1
|
Wirth NT, Rohr K, Danchin A, Nikel PI. Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440. mBio 2023; 14:e0108123. [PMID: 37732760 PMCID: PMC10653934 DOI: 10.1128/mbio.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which "landed" in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host-instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings-yielding genome-reduced cell factories with enhanced properties and genetic stability.
Collapse
Affiliation(s)
- Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Katja Rohr
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Antoine Danchin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
2
|
Naligama KN, Halmillawewa AP. Pectobacterium carotovorum Phage vB_PcaM_P7_Pc Is a New Member of the Genus Certrevirus. Microbiol Spectr 2022; 10:e0312622. [PMID: 36346243 PMCID: PMC9769974 DOI: 10.1128/spectrum.03126-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Pectobacterium carotovorum is an economically important phytopathogen and has been identified as the major causative agent of bacterial soft rot in carrots. Control of this phytopathogen is vital to minimizing carrot harvest losses. As fully efficient control measures to successfully avoid the disease are unavailable, the phage-mediated biocontrol of the pathogen has recently gained scientific attention. In this study, we present a comprehensive characterization of the P. carotovorum phage vB_PcaM_P7_Pc (abbreviated as P7_Pc) that was isolated from infected carrot samples with characteristic soft rot symptoms, which were obtained from storage facilities at market places in Gampaha District, Sri Lanka. P7_Pc is a myovirus, and it exhibits growth characteristics of an exclusively lytic life cycle. It showed visible lysis against four of the tested P. carotovorum strains and one Pectobacterium aroidearum strain. This phage also showed a longer latent period (125 min) than other related phages; however, this did not affect its high phage titter (>1010 PFU/mL). The final assembled genome of P7_Pc is 147,299 bp in length with a G+C content of 50.34%. Of the 298 predicted open reading frames (ORFs) of the genome of P7_Pc, putative functions were assigned to 53 ORFs. Seven tRNA-coding genes were predicted in the genome, while the genome lacked any major genes coding for lysogeny-related products, confirming its virulent nature. The P7_Pc genome shares 96.12% and 95.74% average nucleotide identities with Cronobacter phages CR8 and PBES02, respectively. Phylogenetic and phylogenomic analyses of the genome revealed that P7_Pc clusters well within the clade with the members representing the genus Certrevirus. Currently, there are only 4 characterized Pectobacterium phages (P. atrosepticum phages phiTE and CB7 and Pectobacterium phages DU_PP_I and DU_PP_IV) that are classified under the genus, making the phage P7_Pc the first reported member of the genus isolated using the host bacterium P. carotovorum. The results of this study provide a detailed characterization of the phage P7_Pc, enabling its careful classification into the genus Certrevirus. The knowledge gathered on the phage based on the shared biology of the genus will further aid in the future selection of phage P7_Pc as a biocontrol agent. IMPORTANCE Bacterial soft rot disease, caused by Pectobacterium spp., can lead to significant losses in carrot yields. As current control measures involving the use of chemicals or antibiotics are not recommended in many countries, bacteriophage-mediated biocontrol strategies are being explored for the successful control of these phytopathogens. The successful implementation of such biocontrol strategies relies heavily upon the proper understanding of the growth characteristics and genomic properties of the phage. Further, the selection of taxonomically different phages for the formulation of phage cocktails in biocontrol applications is critical to combat potential bacterial resistance development. This study was conducted to carefully characterize and resolve the phylogenetic placement of the P. carotovorum phage vB_PcaM_P7_Pc by using its biological and genomic properties. Phage P7_Pc has a myovirus morphotype with an exclusively lytic life cycle, and the absence of genes related to lysogeny, toxin production, and antibiotic resistance in its genome confirmed its suitability to be used in environmental applications. Furthermore, P7_Pc is classified under the genus Certrevirus, making it the first reported phage of the genus of the host species, P. carotovorum.
