ions, bulky N2-isobutyl-dG, N2-benzyl-dG, N2-methyl(1-naphthyl)-dG, N2-methyl(9-anthracenyl)-dG, N2-methyl(1-pyrenyl)-dG, and N2-methyl(1,3-dimethoxyanthraquinone)-dG adducts fully blocked PrimPol activity. At the same time, PrimPol incorporated complementary deoxycytidine monophosphate (dCMP) opposite N2-ethyl-dG with moderate efficiency but did not extend DNA beyond the lesion. We also demonstrated that mutation of the Arg288 residue abrogated dCMP incorporation opposite the lesion in the presence of Mn2+ ions. When Mn2+ replaced Mg2+, PrimPol carried out DNA synthesis on all DNA templates with N2-dG adducts in standing start reactions with low efficiency and accuracy, possibly utilizing a lesion "skipping" mechanism. The TLS activity of PrimPol opposite N2-ethyl-dG but not bulkier adducts was stimulated by accessory proteins, polymerase delta-interacting protein 2 (PolDIP2), and replication protein A (RPA). Molecular dynamics studies demonstrated the absence of stable interactions with deoxycytidine triphosphate (dCTP), large reactions, and C1'-C1' distances for the N2-isobutyl-dG and N2-benzyl-dG PrimPol complexes, suggesting that the size of the adduct is a limiting factor for efficient TLS across minor groove adducts by PrimPol.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | - Pratibha P Ghodke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anna A Manukyan
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | - Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | | | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
33
|
Wieser TA, Wuttke DS. Replication Protein A Utilizes Differential Engagement of Its DNA-Binding Domains to Bind Biologically Relevant ssDNAs in Diverse Binding Modes. Biochemistry 2022; 61:2592-2606. [PMID: 36278947 PMCID: PMC9798700 DOI: 10.1021/acs.biochem.2c00504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Replication protein A (RPA) is a ubiquitous ssDNA-binding protein that functions in many DNA processing pathways to maintain genome integrity. Recent studies suggest that RPA forms a highly dynamic complex with ssDNA that can engage with DNA in many modes that are orchestrated by the differential engagement of the four DNA-binding domains (DBDs) in RPA. To understand how these modes influence RPA interaction with biologically relevant ligands, we performed a comprehensive and systematic evaluation of RPA's binding to a diverse set of ssDNA ligands that varied in sequence, length, and structure. These equilibrium binding data show that WT RPA binds structured ssDNA ligands differently from its engagement with minimal ssDNAs. Next, we investigated each DBD's contributions to RPA's binding modes through mutation of conserved, functionally important aromatic residues. Mutations in DBD-A and -B have a much larger effect on binding when ssDNA is embedded into DNA secondary structures compared to their association with unstructured minimal ssDNA. As our data support a complex interplay of binding modes, it is critical to define the trimer core DBDs' role in binding these biologically relevant ligands. We found that DBD-C is important for engaging DNA with diverse binding modes, including, unexpectedly, at short ssDNAs. Thus, RPA uses its constituent DBDs to bind biologically diverse ligands in unanticipated ways. These findings lead to a better understanding of how RPA carries out its functions at diverse locations of the genome and suggest a mechanism through which dynamic recognition can impact differential downstream outcomes.
Collapse
Affiliation(s)
- Thomas A Wieser
- Department of Biochemistry, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, UCB 596, Boulder, Colorado80309, United States
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, UCB 596, Boulder, Colorado80309, United States
| |
Collapse
|
34
|
Dannenberg RL, Cardina JA, Pytko KG, Hedglin M. Tracking of progressing human DNA polymerase δ holoenzymes reveals distributions of DNA lesion bypass activities. Nucleic Acids Res 2022; 50:9893-9908. [PMID: 36107777 PMCID: PMC9508823 DOI: 10.1093/nar/gkac745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
During DNA replication, DNA lesions in lagging strand templates are initially encountered by DNA polymerase δ (pol δ) holoenzymes comprised of pol δ and the PCNA processivity sliding clamp. These encounters are thought to stall replication of an afflicted template before the lesion, activating DNA damage tolerance (DDT) pathways that replicate the lesion and adjacent DNA sequence, allowing pol δ to resume. However, qualitative studies observed that human pol δ can replicate various DNA lesions, albeit with unknown proficiencies, which raises issues regarding the role of DDT in replicating DNA lesions. To address these issues, we re-constituted human lagging strand replication to quantitatively characterize initial encounters of pol δ holoenzymes with DNA lesions. The results indicate pol δ holoenzymes support dNTP incorporation opposite and beyond multiple lesions and the extent of these activities depends on the lesion and pol δ proofreading. Furthermore, after encountering a given DNA lesion, subsequent dissociation of pol δ is distributed around the lesion and a portion does not dissociate. The distributions of these events are dependent on the lesion and pol δ proofreading. Collectively, these results reveal complexity and heterogeneity in the replication of lagging strand DNA lesions, significantly advancing our understanding of human DDT.
