1
|
Gene expression regulates metabolite homeostasis during the Crabtree effect: Implications for the adaptation and evolution of Metabolism. Proc Natl Acad Sci U S A 2021; 118:2014013118. [PMID: 33372135 DOI: 10.1073/pnas.2014013118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A key issue in both molecular and evolutionary biology has been to define the roles of genes and phenotypes in the adaptation of organisms to environmental changes. The dominant view has been that an organism's metabolic adaptations are driven by gene expression and that gene mutations, independent of the starting phenotype, are responsible for the evolution of new metabolic phenotypes. We propose an alternate hypothesis, in which the phenotype and genotype together determine metabolic adaptation both in the lifetime of the organism and in the evolutionary selection of adaptive metabolic traits. We tested this hypothesis by flux-balance and metabolic-control analysis of the relative roles of the starting phenotype and gene expression in regulating the metabolic adaptations during the Crabtree effect in yeast, when they are switched from a low- to high-glucose environment. Critical for successful short-term adaptation was the ability of the glycogen/trehalose shunt to balance the glycolytic pathway. The role of later gene expression of new isoforms of glycolytic enzymes, rather than flux control, was to provide additional homeostatic mechanisms allowing an increase in the amount and efficiency of adenosine triphosphate and product formation while maintaining glycolytic balance. We further showed that homeostatic mechanisms, by allowing increased phenotypic plasticity, could have played an important role in guiding the evolution of the Crabtree effect. Although our findings are specific to Crabtree yeast, they are likely to be broadly found because of the well-recognized similarities in glucose metabolism across kingdoms and phyla from yeast to humans.
Collapse
|
2
|
Takaine M, Ueno M, Kitamura K, Imamura H, Yoshida S. Reliable imaging of ATP in living budding and fission yeast. J Cell Sci 2019; 132:jcs.230649. [PMID: 30858198 DOI: 10.1242/jcs.230649] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Adenosine triphosphate (ATP) is a main metabolite essential for all living organisms. However, our understanding of ATP dynamics within a single living cell is very limited. Here, we optimized the ATP-biosensor QUEEN and monitored the dynamics of ATP with good spatial and temporal resolution in living yeasts. We found stable maintenance of ATP concentration in wild-type yeasts, regardless of carbon sources or cell cycle stages, suggesting that mechanism exists to maintain ATP at a specific concentration. We further found that ATP concentration is not necessarily an indicator of metabolic activity, as there is no clear correlation between ATP level and growth rates. During fission yeast meiosis, we found a reduction in ATP levels, suggesting that ATP homeostasis is controlled by differentiation. The use of QUEEN in yeasts offers an easy and reliable assay for ATP dynamicity and will answer several unaddressed questions about cellular metabolism in eukaryotes.
Collapse
Affiliation(s)
- Masak Takaine
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8512, Japan .,Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Japan
| | - Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiromi Imamura
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Yoshida
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8512, Japan .,Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan.,School of International Liberal Studies, Waseda University, Tokyo, 169-8050, Japan.,Japan Science and Technology Agency, PREST
| |
Collapse
|
3
|
Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2017; 7:5204-25. [PMID: 26636650 PMCID: PMC4868681 DOI: 10.18632/oncotarget.6440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023] Open
Abstract
A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast.
Collapse
Affiliation(s)
| | | | - Sadaf Mohtashami
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
4
|
Shulman RG, Rothman DL. Homeostasis and the glycogen shunt explains aerobic ethanol production in yeast. Proc Natl Acad Sci U S A 2015; 112:10902-7. [PMID: 26283370 PMCID: PMC4568274 DOI: 10.1073/pnas.1510730112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerobic glycolysis in yeast and cancer cells produces pyruvate beyond oxidative needs, a paradox noted by Warburg almost a century ago. To address this question, we reanalyzed extensive measurements from (13)C magnetic resonance spectroscopy of yeast glycolysis and the coupled pathways of futile cycling and glycogen and trehalose synthesis (which we refer to as the glycogen shunt). When yeast are given a large glucose load under aerobic conditions, the fluxes of these pathways adapt to maintain homeostasis of glycolytic intermediates and ATP. The glycogen shunt uses glycolytic ATP to store glycolytic intermediates as glycogen and trehalose, generating pyruvate and ethanol as byproducts. This conclusion is supported by studies of yeast with a partial block in the glycogen shunt due to the cif mutation, which found that when challenged with glucose, the yeast cells accumulate glycolytic intermediates and ATP, which ultimately leads to cell death. The control of the relative fluxes, which is critical to maintain homeostasis, is most likely exerted by the enzymes pyruvate kinase and fructose bisphosphatase. The kinetic properties of yeast PK and mammalian PKM2, the isoform found in cancer, are similar, suggesting that the same mechanism may exist in cancer cells, which, under these conditions, could explain their excess lactate generation. The general principle that homeostasis of metabolite and ATP concentrations is a critical requirement for metabolic function suggests that enzymes and pathways that perform this critical role could be effective drug targets in cancer and other diseases.