Collapse
Affiliation(s)
- Kishani N. Naligama
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | | |
Collapse
|
3
|
Rahimi-Midani A, Kim JO, Kim JH, Lim J, Ryu JG, Kim MK, Choi TJ. Potential use of newly isolated bacteriophage as a biocontrol against Acidovorax citrulli. Arch Microbiol 2019; 202:377-389. [DOI: 10.1007/s00203-019-01754-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
|
4
|
Structural basis of the substrate preference towards CMP for a thymidylate synthase MilA involved in mildiomycin biosynthesis. Sci Rep 2016; 6:39675. [PMID: 28000775 PMCID: PMC5175136 DOI: 10.1038/srep39675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/25/2016] [Indexed: 11/08/2022] Open
Abstract
Modified pyrimidine monophosphates such as methyl dCMP (mdCMP), hydroxymethyl dUMP (hmdUMP) and hmdCMP in some phages are synthesized by a large group of enzymes termed as thymidylate synthases (TS). Thymidylate is a nucleotide required for DNA synthesis and thus TS is an important drug target. In the biosynthetic pathway of the nucleoside fungicide mildiomycin isolated from Streptomyces rimofaciens ZJU5119, a cytidylate (CMP) hydroxymethylase, MilA, catalyzes the conversion of CMP into 5′-hydroxymethyl CMP (hmCMP) with an efficiency (kcat/KM) of 5-fold faster than for deoxycytidylate (dCMP). MilA is thus the first enzyme of the TS superfamily preferring CMP to dCMP. Here, we determined the crystal structures of MilA and its complexes with various substrates including CMP, dCMP and hmCMP. Comparing these structures to those of dCMP hydroxymethylase (CH) from T4 phage and TS from Escherichia coli revealed that two residues in the active site of CH and TS, a serine and an arginine, are respectively replaced by an alanine and a lysine, Ala176 and Lys133, in MilA. Mutation of A176S/K133R of MilA resulted in a reversal of substrate preference from CMP to dCMP. This is the first study reporting the evolution of the conserved TS in substrate selection from DNA metabolism to secondary nucleoside biosynthesis.
Collapse
|
5
|
Pozzi C, Ferrari S, Cortesi D, Luciani R, Stroud RM, Catalano A, Costi MP, Mangani S. The structure of Enterococcus faecalis thymidylate synthase provides clues about folate bacterial metabolism. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1232-41. [PMID: 22948925 PMCID: PMC10316677 DOI: 10.1107/s0907444912026236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/10/2012] [Indexed: 11/11/2022]
Abstract
Drug resistance to therapeutic antibiotics poses a challenge to the identification of novel targets and drugs for the treatment of infectious diseases. Infections caused by Enterococcus faecalis are a major health problem. Thymidylate synthase (TS) from E. faecalis is a potential target for antibacterial therapy. The X-ray crystallographic structure of E. faecalis thymidylate synthase (EfTS), which was obtained as a native binary complex composed of EfTS and 5-formyltetrahydrofolate (5-FTHF), has been determined. The structure provides evidence that EfTS is a half-of-the-sites reactive enzyme, as 5-FTHF is bound to two of the four independent subunits present in the crystal asymmetric unit. 5-FTHF is a metabolite of the one-carbon transfer reaction catalysed by 5-formyltetrahydrofolate cyclo-ligase. Kinetic studies show that 5-FTHF is a weak inhibitor of EfTS, suggesting that the EfTS-5-FTHF complex may function as a source of folates and/or may regulate one-carbon metabolism. The structure represents the first example of endogenous 5-FTHF bound to a protein involved in folate metabolism.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Dipartimento di Chimica, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Ferrari
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41126 Modena, Italy
| | - Debora Cortesi
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41126 Modena, Italy
| | - Rosaria Luciani
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41126 Modena, Italy
| | - Robert M. Stroud
- Department of Biochemistry and Biophysiscs, University of California, San Francisco, S-412C Genentech Hall, 600 16th Street, San Francisco, CA 94158-2517, USA
| | - Alessia Catalano
- Dipartimento Farmaco-Chimico, University of Bari ‘Aldo Moro’, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Paola Costi
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41126 Modena, Italy
| | - Stefano Mangani
- Dipartimento di Chimica, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Cardinale D, Salo-Ahen OMH, Guaitoli G, Ferrari S, Venturelli A, Franchini S, Battini R, Ponterini G, Wade RC, Costi MP. Design and characterization of a mutation outside the active site of human thymidylate synthase that affects ligand binding. Protein Eng Des Sel 2009; 23:81-9. [PMID: 19955218 DOI: 10.1093/protein/gzp075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Owing to its central role in DNA synthesis, human thymidylate synthase (hTS) is a well-established target for chemotherapeutic agents, such as fluoropyrimidines. The use of hTS inhibitors in cancer therapy is limited by their toxicity and the development of cellular drug resistance. Here, with the aim of shedding light on the structural role of the A-helix in fluoropyrimidine resistance, we have created a fluoropyrimidine-resistant mutant by making a single point mutation, Glu30Trp. We postulated that residue 30, which is located in the A-helix, close to but outside the enzyme active site, could have a long-range effect on inhibitor binding. The mutant shows 100 times lower specific activity with respect to the wild-type hTS and is resistant to the classical inhibitor, FdUMP, as shown by a 6-fold higher inhibition constant. Circular dichroism experiments show that the mutant is folded. The results of molecular modeling and simulation suggest that the Glu30Trp mutation gives rise to resistance by altering the hydrogen-bond network between residue 30 and the active site.