Collapse
Affiliation(s)
- Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph A Cardina
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
35
|
Lecca P, Ihekwaba-Ndibe AEC. Dynamic Modelling of DNA Repair Pathway at the Molecular Level: A New Perspective. Front Mol Biosci 2022; 9:878148. [PMID: 36177351 PMCID: PMC9513183 DOI: 10.3389/fmolb.2022.878148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
DNA is the genetic repository for all living organisms, and it is subject to constant changes caused by chemical and physical factors. Any change, if not repaired, erodes the genetic information and causes mutations and diseases. To ensure overall survival, robust DNA repair mechanisms and damage-bypass mechanisms have evolved to ensure that the DNA is constantly protected against potentially deleterious damage while maintaining its integrity. Not surprisingly, defects in DNA repair genes affect metabolic processes, and this can be seen in some types of cancer, where DNA repair pathways are disrupted and deregulated, resulting in genome instability. Mathematically modelling the complex network of genes and processes that make up the DNA repair network will not only provide insight into how cells recognise and react to mutations, but it may also reveal whether or not genes involved in the repair process can be controlled. Due to the complexity of this network and the need for a mathematical model and software platform to simulate different investigation scenarios, there must be an automatic way to convert this network into a mathematical model. In this paper, we present a topological analysis of one of the networks in DNA repair, specifically homologous recombination repair (HR). We propose a method for the automatic construction of a system of rate equations to describe network dynamics and present results of a numerical simulation of the model and model sensitivity analysis to the parameters. In the past, dynamic modelling and sensitivity analysis have been used to study the evolution of tumours in response to drugs in cancer medicine. However, automatic generation of a mathematical model and the study of its sensitivity to parameter have not been applied to research on the DNA repair network so far. Therefore, we present this application as an approach for medical research against cancer, since it could give insight into a possible approach with which central nodes of the networks and repair genes could be identified and controlled with the ultimate goal of aiding cancer therapy to fight the onset of cancer and its progression.
Collapse
Affiliation(s)
- Paola Lecca
- Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
- *Correspondence: Paola Lecca, ; Adaoha E. C. Ihekwaba-Ndibe,
| | - Adaoha E. C. Ihekwaba-Ndibe
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- *Correspondence: Paola Lecca, ; Adaoha E. C. Ihekwaba-Ndibe,
| |
Collapse
|
36
|
Kuppa S, Deveryshetty J, Chadda R, Mattice JR, Pokhrel N, Kaushik V, Patterson A, Dhingra N, Pangeni S, Sadauskas MK, Shiekh S, Balci H, Ha T, Zhao X, Bothner B, Antony E. Rtt105 regulates RPA function by configurationally stapling the flexible domains. Nat Commun 2022; 13:5152. [PMID: 36056028 PMCID: PMC9440123 DOI: 10.1038/s41467-022-32860-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric complex that binds to single-stranded DNA (ssDNA) and recruits over three dozen RPA-interacting proteins to coordinate multiple aspects of DNA metabolism including DNA replication, repair, and recombination. Rtt105 is a molecular chaperone that regulates nuclear localization of RPA. Here, we show that Rtt105 binds to multiple DNA binding and protein-interaction domains of RPA and configurationally staples the complex. In the absence of ssDNA, Rtt105 inhibits RPA binding to Rad52, thus preventing spurious binding to RPA-interacting proteins. When ssDNA is available, Rtt105 promotes formation of high-density RPA nucleoprotein filaments and dissociates during this process. Free Rtt105 further stabilizes the RPA-ssDNA filaments by inhibiting the facilitated exchange activity of RPA. Collectively, our data suggest that Rtt105 sequesters free RPA in the nucleus to prevent untimely binding to RPA-interacting proteins, while stabilizing RPA-ssDNA filaments at DNA lesion sites. The single stranded DNA binding protein RPA coordinates DNA metabolism using multiple protein and DNA interaction domains. Here, the authors show that the chaperone-like protein Rtt105 staples RPA domains to prevent untimely protein interactions.