Collapse
Affiliation(s)
- Robert G Shulman
- Magnetic Resonance Research Center and Department of Diagnostic Radiology, Yale University, New Haven, CT 06520
| | - Douglas L Rothman
- Magnetic Resonance Research Center and Department of Diagnostic Radiology, Yale University, New Haven, CT 06520
| |
Collapse
|
5
|
Compartmental Analysis of Metabolism by 13C Magnetic Resonance Spectroscopy. BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Oliveira AP, Sauer U. The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res 2011; 12:104-17. [DOI: 10.1111/j.1567-1364.2011.00765.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana Paula Oliveira
- Institute of Molecular Systems Biology; Department of Biology; ETH Zurich; Zurich; Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology; Department of Biology; ETH Zurich; Zurich; Switzerland
| |
Collapse
|
7
|
The shock of vacuolar PrA on glycolytic flux, oxidative phosphorylation, and cell morphology by industrial Saccharomyces cerevisiae WZ65. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1586-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:568-76. [DOI: 10.1016/j.bbabio.2010.08.010] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/12/2010] [Accepted: 08/15/2010] [Indexed: 12/25/2022]
|
9
|
Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 2010; 76:7566-74. [PMID: 20889786 DOI: 10.1128/aem.01787-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Little is known about how the general lack of efficiency with which recombinant Saccharomyces cerevisiae strains utilize xylose affects the yeast metabolome. Quantitative metabolomics was therefore performed for two xylose-fermenting S. cerevisiae strains, BP000 and BP10001, both engineered to produce xylose reductase (XR), NAD(+)-dependent xylitol dehydrogenase and xylulose kinase, and the corresponding wild-type strain CEN.PK 113-7D, which is not able to metabolize xylose. Contrary to BP000 expressing an NADPH-preferring XR, BP10001 expresses an NADH-preferring XR. An updated protocol of liquid chromatography/tandem mass spectrometry that was validated by applying internal (13)C-labeled metabolite standards was used to quantitatively determine intracellular pools of metabolites from the central carbon, energy, and redox metabolism and of eight amino acids. Metabolomic responses to different substrates, glucose (growth) or xylose (no growth), were analyzed for each strain. In BP000 and BP10001, flux through glycolysis was similarly reduced (∼27-fold) when xylose instead of glucose was metabolized. As a consequence, (i) most glycolytic metabolites were dramatically (≤ 120-fold) diluted and (ii) energy and anabolic reduction charges were affected due to decreased ATP/AMP ratios (3- to 4-fold) and reduced NADP(+) levels (∼3-fold), respectively. Contrary to that in BP000, the catabolic reduction charge was not altered in BP10001. This was due mainly to different utilization of NADH by XRs in BP000 (44%) and BP10001 (97%). Thermodynamic analysis complemented by enzyme kinetic considerations suggested that activities of pentose phosphate pathway enzymes and the pool of fructose-6-phosphate are potential factors limiting xylose utilization. Coenzyme and ATP pools did not rate limit flux through xylose pathway enzymes.
Collapse
|
10
|
Galazzo JL, Bailey JE. Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol Bioeng 2009; 36:417-26. [PMID: 18595096 DOI: 10.1002/bit.260360413] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nongrowing Saccharomyces cerevisiae cells previously grown in alginate exhibit ethanol production rates 1.5 times greater than cells previously grown in suspension. Analysis of glucose, ethanol, and glycerol formation data using quasi-steady-state pathway stoichiometry shows that alginate-grown cells possess phosphofructokinase (PFK), ATPase, and polysaccharide synthesis maximum activities which are approximately two-, two-, and ninefold larger, respectively, than in suspension-grown cells. The estimated change in PFK maximum velocity is consistent with in vitro assays of PFK activity in extracts of suspension- and alginate-grown yeast. Estimation of ethanol production flux control coefficients using in vivo nuclear magnetic resonance (NMR) spectroscopy measurements of intracellular metabolite concentrations and a previously proposed detailed kinetic model of ethanol fermentation in yeast shows that glucose uptake dominates flux control in alginate-grown cells in suspension while earlier research revealed that PFK and ATPase exert significant flux control in suspension-grown cells. When placed in a calcium alginate matrix, alginate-grown cells produced ethanol 1.8 times more rapidly and accumulated substantially more polyphosphate than suspension-grown cells placed in alginate. Cells growing in alginate elicit responses at the genetic level which substantially alter pathway rates and flux control when these cells are used as either a suspended or an immobilized biocatalyst. These responses in gene expression to growth in alginate serve to reconfigure flux controls in alginate to a pattern which is similar to that obtained for suspended-grown cells in suspension.