Collapse
Affiliation(s)
- D Cardinale
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41100Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kandeel M, Kitade Y. Molecular Characterization, Heterologous Expression and Kinetic Analysis of Recombinant Plasmodium falciparum Thymidylate Kinase. ACTA ACUST UNITED AC 2008; 144:245-50. [DOI: 10.1093/jb/mvn062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Mao Y, Vyas NK, Vyas MN, Chen DH, Ludtke SJ, Chiu W, Quiocho FA. Structure of the bifunctional and Golgi-associated formiminotransferase cyclodeaminase octamer. EMBO J 2004; 23:2963-71. [PMID: 15272307 PMCID: PMC514939 DOI: 10.1038/sj.emboj.7600327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 06/21/2004] [Indexed: 12/13/2022] Open
Abstract
Mammalian formiminotransferase cyclodeaminase (FTCD), a 0.5 million Dalton homo-octameric enzyme, plays important roles in coupling histidine catabolism with folate metabolism and integrating the Golgi complex with the vimentin intermediate filament cytoskeleton. It is also linked to two human diseases, autoimmune hepatitis and glutamate formiminotransferase deficiency. Determination of the FTCD structure by X-ray crystallography and electron cryomicroscopy revealed that the eight subunits, each composed of distinct FT and CD domains, are arranged like a square doughnut. A key finding indicates that coupling of three subunits governs the octamer-dependent sequential enzyme activities, including channeling of intermediate and conformational change. The structure further shed light on the molecular nature of two strong antigenic determinants of FTCD recognized by autoantibodies from patients with autoimmune hepatitis and on the binding of thin vimentin filaments to the FTCD octamer.
Collapse
Affiliation(s)
- Yuxin Mao
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Nand K Vyas
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Meenakshi N Vyas
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Dong-Hua Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX, USA
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX, USA
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX, USA
| | - Florante A Quiocho
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. Tel.: +1 713 798 6565; Fax: +1 713 798 8516; E-mail:
| |
Collapse
|
9
|
Chen X, Mohr G, Lambowitz AM. The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns. RNA (NEW YORK, N.Y.) 2004; 10:634-644. [PMID: 15037773 PMCID: PMC1370554 DOI: 10.1261/rna.5212604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 12/18/2003] [Indexed: 05/24/2023]
Abstract
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by stabilizing the catalytically active RNA structure. To accomplish this, CYT-18 recognizes conserved structural features of group I intron RNAs using regions of the N-terminal nucleotide-binding fold, intermediate alpha-helical, and C-terminal RNA-binding domains that also function in binding tRNA(Tyr). Curiously, whereas the splicing of the N. crassa mitochondrial large subunit rRNA intron is completely dependent on CYT-18's C-terminal RNA-binding domain, all other group I introns tested thus far are spliced efficiently by a truncated protein lacking this domain. To investigate the function of the C-terminal domain, we used an Escherichia coli genetic assay to isolate mutants of the Saccharomyces cerevisiae mitochondrial large subunit rRNA and phage T4 td introns that can be spliced in vivo by the wild-type CYT-18 protein, but not by the C-terminally truncated protein. Mutations that result in dependence on CYT-18's C-terminal domain include those disrupting two long-range GNRA tetraloop/receptor interactions: L2-P8, which helps position the P1 helix containing the 5'-splice site, and L9-P5, which helps establish the correct relative orientation of the P4-P6 and P3-P9 domains of the group I intron catalytic core. Our results indicate that different structural mutations in group I intron RNAs can result in dependence on different regions of CYT-18 for RNA splicing.