Collapse
Affiliation(s)
- Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.,Laronde Bio, Cambridge, MA, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Nalini Dhingra
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sushil Pangeni
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marisa K Sadauskas
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Sajad Shiekh
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA.,Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA. .,Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| |
Collapse
|
37
|
The Biochemical Mechanism of Fork Regression in Prokaryotes and Eukaryotes—A Single Molecule Comparison. Int J Mol Sci 2022; 23:ijms23158613. [PMID: 35955746 PMCID: PMC9368896 DOI: 10.3390/ijms23158613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
The rescue of stalled DNA replication forks is essential for cell viability. Impeded but still intact forks can be rescued by atypical DNA helicases in a reaction known as fork regression. This reaction has been studied at the single-molecule level using the Escherichia coli DNA helicase RecG and, separately, using the eukaryotic SMARCAL1 enzyme. Both nanomachines possess the necessary activities to regress forks: they simultaneously couple DNA unwinding to duplex rewinding and the displacement of bound proteins. Furthermore, they can regress a fork into a Holliday junction structure, the central intermediate of many fork regression models. However, there are key differences between these two enzymes. RecG is monomeric and unidirectional, catalyzing an efficient and processive fork regression reaction and, in the process, generating a significant amount of force that is used to displace the tightly-bound E. coli SSB protein. In contrast, the inefficient SMARCAL1 is not unidirectional, displays limited processivity, and likely uses fork rewinding to facilitate RPA displacement. Like many other eukaryotic enzymes, SMARCAL1 may require additional factors and/or post-translational modifications to enhance its catalytic activity, whereas RecG can drive fork regression on its own.
Collapse
|
38
|
Extended DNA binding interfaces beyond the canonical SAP domain contribute to the function of replication stress regulator SDE2 at DNA replication forks. J Biol Chem 2022; 298:102268. [PMID: 35850305 PMCID: PMC9399289 DOI: 10.1016/j.jbc.2022.102268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Elevated DNA replication stress causes instability of the DNA replication fork and increased DNA mutations, which underlies tumorigenesis. The DNA replication stress regulator silencing-defective 2 (SDE2) is known to bind to TIMELESS (TIM), a protein of the fork protection complex, and enhances its stability, thereby supporting replisome activity at DNA replication forks. However, the DNA-binding activity of SDE2 is not well defined. Here, we structurally and functionally characterize a new conserved DNA-binding motif related to the SAP (SAF-A/B, Acinus, PIAS) domain in human SDE2 and establish its preference for ssDNA. Our NMR solution structure of the SDE2SAP domain reveals a helix-extended loop-helix core with the helices aligned parallel to each other, consistent with known canonical SAP folds. Notably, we have shown that the DNA interaction of this SAP domain extends beyond the core SAP domain and is augmented by two lysine residues in the C-terminal tail, which is uniquely positioned adjacent to the SAP motif and conserved in the pre-mRNA splicing factor SF3A3. Furthermore, we found that mutation in the SAP domain and extended C terminus not only disrupts ssDNA binding but also impairs TIM localization at replication forks, thus inhibiting efficient fork progression. Taken together, our results establish SDE2SAP as an essential element for SDE2 to exert its role in preserving replication fork integrity via fork protection complex regulation and highlight the structural diversity of the DNA–protein interactions achieved by a specialized DNA-binding motif.