Collapse
Affiliation(s)
- J L Galazzo
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
11
|
Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta Rev Cancer 2009; 1796:252-65. [PMID: 19682552 DOI: 10.1016/j.bbcan.2009.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 12/21/2022]
Abstract
During the last decades a considerable amount of research has been focused on cancer. A number of genetic and signaling defects have been identified. This has allowed the design and screening of a number of anti-tumor drugs for therapeutic use. One of the main challenges of anti-cancer therapy is to specifically target these drugs to malignant cells. Recently, tumor cell metabolism has been considered as a possible target for cancer therapy. It is widely accepted that tumors display an enhanced glycolytic activity and oxidative phosphorylation down-regulation (Warburg effect). Therefore, it seems reasonable that disruption of glycolysis might be a promising candidate for specific anti-cancer therapy. Nonetheless, the concept of aerobic glycolysis as the paradigm of tumor cell metabolism has been challenged, as some tumor cells use oxidative phosphorylation. Mitochondria are of special interest in cancer cell energy metabolism, as their physiology is linked to the Warburg effect. Besides, their central role in apoptosis makes these organelles a promising "dual hit target" for selectively eliminate tumor cells. Thus, it is desirable to have an easy-to-use and reliable model in order to do the screening for energy metabolism-inhibiting drugs to be used in cancer therapy. From a metabolic point of view, the fermenting yeast Saccharomyces cerevisiae and tumor cells share several features. In this paper we will review these common metabolic properties and we will discuss the possibility of using S. cerevisiae as an early screening test in the research for novel anti-tumor compounds used for the inhibition of tumor cell metabolism.
Collapse
|
12
|
Guimarães PMR, Londesborough J. The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high- and very high-gravity worts. Yeast 2008; 25:47-58. [PMID: 17944006 DOI: 10.1002/yea.1556] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Intracellular and extracellular ATP, ADP and AMP (i.e. 5'-AMP) were measured during fermentations of high- (15 degrees P) and very high-gravity (VHG, 25 degrees P) worts by two lager yeasts. Little extracellular ATP and ADP but substantial amounts of extracellular AMP were found. Extracellular AMP increased during fermentation and reached higher values (3 microM) in 25 degrees P than 15 degrees P worts (1 microM). More AMP (13 microM at 25 degrees P) was released during fermentation with industrially cropped yeast than with the same strain grown in the laboratory. ATP was the dominant intracellular adenine nucleotide and the adenylate energy charge (EC = ([ATP] + 0.5*[ADP])/([ATP] + [ADP] + [AMP])) remained high (>0.8) until residual sugar concentrations were low and specific rates of ethanol production were < 5% of the maximum values in early fermentation. The high ethanol concentrations (>85 g/l) reached in VHG fermentations did not decrease the EC below values that permit synthesis of new proteins. The results suggest that, during wort fermentations, the ethanol tolerance of brewer's strains is high so long as fermentation continues. Under these conditions, maintenance of the EC seems to depend upon active transport of alpha-glucosides, which in turn depends upon maintenance of the EC. Therefore, the collapse of the EC and cell viability when residual alpha-glucoside concentrations no longer support adequate rates of fermentation can be very abrupt. This emphasizes the importance of early cropping of yeast for recycling.
Collapse
|
13
|
Pham TK, Wright PC. Proteomic Analysis of Calcium Alginate-Immobilized Saccharomyces cerevisiae under High-Gravity Fermentation Conditions. J Proteome Res 2008; 7:515-25. [DOI: 10.1021/pr070391h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trong Khoa Pham
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
| | - Phillip C. Wright
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
| |
Collapse
|
14
|
Bosch D, Johansson M, Ferndahl C, Franzén CJ, Larsson C, Gustafsson L. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. FEMS Yeast Res 2007; 8:10-25. [PMID: 18042231 DOI: 10.1111/j.1567-1364.2007.00323.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae shows a marked preference for glucose and fructose, revealed by the repression of genes whose products are involved in processing other carbon sources. This response seems to be driven by sugar phosphorylation in the first steps of glycolysis rather than by the external sugar concentration. To gain a further insight into the role of the internal sugar signalling mechanisms, were measured the levels of upper intracellular glycolytic metabolites and adenine nucleotides in three mutant strains, HXT1, HXT7 and TM6*, with progressively reduced uptake capacities in comparison with the wild type. Reducing the rate of sugar consumption caused an accumulation of hexose phosphates upstream of the phosphofructokinase (PFK) and a reduction of fructose-1,6-bisphosphate levels. Mathematical modelling showed that these effects may be explained by changes in the kinetics of PFK and phosphoglucose isomerase. Moreover, the model indicated a modified sensitivity of the pyruvate dehydrogenase and the trichloroacetic acid cycle enzymes towards the NAD/NADH in the TM6* strain. The activation of the SNF1 sugar signalling pathway, previously observed in the TM6* strain, does not correlate with a reduction of the ATP : AMP ratio as reported in mammals. The mechanisms that may control the glycolytic rate at reduced sugar transport rates are discussed.