Collapse
Affiliation(s)
- Xin Chen
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
10
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Fu TF, Scarsdale JN, Kazanina G, Schirch V, Wright HT. Location of the pteroylpolyglutamate-binding site on rabbit cytosolic serine hydroxymethyltransferase. J Biol Chem 2003; 278:2645-53. [PMID: 12438316 DOI: 10.1074/jbc.m210649200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT; EC 2.1.2.1) catalyzes the reversible interconversion of serine and glycine with transfer of the serine side chain one-carbon group to tetrahydropteroylglutamate (H(4)PteGlu), and also the conversion of 5,10-methenyl-H(4)PteGlu to 5-formyl-H(4)PteGlu. In the cell, H(4)PteGlu carries a poly-gamma-glutamyl tail of at least 3 glutamyl residues that is required for physiological activity. This study combines solution binding and mutagenesis studies with crystallographic structure determination to identify the extended binding site for tetrahydropteroylpolyglutamate on rabbit cytosolic SHMT. Equilibrium binding and kinetic measurements of H(4)PteGlu(3) and H(4)PteGlu(5) with wild-type and Lys --> Gln or Glu site mutant homotetrameric rabbit cytosolic SHMTs identified lysine residues that contribute to the binding of the polyglutamate tail. The crystal structure of the enzyme in complex with 5-formyl-H(4)PteGlu(3) confirms the solution data and indicates that the conformation of the pteridine ring and its interactions with the enzyme differ slightly from those observed in complexes of the monoglutamate cofactor. The polyglutamate chain, which does not contribute to catalysis, exists in multiple conformations in each of the two occupied binding sites and appears to be bound by the electrostatic field created by the cationic residues, with only limited interactions with specific individual residues.
Collapse
Affiliation(s)
- Tzu-Fun Fu
- Department of Biochemistry and the Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond 23219-1570, USA
| | | | | | | | | |
Collapse
|
12
|
Song HK, Sohn SH, Suh SW. Crystal structure of deoxycytidylate hydroxymethylase from bacteriophage T4, a component of the deoxyribonucleoside triphosphate-synthesizing complex. EMBO J 1999; 18:1104-13. [PMID: 10064578 PMCID: PMC1171202 DOI: 10.1093/emboj/18.5.1104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriophage T4 deoxycytidylate hydroxymethylase (EC 2.1.2.8), a homodimer of 246-residue subunits, catalyzes hydroxymethylation of the cytosine base in deoxycytidylate (dCMP) to produce 5-hydroxymethyl-dCMP. It forms part of a phage DNA protection system and appears to function in vivo as a component of a multienzyme complex called deoxyribonucleoside triphosphate (dNTP) synthetase. We have determined its crystal structure in the presence of the substrate dCMP at 1.6 A resolution. The structure reveals a subunit fold and a dimerization pattern in common with thymidylate synthases, despite low (approximately 20%) sequence identity. Among the residues that form the dCMP binding site, those interacting with the sugar and phosphate are arranged in a configuration similar to the deoxyuridylate binding site of thymidylate synthases. However, the residues interacting directly or indirectly with the cytosine base show a more divergent structure and the presumed folate cofactor binding site is more open. Our structure reveals a water molecule properly positioned near C-6 of cytosine to add to the C-7 methylene intermediate during the last step of hydroxymethylation. On the basis of sequence comparison and crystal packing analysis, a hypothetical model for the interaction between T4 deoxycytidylate hydroxymethylase and T4 thymidylate synthase in the dNTP-synthesizing complex has been built.