Collapse
|
39
|
Hanscom T, Woodward N, Batorsky R, Brown AJ, Roberts SA, McVey M. Characterization of sequence contexts that favor alternative end joining at Cas9-induced double-strand breaks. Nucleic Acids Res 2022; 50:7465-7478. [PMID: 35819195 PMCID: PMC9303309 DOI: 10.1093/nar/gkac575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative end joining (alt-EJ) mechanisms, such as polymerase theta-mediated end joining, are increasingly recognized as important contributors to inaccurate double-strand break repair. We previously proposed an alt-EJ model whereby short DNA repeats near a double-strand break anneal to form secondary structures that prime limited DNA synthesis. The nascent DNA then pairs with microhomologous sequences on the other break end. This synthesis-dependent microhomology-mediated end joining (SD-MMEJ) explains many of the alt-EJ repair products recovered following I-SceI nuclease cutting in Drosophila. However, sequence-specific factors that influence SD-MMEJ repair remain to be fully characterized. Here, we expand the utility of the SD-MMEJ model through computational analysis of repair products at Cas9-induced double-strand breaks for 1100 different sequence contexts. We find evidence at single nucleotide resolution for sequence characteristics that drive successful SD-MMEJ repair. These include optimal primer repeat length, distance of repeats from the break, flexibility of DNA sequence between primer repeats, and positioning of microhomology templates relative to preferred primer repeats. In addition, we show that DNA polymerase theta is necessary for most SD-MMEJ repair at Cas9 breaks. The analysis described here includes a computational pipeline that can be utilized to characterize preferred mechanisms of alt-EJ repair in any sequence context.
Collapse
Affiliation(s)
- Terrence Hanscom
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Nicholas Woodward
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, 177 College Ave, Medford, MA 02155, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Mitch McVey
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| |
Collapse
|
40
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
41
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
42
|
Tibbs J, Ghoneim M, Caldwell CC, Buzynski T, Bowie W, Boehm EM, Washington MT, Tabei SMA, Spies M. KERA: analysis tool for multi-process, multi-state single-molecule data. Nucleic Acids Res 2021; 49:e53. [PMID: 33660771 PMCID: PMC8136784 DOI: 10.1093/nar/gkab087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/17/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular machines within cells dynamically assemble, disassemble and reorganize. Molecular interactions between their components can be observed at the single-molecule level and quantified using colocalization single-molecule spectroscopy, in which individual labeled molecules are seen transiently associating with a surface-tethered partner, or other total internal reflection fluorescence microscopy approaches in which the interactions elicit changes in fluorescence in the labeled surface-tethered partner. When multiple interacting partners can form ternary, quaternary and higher order complexes, the types of spatial and temporal organization of these complexes can be deduced from the order of appearance and reorganization of the components. Time evolution of complex architectures can be followed by changes in the fluorescence behavior in multiple channels. Here, we describe the kinetic event resolving algorithm (KERA), a software tool for organizing and sorting the discretized fluorescent trajectories from a range of single-molecule experiments. KERA organizes the data in groups by transition patterns, and displays exhaustive dwell time data for each interaction sequence. Enumerating and quantifying sequences of molecular interactions provides important information regarding the underlying mechanism of the assembly, dynamics and architecture of the macromolecular complexes. We demonstrate KERA's utility by analyzing conformational dynamics of two DNA binding proteins: replication protein A and xeroderma pigmentosum complementation group D helicase.
Collapse
Affiliation(s)
- Joseph Tibbs
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Mohamed Ghoneim
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colleen C Caldwell
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Troy Buzynski
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Wayne Bowie
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Elizabeth M Boehm
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - M Todd Washington
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
43
|
SETD2-mediated H3K14 trimethylation promotes ATR activation and stalled replication fork restart in response to DNA replication stress. Proc Natl Acad Sci U S A 2021; 118:2011278118. [PMID: 34074749 PMCID: PMC8201831 DOI: 10.1073/pnas.2011278118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ataxia telangiectasia and Rad3 related (ATR) activation after replication stress involves a cascade of reactions, including replication protein A (RPA) complex loading onto single-stranded DNA and ATR activator loading onto chromatin. The contribution of histone modifications to ATR activation, however, is unclear. Here, we report that H3K14 trimethylation responds to replication stress by enhancing ATR activation. First, we confirmed that H3K14 monomethylation, dimethylation, and trimethylation all exist in mammalian cells, and that both SUV39H1 and SETD2 methyltransferases can catalyze H3K14 trimethylation in vivo and in vitro. Interestingly, SETD2-mediated H3K14 trimethylation markedly increases in response to replication stress induced with hydroxyurea, a replication stress inducer. Under these conditions, SETD2-mediated H3K14me3 recruited the RPA complex to chromatin via a direct interaction with RPA70. The increase in H3K14me3 levels was abolished, and RPA loading was attenuated when SETD2 was depleted or H3K14 was mutated. Rather, the cells were sensitive to replication stress such that the replication forks failed to restart, and cell-cycle progression was delayed. These findings help us understand how H3K14 trimethylation links replication stress with ATR activation.