Collapse
Affiliation(s)
- Daniel Bosch
- Molecular Biotechnology, Chalmers Unviersity of Technology, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Fiechter A, Gmünder FK. Metabolic control of glucose degradation in yeast and tumor cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 39:1-28. [PMID: 2510472 DOI: 10.1007/bfb0051950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulation of glucose degradation in both yeasts and tumor cells is very similar in many respects. In both cases it leads to excretion of intermediary metabolites (e.g., ethanol, lactate) in those cell types where uptake of glucose is unrestricted (Saccharomyces cerevisiae, Bowes melanoma cells). The similarities between glucose metabolism observed in yeast and tumor cells is explained by the fact that cell transformation of animal cells leads to inadequate expression of (proto-)oncogenes, which force the cell to enter the cell cycle. These events are accompanied by alterations at the signal transduction level, a marked increase of glucose transporter synthesis, enhancement of glycolytic key enzyme activities, and slightly reduced respiration of the tumor cell. In relation to homologous glucose degradation found in yeast and tumor cells there exist strong similarities on the level of cell division cycle genes, signal transduction and regulation of glycolytic key enzymes. It has been demonstrated that ethanol and lactate excretion in yeast and tumor cells, respectively, result from an overflow reaction at the point of pyruvate that is due to a carbon flux exceeding the capacity of oxidative breakdown. Therefore, the respiratory capacity of a cell determines the amount of glycolytic breakdown products if ample glucose is available. This restricted flux is also referred to as the respiratory bottleneck. The expression "catabolite repression", which is often used in textbooks to explain ethanol and acid excretion, should be abandoned, unless specific mechanisms can be demonstrated. Furthermore, it was shown that maximum respiration and growth rates are only obtained under optimum culture conditions, where the carbon source is limiting.
Collapse
|
16
|
Mateescu GD. Functional oxygen-17 magnetic resonance imaging and localized spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 510:213-8. [PMID: 12580430 DOI: 10.1007/978-1-4615-0205-0_35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Functional oxygen-17 magnetic resonance (MR) imaging and localized spectroscopy is defined as the ensemble of MR measurements aiming at in vivo, noninvasive characterization of oxygen transport and utilization. After a brief description of the present status of in vivo 17O-MR, preliminary results are reported on oxygen delivery and consumption in cell suspensions of Saccharomyces cerevisiae. It is shown that parallel 31P-MR at high magnetic fields has an important corroborative value.
Collapse
Affiliation(s)
- Gheorghe D Mateescu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Beebe JA, Wiepz GJ, Guadarrama AG, Bertics PJ, Burke TJ. A carboxyl-terminal mutation of the epidermal growth factor receptor alters tyrosine kinase activity and substrate specificity as measured by a fluorescence polarization assay. J Biol Chem 2003; 278:26810-6. [PMID: 12746449 DOI: 10.1074/jbc.m301397200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of certain COOH-terminal truncation mutants of the epidermal growth factor receptor (EGFR) can lead to cell transformation, and with ligand stimulation, a broader spectrum of phosphorylated proteins appears compared with EGF-treated cells expressing wild-type EGFR. Accordingly, it has been proposed that elements within the COOH terminus may determine substrate specificity of the EGFR tyrosine kinase (Decker, S. J., Alexander, C., and Habib, T. (1992) J. Biol. Chem. 267, 1104-1108; Walton, G. M., Chen, W. S., Rosenfeld, M. G., and Gill, G. N. (1990) J. Biol. Chem. 265, 1750-1754). To address this hypothesis, we analyzed in vitro the steady-state kinetic parameters for phosphorylation of several substrates by both wild-type EGFR and an oncogenic EGFR mutant (the ct1022 mutant) truncated at residue 1022. The substrates included: (i) a phospholipase C-gamma fragment (residues 530-850); (ii) the 46-kDa isoform of the Shc adapter protein; (iii) a 13-residue peptide mimic for the region around the major autophosphorylation tyrosine and the Shc binding site (the Y1173 peptide); (iv) a poly(Glu,Tyr) 4:1 copolymer; and (v) the 8-residue peptide, angiotensin II. Our data demonstrate that the steady-state kinetic parameters for the ct1022 mutant differ from those of the wild-type enzyme, and the differences are substrate-dependent. These results support the concept that this oncogenic truncation/mutation alters EGFR substrate specificity, rather than causing a general alteration of activity. We performed the experiments using a non-radioactive fluorescence polarization assay that quantifies the degree of phosphorylation of peptide as well as natural substrates. The results are consistent with those from the traditional [gamma-32P]ATP/filtration assay.