Collapse
Affiliation(s)
- H K Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
13
|
Fox KM, Maley F, Garibian A, Changchien LM, Van Roey P. Crystal structure of thymidylate synthase A from Bacillus subtilis. Protein Sci 1999; 8:538-44. [PMID: 10091656 PMCID: PMC2144283 DOI: 10.1110/ps.8.3.538] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Thymidylate synthase (TS) converts dUMP to dTMP by reductive methylation, where 5,10-methylenetetrahydrofolate is the source of both the methylene group and reducing equivalents. The mechanism of this reaction has been extensively studied, mainly using the enzyme from Escherichia coli. Bacillus subtilis contains two genes for TSs, ThyA and ThyB. The ThyB enzyme is very similar to other bacterial TSs, but the ThyA enzyme is quite different, both in sequence and activity. In ThyA TS, the active site histidine is replaced by valine. In addition, the B. subtilis enzyme has a 2.4-fold greater k(cat) than the E. coli enzyme. The structure of B. subtilis thymidylate synthase in a ternary complex with 5-fluoro-dUMP and 5,10-methylenetetrahydrofolate has been determined to 2.5 A resolution. Overall, the structure of B. subtilis TS (ThyA) is similar to that of the E. coli enzyme. However, there are significant differences in the structures of two loops, the dimer interface and the details of the active site. The effects of the replacement of histidine by valine and a serine to glutamine substitution in the active site area, and the addition of a loop over the carboxy terminus may account for the differences in k(cat) found between the two enzymes.
Collapse
Affiliation(s)
- K M Fox
- Department of Chemistry, Union College, Schenectady, New York 12308, USA
| | | | | | | | | |
Collapse
|
14
|
Prasanna V, Gopal B, Murthy M, Santi DV, Balaram P. Effect of amino acid substitutions at the subunit interface on the stability and aggregation properties of a dimeric protein: Role of Arg 178 and Arg 218 at the dimer interface of thymidylate synthase. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19990215)34:3<356::aid-prot8>3.0.co;2-o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Munro EM, Climie S, Vandenberg E, Storms RK. Functional assessment of surface loops: deletion of eukaryote-specific peptide inserts in thymidylate synthase of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:1-13. [PMID: 10082928 DOI: 10.1016/s0167-4838(98)00275-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The primary structure is known for at least 29 thymidylate synthases and the crystal structure is known for several from both prokaryotes and eukaryotes. All these are markedly similar making thymidylate synthase one of the most highly conserved enzymes known. There are, however, two surface loops, one near the active site and the other near the dimer interface, which exist in distinctly prokaryotic and eukaryotic versions. Specifically, in eukaryotes these two surface loops have small peptide inserts conserved in size and partly conserved in sequence, that are not present in the prokaryotic thymidylate synthases. To address the possibility that these inserts provide eukaryote-specific functions the Saccharomyces cerevisiae loops were individually modified to mimic their prokaryotic counterparts. Altering the surface loop near the active site increased Km for the nucleotide substrate and decreased apparent Vmax. Mutant variants with alterations in the other surface loop were unable to dimerize. Therefore these surface loops have acquired, perhaps by way of the eukaryotic inserts, characteristics that are important for catalytic activity and quaternary structure respectively.
Collapse
Affiliation(s)
- E M Munro
- Department of Biology, Concordia University, Montreal, Que. H3G 1M8, Canada.
| | | | | | | |
Collapse
|
16
|
Reyes CL, Sage CR, Rutenber EE, Nissen RM, Finer-Moore JS, Stroud RM. Inactivity of N229A thymidylate synthase due to water-mediated effects: isolating a late stage in methyl transfer. J Mol Biol 1998; 284:699-712. [PMID: 9826509 DOI: 10.1006/jmbi.1998.2205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutation of thymidylate synthase N229(177) to alanine results in an essentially inactive enzyme, yet it leads to formation of a stable ternary complex. The kinetics of N229(177)A show that kcat for Escherichia coli is reduced by 200-fold while the Km for dUMP is increased 200-fold and the Km for folate increased by tenfold versus the wild-type enzyme. The crystal structures of N229(177)A in complex with dUMP and CB3717, and in complex with dUMP alone are determined at 2.4 A, and 2.5 A resolution. These structures identify the covalently bound ternary complex and show how N229(177)A traps an intermediate, and so becomes inactive in a later step of the reaction. Since the smaller alanine side-chain at N229(177)A does not directly sterically impair binding of ligands, the structures implicate, and place quantitative limits on the involvement of the structured water network in the active site of thymidylate synthase in both catalysis and in determining the binding affinity for dUMP (in contrast, the N229(177)V mutation in Lactobacillus casei has minimal effect on activity).