Collapse
|
44
|
Langenbucher A, Bowen D, Sakhtemani R, Bournique E, Wise JF, Zou L, Bhagwat AS, Buisson R, Lawrence MS. An extended APOBEC3A mutation signature in cancer. Nat Commun 2021; 12:1602. [PMID: 33707442 PMCID: PMC7952602 DOI: 10.1038/s41467-021-21891-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
APOBEC mutagenesis, a major driver of cancer evolution, is known for targeting TpC sites in DNA. Recently, we showed that APOBEC3A (A3A) targets DNA hairpin loops. Here, we show that DNA secondary structure is in fact an orthogonal influence on A3A substrate optimality and, surprisingly, can override the TpC sequence preference. VpC (non-TpC) sites in optimal hairpins can outperform TpC sites as mutational hotspots. This expanded understanding of APOBEC mutagenesis illuminates the genomic Twin Paradox, a puzzling pattern of closely spaced mutation hotspots in cancer genomes, in which one is a canonical TpC site but the other is a VpC site, and double mutants are seen only in trans, suggesting a two-hit driver event. Our results clarify this paradox, revealing that both hotspots in these twins are optimal A3A substrates. Our findings reshape the notion of a mutation signature, highlighting the additive roles played by DNA sequence and DNA structure.
Collapse
Affiliation(s)
- Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Danae Bowen
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Elodie Bournique
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jillian F Wise
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Immunology, Institute for Cancer Research, University of Oslo, Oslo, Norway
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Rémi Buisson
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
45
|
Ahmad F, Patterson A, Deveryshetty J, Mattice JR, Pokhrel N, Bothner B, Antony E. Hydrogen-deuterium exchange reveals a dynamic DNA-binding map of replication protein A. Nucleic Acids Res 2021; 49:1455-1469. [PMID: 33444457 PMCID: PMC7897470 DOI: 10.1093/nar/gkaa1288] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
Replication protein A (RPA) binds to single-stranded DNA (ssDNA) and interacts with over three dozen enzymes and serves as a recruitment hub to coordinate most DNA metabolic processes. RPA binds ssDNA utilizing multiple oligosaccharide/oligonucleotide binding domains and based on their individual DNA binding affinities are classified as high versus low-affinity DNA-binding domains (DBDs). However, recent evidence suggests that the DNA-binding dynamics of DBDs better define their roles. Utilizing hydrogen-deuterium exchange mass spectrometry (HDX-MS), we assessed the ssDNA-driven dynamics of the individual domains of human RPA. As expected, ssDNA binding shows HDX changes in DBDs A, B, C, D and E. However, DBD-A and DBD-B are dynamic and do not show robust DNA-dependent protection. DBD-C displays the most extensive changes in HDX, suggesting a major role in stabilizing RPA on ssDNA. Slower allosteric changes transpire in the protein-protein interaction domains and linker regions, and thus do not directly interact with ssDNA. Within a dynamics-based model for RPA, we propose that DBD-A and -B act as the dynamic half and DBD-C, -D and -E function as the less-dynamic half. Thus, segments of ssDNA buried under the dynamic half are likely more readily accessible to RPA-interacting proteins.
Collapse
Affiliation(s)
- Faiz Ahmad
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jaigeeth Deveryshetty
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | - Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Edwin Antony
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
46
|
Tirman S, Cybulla E, Quinet A, Meroni A, Vindigni A. PRIMPOL ready, set, reprime! Crit Rev Biochem Mol Biol 2021; 56:17-30. [PMID: 33179522 PMCID: PMC7906090 DOI: 10.1080/10409238.2020.1841089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.