Collapse
|
18
|
Pearce AK, Booth IR, Brown AJP. Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 2001; 147:403-410. [PMID: 11158357 DOI: 10.1099/00221287-147-2-403] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanisms by which the weak acid preservative benzoic acid inhibits the growth of Saccharomyces cerevisiae have been investigated. A reduction in the pyruvate kinase level, which decreases glycolytic flux, did not increase the sensitivity of yeast to benzoic acid. However, a decrease in 6-phosphofructo-1-kinase (PF1K), which does not affect glycolytic flux, did increase sensitivity to benzoic acid. Also, resistance was increased by elevating PF1K levels. Hence, resistance to benzoic acid was not dependent upon optimum glycolytic flux, but upon an adequate PF1K activity. Benzoic acid was shown to depress fructose 2,6-bisphosphate levels in YKC14, a mutant with low PF1K levels. This effect was partially suppressed by overexpressing constitutively active 6-phosphofructo-2-kinase (Pfk26(Asp644)) or by inactivating fructose-2,6-bisphosphatase (in a Deltafbp26 mutant). The inactivation of PF2K (in a Deltapfk26 Deltapfk27 mutant) increased benzoic acid sensitivity. Therefore, the antimicrobial effects of benzoic acid can be relieved, at least in part, by the genetic manipulation of PF1K or fructose 2,6-bisphosphate levels.
Collapse
Affiliation(s)
- Amanda K Pearce
- Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Ian R Booth
- Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Alistair J P Brown
- Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK1
| |
Collapse
|
19
|
Pearce AK, Crimmins K, Groussac E, Hewlins MJE, Dickinson JR, Francois J, Booth IR, Brown AJP. Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. MICROBIOLOGY (READING, ENGLAND) 2001; 147:391-401. [PMID: 11158356 DOI: 10.1099/00221287-147-2-391] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Yeast phosphofructo-1-kinase (Pf1k) and pyruvate kinase (Pyk1) are allosterically regulated enzymes that catalyse essentially irreversible reactions in glycolysis. Both the synthesis and activity of these enzymes are tightly regulated. To separate experimentally the control of Pf1k and Pyk1 synthesis from their allosteric regulation, a congenic set of PFK1, PFK2 and PYK1 mutants was constructed in which these wild-type coding regions were driven by alternative promoters. Mutants carrying PGK1 promoter fusions displayed normal rates of growth, glucose consumption and ethanol production, indicating that the relatively tight regulation of Pyk1 and Pf1k synthesis is not essential for glycolytic control under fermentative growth conditions. Mutants carrying fusions to an enhancer-less version of the PGK1 promoter (PGK1(Delta767)) expressed Pyk1 and Pf1k at about 2.5-fold lower levels than normal. Physiological and metabolic analysis of the PFK1 PFK2 double mutant indicated that decreased Pf1k had no significant effect on growth, apparently due to compensatory increases in its positive effector, fructose 2,6-bisphosphate. In contrast, growth rate and glycolytic flux were reduced in the PGK1(Delta767)-PYK1 mutant, which had decreased Pyk1 levels. Unexpectedly, the reduced Pyk1 levels caused the flow of carbon to the TCA cycle to increase, even under fermentative growth conditions. Therefore, Pyk1 exerts a significant level of control over both the rate and direction of carbon flux in yeast.