Collapse
Affiliation(s)
- C L Reyes
- Graduate Group in Biophysics, University of California, San Francisco 94143-0448, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Thymidylate synthase (TS) is a very interesting target in antiproliferative diseases. Its inhibition causes thimineless death of the cells and compounds inhibiting TS are widely used in anticancer therapy. The classical antifolate TS inhibitors are structural analogs of the folate cofactor; they often share the same metabolic pathways and this causes the development of resistance inside the cells. A detailed analysis of the available x-ray crystal structures of the complexes of the enzyme with different substrates and inhibitors support the finding of a structural basis of their biological activity. TS inhibitors nonstructural analog of folate, non-analog antifolate inhibitors (NAAI), are welcome as a new interesting research topic. Among the most recent and interesting ones, compounds from Agouron related to the indole structure, are independent on the folate metabolism, highly active and specific for human TS. Other compounds, phthalein derivatives, can inhibit TS enzymes from various sources and show an interesting biological activity profile: they inhibit better bacterial and fungal TS than human TS. The x-ray crystal structures of some of these inhibitors with TS show that they bind in a different binding site from that of the classical folate TS inhibitors. This indicates a potential allosteric binding site useful for future drug discovery studies.
Collapse
Affiliation(s)
- M P Costi
- Dipartimento di Scienze Farmaceutiche, Universitá di Modena, Italy
| |
Collapse
|
18
|
Montfort WR, Weichsel A. Thymidylate synthase: structure, inhibition, and strained conformations during catalysis. Pharmacol Ther 1997; 76:29-43. [PMID: 9535167 DOI: 10.1016/s0163-7258(97)00099-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thymidylate synthase (TS) is a long-standing target for chemotherapeutic agents because of its central role in DNA synthesis, and it is also of interest because of its rich mechanistic features. The reaction catalyzed by TS is the methylation of dUMP, with the transferred methyl group provided by the cofactor methylenetetrahydrofolate (CH2THF). Recently, several crystal structure determinations and mechanistic studies have led to a deeper understanding of the TS reaction mechanism, and address the role of conformational change in TS catalysis and inhibition. Included among these structures are complexes of TS bound to substrate dUMP; cofactor CH2THF; the nucleotide analogs 5-fluoro-dUMP, 5-nitro-dUMP and dGMP; and the promising antifolates BW1843, ZD1694, and AG337. From these studies, a picture of TS emerges where ligand-induced conformational changes play key roles in catalysis by straining the thiol adduct that occurs during the reaction; by protecting the highly reactive reaction intermediates; and by providing a means to stabilize a high-energy conformer of the cofactor after initial binding of a low-energy conformer. The best inhibitors of TS also induce and stabilize a conformational change in TS. One inhibitor, BW1843, distorts the active site on binding, and intercalates into a hydrophobic patch between two mobile subdomains in the protein. Also discussed are recent developments in the cell biology and regulation of eukaryotic TS and the use of structure-based drug design in the development of the antifolates currently in clinical trial for the treatment of cancer.
Collapse
Affiliation(s)
- W R Montfort
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
19
|
McGaughey KM, Wheeler LJ, Moore JT, Maley GF, Maley F, Mathews CK. Protein-protein interactions involving T4 phage-coded deoxycytidylate deaminase and thymidylate synthase. J Biol Chem 1996; 271:23037-42. [PMID: 8798492 DOI: 10.1074/jbc.271.38.23037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The enzymes deoxycytidylate deaminase (EC) and thymidylate synthase (EC) are functionally associated with one another, since they catalyze sequential reactions. In T4 coliphage infection the two enzymes are found in dNTP synthetase, a multienzyme complex for deoxyribonucleotide biosynthesis. Protein-protein interactions involving the phage-coded forms of these two enzymes have been explored in three experiments that use the respective purified protein as an affinity ligand. First, an extract of radiolabeled T4 proteins was passed through a column of immobilized enzyme (either dTMP synthase or dCMP deaminase), and the specifically bound proteins were identified. Second, two mutant form of dCMP deaminase (H90N and H94N), altered in presumed zinc-binding sites, were analyzed similarly, with the results suggesting that some, but not all, interactions require normal structure near the catalytic site. Third, affinity chromatography using either enzyme as the immobilized ligand, revealed interactions between the two purified enzymes in the absence of other proteins. In these experiments we noted a significant effect of dCTP, an allosteric modifier of dCMP deaminase, upon the interactions.