Collapse
Affiliation(s)
- Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| |
Collapse
|
47
|
Li M, Sengupta B, Benkovic SJ, Lee TH, Hedglin M. PCNA Monoubiquitination Is Regulated by Diffusion of Rad6/Rad18 Complexes along RPA Filaments. Biochemistry 2020; 59:4694-4702. [PMID: 33242956 DOI: 10.1021/acs.biochem.0c00849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Translesion DNA synthesis (TLS) enables DNA replication through damaging modifications to template DNA and requires monoubiquitination of the proliferating cell nuclear antigen (PCNA) sliding clamp by the Rad6/Rad18 complex. This posttranslational modification is critical to cell survival following exposure to DNA-damaging agents and is tightly regulated to restrict TLS to damaged DNA. Replication protein A (RPA), the major single-strand DNA (ssDNA) binding protein complex, forms filaments on ssDNA exposed at TLS sites and plays critical yet undefined roles in regulating PCNA monoubiquitination. Here, we utilize kinetic assays and single-molecule FRET microscopy to monitor PCNA monoubiquitination and Rad6/Rad18 complex dynamics on RPA filaments, respectively. Results reveal that a Rad6/Rad18 complex is recruited to an RPA filament via Rad18·RPA interactions and randomly translocates along the filament. These translocations promote productive interactions between the Rad6/Rad18 complex and the resident PCNA, significantly enhancing monoubiquitination. These results illuminate critical roles of RPA in the specificity and efficiency of PCNA monoubiquitination and represent, to the best of our knowledge, the first example of ATP-independent translocation of a protein complex along a protein filament.
Collapse
Affiliation(s)
- Mingjie Li
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bhaswati Sengupta
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
48
|
Mondal A, Bhattacherjee A. Mechanism of Dynamic Binding of Replication Protein A to ssDNA. J Chem Inf Model 2020; 60:5057-5069. [PMID: 32990435 DOI: 10.1021/acs.jcim.0c00564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Replication protein A (RPA) serves as a hub protein inside eukaryotic cells, where it coordinates crucial DNA metabolic processes and activates the DNA-damage response system. A characteristic feature of its action is to associate with single-stranded DNA (ssDNA) intermediates before handing them over to downstream proteins. The length of ssDNA intermediates differs for different pathways. This means that RPA must have mechanisms for selective processing of ssDNA intermediates based on their length, the knowledge of which is fundamental to elucidate when and how DNA repair and replication processes are symphonized. By employing extensive molecular dynamics simulations, we investigated the mechanism of binding of RPA to ssDNA of different lengths. We show that the binding involves dynamic equilibrium with a stable intermediate, the population of which increases with the length of ssDNA. The vital underlying factors are decoded through collective variable principal component analysis. It suggests a differently orchestrated set of interactions that define the action of RPA based on the length of ssDNA intermediates. We further estimated the association kinetics that matches excellently well with previous experimental studies and probed the diffusion mechanism of RPA to ssDNA. RPA diffuses on short ssDNA through progressive "bulge" formation. With long ssDNA, we observed a conformational change in ssDNA coupled with its binding to RPA in a cooperative fashion. This unanticipated binding mechanism successfully explains how the "short-lived", long ssDNA intermediates are processed quickly in vivo. This study thus reveals the molecular basis of several recent experimental observations related to RPA binding to ssDNA and provides novel insights into the RPA functioning in DNA repair and replication.
Collapse
Affiliation(s)
- Anupam Mondal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
49
|
Caldwell CC, Spies M. Dynamic elements of replication protein A at the crossroads of DNA replication, recombination, and repair. Crit Rev Biochem Mol Biol 2020; 55:482-507. [PMID: 32856505 PMCID: PMC7821911 DOI: 10.1080/10409238.2020.1813070] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023]
Abstract
The heterotrimeric eukaryotic Replication protein A (RPA) is a master regulator of numerous DNA metabolic processes. For a long time, it has been viewed as an inert protector of ssDNA and a platform for assembly of various genome maintenance and signaling machines. Later, the modular organization of the RPA DNA binding domains suggested a possibility for dynamic interaction with ssDNA. This modular organization has inspired several models for the RPA-ssDNA interaction that aimed to explain how RPA, the high-affinity ssDNA binding protein, is replaced by the downstream players in DNA replication, recombination, and repair that bind ssDNA with much lower affinity. Recent studies, and in particular single-molecule observations of RPA-ssDNA interactions, led to the development of a new model for the ssDNA handoff from RPA to a specific downstream factor where not only stability and structural rearrangements but also RPA conformational dynamics guide the ssDNA handoff. Here we will review the current knowledge of the RPA structure, its dynamic interaction with ssDNA, and how RPA conformational dynamics may be influenced by posttranslational modification and proteins that interact with RPA, as well as how RPA dynamics may be harnessed in cellular decision making.
Collapse
Affiliation(s)
- Colleen C. Caldwell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
50
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|