Collapse
Affiliation(s)
- Amanda K Pearce
- Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Kay Crimmins
- Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Evelyne Groussac
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504 UR-INRA 792, Département de Génie Biochimique et Alimentaire, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 04, France2
| | - Michael J E Hewlins
- Department of Chemistry, Cardiff University, PO Box 912, Cardiff CF10 3TB, UK3
| | - J Richard Dickinson
- Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK4
| | - Jean Francois
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504 UR-INRA 792, Département de Génie Biochimique et Alimentaire, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 04, France2
| | - Ian R Booth
- Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Alistair J P Brown
- Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK1
| |
Collapse
|
20
|
Abstract
The control of glycolytic flux in the yeast Saccharomyces cerevisiae was studied by using permeabilized cells. Cells were harvested from chemostat cultures and, after removal of the cell wall, nystatin was used to permeabilize the spheroplasts. By this method it is possible to study the performance and regulation of a complete and functional metabolic pathway and not only a single enzymatic step. The results showed that ATP has a strong negative effect on glycolytic activity affecting several of the glycolytic enzymes. However, the main targets for ATP inhibition was phosphofructokinase and pyruvate kinase. Phospofructokinase was inhibited by ATP concentrations starting at about 1-2 mM, while pyruvate kinase required ATP levels above 2.5 mM before any inhibition was visible. These ATP concentrations were in the same range as measured for nitrogen- and glucose-limited cells cultivated in chemostat cultures. Other potential candidates as enzymes susceptible to ATP inhibition included hexokinase and enolase. The ATP:ADP ratio, as well as trehalose-6-phosphate levels, did not seem to influence the glycolytic activity.
Collapse
Affiliation(s)
- C Larsson
- Department of Molecular Biotechnology, Chalmers University of Technology, Box 462, S-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
21
|
Larsson C, Nilsson A, Blomberg A, Gustafsson L. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 1997; 179:7243-50. [PMID: 9393686 PMCID: PMC179672 DOI: 10.1128/jb.179.23.7243-7250.1997] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anaerobic and aerobic chemostat cultures of Saccharomyces cerevisiae were performed at a constant dilution rate of 0.10 h(-1). The glucose concentration was kept constant, whereas the nitrogen concentration was gradually decreasing; i.e., the conditions were changed from glucose and energy limitation to nitrogen limitation and energy excess. This experimental setup enabled the glycolytic rate to be separated from the growth rate. There was an extensive uncoupling between anabolic energy requirements and catabolic energy production when the energy source was present in excess both aerobically and anaerobically. To increase the catabolic activity even further, experiments were carried out in the presence of 5 mM acetic acid or benzoic acid. However, there was almost no effect with acetate addition, whereas both respiratory (aerobically) and fermentative activities were elevated in the presence of benzoic acid. There was a strong negative correlation between glycolytic flux and intracellular ATP content; i.e., the higher the ATP content, the lower the rate of glycolysis. No correlation could be found with the other nucleotides tested (ADP, GTP, and UTP) or with the ATP/ADP ratio. Furthermore, a higher rate of glycolysis was not accompanied by an increasing level of glycolytic enzymes. On the contrary, the glycolytic enzymes decreased with increasing flux. The most pronounced reduction was obtained for HXK2 and ENO1. There was also a correlation between the extent of carbohydrate accumulation and glycolytic flux. A high accumulation was obtained at low glycolytic rates under glucose limitation, whereas nitrogen limitation during conditions of excess carbon and energy resulted in more or less complete depletion of intracellular storage carbohydrates irrespective of anaerobic or aerobic conditions. However, there was one difference in that glycogen dominated anaerobically whereas under aerobic conditions, trehalose was the major carbohydrate accumulated. Possible mechanisms which may explain the strong correlation between glycolytic flux, storage carbohydrate accumulation, and ATP concentrations are discussed.
Collapse
Affiliation(s)
- C Larsson
- Department of General and Marine Microbiology, Lundberg Laboratory, University of Göteborg, Sweden.
| | | | | | | |
Collapse
|
22
|
Sherry AD, Malloy CR. Isotopic methods for probing organization of cellular metabolism. Cell Biochem Funct 1996; 14:259-68. [PMID: 8952044 DOI: 10.1002/cbf.700] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
These examples serve to illustrate that it is now possible to investigate metabolism in intact tissues using a variety of biophysical methods. While we have concentrated on NMR methods, reflecting our own interests in using 13C as a metabolic tracer, GC-mass spectroscopy can often provide similar metabolic information and has the advantage of increased sensitivity over NMR. Combining either or both of these technologies with cleaver 'chemical biopsy' methods offers new opportunities to examine what may seem to be old metabolic questions in a much more relevant environment, the native state.
Collapse
Affiliation(s)
- A D Sherry
- Department of Chemistry, University of Texas at Dallas, Richardson 75083-0688, USA
| | | |
Collapse
|
23
|
Mason GF, Behar KL, Lai JC. The 13C isotope and nuclear magnetic resonance: unique tools for the study of brain metabolism. Metab Brain Dis 1996; 11:283-313. [PMID: 8979250 DOI: 10.1007/bf02029492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As studies of brain metabolism grow in complexity, investigators turn increasingly to nuclear magnetic resonance spectroscopy combined with 13C isotopic labeling. The unique ability to detect labeling non-destructively in specific carbon positions of individual compounds has opened the way to investigate brain metabolism in systems ranging from cellular preparations to the human brain in vivo. This review is written for investigators whose backgrounds do not include detailed knowledge of principles of nuclear magnetic resonance. Its purpose is to show the wide array of NMR techniques for 13C detection that are available for application in different systems to study aspects of brain metabolism, such as metabolic compartmentation and measurements of the tricarboxylic acid cycle rate in vivo. Basic NMR concepts are explained, and, because each detection method possesses specific advantages to address the requirements of different experimental goals, basic explanations and examples are given for each technique. The review should provide readers with a basic understanding of the methods of 13C detection by NMR and assess which of the methods are most applicable to the particular issues they may face in their own research.