Collapse
Affiliation(s)
- K M McGaughey
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7503, USA
| | | | | | | | | | | |
Collapse
|
20
|
Stout TJ, Stroud RM. The complex of the anti-cancer therapeutic, BW1843U89, with thymidylate synthase at 2.0 A resolution: implications for a new mode of inhibition. Structure 1996; 4:67-77. [PMID: 8805515 DOI: 10.1016/s0969-2126(96)00010-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Thymidylate synthase (TS) is critical to DNA synthesis as it catalyzes the rate limiting step in the only biosynthetic pathway for deoxythymidine monophosphate (dTMP) production. TS is therefore an important target for anti-proliferative and anti-cancer drug design. The TS enzymatic mechanism involves the reductive methylation of the substrate, deoxyuridine monophosphate (dUMP), by transfer of a methylene group from the co-factor, methylenetetrahydrofolate (CH2H4folate), resulting in the production of deoxythymidine monophosphate (dTMP) and dihydrofolate (H2folate). Previous drug design efforts based on co-factor analogues have produced good inhibitors of TS, but poor bioavailability and toxicity have limited their usefulness. BW1843U89, a folate analogue, is a recently developed compound which is an exceptionally strong inhibitor (Ki = 0.09 nM), has good bioavailability and in clinical trials thus far has not demonstrated significant toxicity. RESULTS We report the crystal structure of E. coli TS in ternary complex with dUMP and BW1843U89 at 2.0 A resolution. Although the benzoquinazoline ring system of the inhibitor binds to TS in much the same manner as previously determined for H2folate and CB3717, the larger size of the ligand is accommodated by the enzyme through a local distortion of the active site, that is not strictly conserved in both monomers in the asymmetric unit. Several conserved waters that had been previously implicated in mechanistic roles have been displaced. CONCLUSIONS BW1843U89 forms a ternary complex with dUMP and completes with CH2H4 folate at the active site. Inhibition of TS by BW1843U89 shows four unique aspects in its mechanism of action. BW1843U89 prevents the Michael addition of dUMP to Cys146, in contrast to the mechanisms implicated from crystallography of other quinazoline based inhibitors; displaces a catalytic water from the active site; reorders a peptide loop (Leu72-Trp83) in the active site; and is unique amongst the antifolates in inactivating TS at a stoichiometric ratio of one molecule per TS dimer. Thus, it exploits the principles of negative cooperativity that are increasingly being recognized in the catalytic mechanism of the enzyme per se. The structure suggests that this 'half-the-sites' effect is catalytic and not related to ligand binding. Therefore BW1843U89 is both a competitive inhibitor (at the binding site) and a non-competitive inhibitor at the other site.
Collapse
Affiliation(s)
- T J Stout
- Department of Biochemistry and Biophysics, School of Medicine, University of California at San Francisco 94143-0448, USA
| | | |
Collapse
|
21
|
Abstract
Seven new structures reported during the past year have increased dramatically our understanding of enzymes involved in nucleotide de novo synthesis and salvage. Several new protein folds have been identified, including at least four prototypes for new functional families. The construction of larger structures from modules with a catalytic function is a recurring theme. Our understanding of the structural basis of allostery will be enriched by the three new structures of allosteric enzymes.
Collapse
Affiliation(s)
- J L Smith
- Purdue University, West Lafayette, USA
| |
Collapse
|
22
|
Murley LL, MacKenzie RE. The two monofunctional domains of octameric formiminotransferase-cyclodeaminase exist as dimers. Biochemistry 1995; 34:10358-64. [PMID: 7654689 DOI: 10.1021/bi00033a006] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Formiminotransferase-cyclodeaminase is a bifunctional enzyme arranged as a circular tetramer of dimers that exhibits the ability to efficiently channel polyglutamylated folate between catalytic sites. Through deletion mutagenesis we demonstrate that each subunit consists of an N-terminal transferase active domain and a C-terminal deaminase active domain separated by a linker sequence of minimally eight residues. The full-length enzyme and both isolated domains have been expressed as C-terminally histidine-tagged proteins. Both domains self-dimerize, providing direct evidence for the existence of two types of subunit interfaces. The results suggest that both the transferase and the deaminase activities are dependent on the formation of specific subunit interfaces. Because channeling is not observed between isolated domains, only the octamer appears able to directly transfer pentaglutamylated intermediate between active sites.
Collapse
Affiliation(s)
- L L Murley
- Department of Biochemistry, McGill University, Montréal Québec, Canda
| | | |
Collapse
|