Collapse
Affiliation(s)
- G F Mason
- Department of Medicine, University of Alabama at Birmingham 35294-4470, USA
| | | | | |
Collapse
|
24
|
Lohmeier-Vogel EM, McIntyre DD, Vogel HJ. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in cell suspensions and agarose-immobilized cultures of Pichia stipitis and Saccharomyces cerevisiae. Appl Environ Microbiol 1996; 62:2832-8. [PMID: 8702275 PMCID: PMC168068 DOI: 10.1128/aem.62.8.2832-2838.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The metabolism of glucose and xylose as a function of oxygenation in Pichia stipitis and Saccharomyces cerevisiae cell suspensions was studied by 31P and 13C nuclear magnetic resonance spectroscopy. The rate of both glucose and xylose metabolism was slightly higher and the production of ethanol was slightly lower in aerobic than in anoxic cell suspensions of P. stipitis. As well, the cytoplasmic pH of oxygenated cells was more alkaline than that of nonoxygenated cells. In contrast, in S. cerevisiae, the intracellular pH and the rate of glucose metabolism and ethanol production were the same under aerobic and anoxic conditions. Agarose-immobilized Pichia stipitis was able to metabolize xylose or glucose for 24 to 60 h at rates and with theoretical yields of ethanol similar to those obtained with anoxic cell suspensions. Cell growth within the beads, however, was severely compromised. The intracellular pH [pH(int)] of the entrapped cells fell to more acidic pH values in the course of the perfusions relative to corresponding cell suspensions. Of importance was the observation that no enhancement in the rate of carbohydrate metabolism occurred in response to changes in the pH(int) value. In contrast to P. stipitis, agarose-immobilized Saccharomyces cerevisiae showed a dramatic twofold increase in its ability to metabolize glucose in the immobilized state relative to cell suspensions. This strain was also able to grow within the beads, although the doubling time for the entrapped cells was longer, by a factor of 2, than the value obtained for log-phase batch cultures. Initially, the pH(int) of the immobilized cells was more alkaline than was observed with the corresponding S. cerevisiae cell suspensions; however, over time, the intracellular pH became increasingly acidic. As with immobilized P. stipitis, however, the pH(int) did not play a key role in controlling the rate of glucose metabolism.
Collapse
Affiliation(s)
- E M Lohmeier-Vogel
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
25
|
Heinisch JJ, Boles E, Timpel C. A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. Glycolysis/metabolic regulation/allosteric control. J Biol Chem 1996; 271:15928-33. [PMID: 8663166 DOI: 10.1074/jbc.271.27.15928] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work we used in vitro mutagenesis to modify the allosteric properties of the heterooctameric yeast phosphofructokinase. Specifically, we identified two amino acids involved in the binding of the most potent allosteric activator fructose 2,6-bisphosphate. Thus, Ser724 was replaced by an aspartate and His859 by a serine in each of the enzyme subunits. Whereas the substitutions had no drastic effects when introduced only in one of the two types of subunits, kinetic parameters were modified when both subunits carried the mutation. Thus, the enzyme with His859 --> Ser showed an increase in Ka for binding of the activator, whereas the one with Ser724 --> Asp failed to react to the addition of fructose 2, 6-bisphosphate, at all. The enzymes still responded to other allosteric activators, such as AMP. Stabilities of the mutant subunits were not significantly altered in vivo, as judged from Western blot analysis. Phenotypically, strains expressing the mutant PFK genes showed a pronounced effect on the level of intermediary metabolites after growth on glucose. Mutants not responding to the activator at all (Ser724 --> Asp) also displayed higher generation times on glucose medium. This could be suppressed by increasing the gene dosage of the mutant alleles. These results indicate that fructose 2,6-bisphosphate through its activation of phosphofructokinase plays an important role in regulation of the glycolytic flux.
Collapse
Affiliation(s)
- J J Heinisch
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|
26
|
Abstract
The existence and the regulatory mechanisms of the Pasteur effect in facultative anaerobic metazoa are discussed. There are three reasons for the controversy surrounding this phenomenon. 1) The different definitions of the Pasteur effect, 2) the antagonistic effect of metabolic depression and its species specific response to hypoxia, as well as 3) the laboratory-specific differences in the experimental procedures for analyzing the Pasteur effect and its regulation. This review aims to clarify the confusion about the existence of the Pasteur effect in facultative anaerobic metazoa and to offer possible molecular mechanisms.
Collapse
Affiliation(s)
- H Schmidt
- Institut für Tierphysiologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
27
|
Schulze U, Lidén G, Villadsen J. Dynamics of ammonia uptake in nitrogen limited anaerobic cultures of Saccharomyces cerevisiae. J Biotechnol 1996; 46:33-42. [PMID: 8672283 DOI: 10.1016/0168-1656(95)00176-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dynamics of the ammonia uptake by Saccharomyces cerevisiae under anaerobic conditions was studied in ammonia limited continuous cultures. A large number of pulse additions of ammonia (25-100 mg 1(-1)) were made at different dilution rates (0.05-0.20 h-1). The response was followed by on-line monitoring of the carbon dioxide evolution rate (CER), optical density, and by frequent analysis of extra- and intracellular metabolites. The uptake of a pulse of ammonia proceeded in a qualitatively highly reproducible pattern. Initially, a rapid and growth rate dependent uptake of ammonia was observed (lasting for about 10-15 min). Next followed a phase with little uptake (approx. 5 min). Finally, the rest of the ammonia pulse was taken up at a somewhat smaller rate which also depended on the growth rate. The first phase coincided with an increase in CER caused by mobilization of the intracellular carbohydrate trehalose and subsequently of glycogen. Regardless of dilution rate and the amount of ammonia added, the initial high uptake rate of ammonia was maintained until approximately the same amount of ammonia had been taken up. Transition from the first to the second uptake phase was associated with an increased glycerol production, indicating an elevated anabolic activity.
Collapse
Affiliation(s)
- U Schulze
- Department of Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
28
|
Lohmeier-Vogel EM, Hahn-Hägerdal B, Vogel HJ. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in Candida tropicalis cell suspensions. Appl Environ Microbiol 1995; 61:1414-9. [PMID: 7747961 PMCID: PMC167398 DOI: 10.1128/aem.61.4.1414-1419.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The metabolism of glucose and xylose was studied as a function of oxygenation in suspensions of Candida tropicalis by 31P and 13C nuclear magnetic resonance spectroscopy. Both the rate of carbohydrate metabolism and the cytoplasmic pH were independent of the rate of oxygenation in cells metabolizing glucose. However, these two parameters were markedly dependent on the rate of oxygenation in C. tropicalis cells metabolizing xylose. For example, the cytoplasmic pH in fully oxygenated xylose-metabolizing cells was 7.8 but decreased to 6.3 in anoxic cells. In general, suspensions of cells consuming xylose had a lower rate of sugar uptake, a more acidic cytoplasmic pH, lower levels of sugarphosphomonoesters (SP) and ATP, higher levels of intracellular Pi, a more alkaline vacuolar pH, and a lower rate of extracellular Pi assimilation and polyphosphate synthesis than cells consuming glucose. These observations indicate that C. tropicalis metabolizing xylose is less energized than glucose-metabolizing cells. On both carbon sources, however, an inverse correlation between intracellular levels of SP and Pi was observed. Also, uptake of extracellular Pi correlated with the synthesis of polyphosphates within the cells. During anoxia, Pi was not taken up, and polyphosphates were hydrolyzed instead to fulfill the cells' requirements for phosphate.
Collapse
Affiliation(s)
- E M Lohmeier-Vogel
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
29
|
Lohmeier-Vogel EM, Hahn-Hägerdal B, Vogel HJ. Phosphorus-31 and carbon-13 nuclear magnetic resonance study of glucose and xylose metabolism in agarose-immobilized Candida tropicalis. Appl Environ Microbiol 1995; 61:1420-5. [PMID: 7747962 PMCID: PMC167399 DOI: 10.1128/aem.61.4.1420-1425.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Candida tropicalis can ferment both hexose and pentose sugars. Here, we have used 31P and 13C nuclear magnetic resonance spectroscopy to study the capacity of this yeast species to metabolize glucose or xylose when immobilized in small (< 1-mm-diameter) agarose beads. Immobilized C. tropicalis metabolizing glucose showed rapid initial growth within the beads. A corresponding drop in the intracellular pH (from 7.8 to 7.25) and hydrolysis of intracellular polyphosphate stores were observed. Although the initial rate of glucose metabolism with immobilized C. tropicalis was similar to the rate observed previously in cell suspensions, a decrease by a factor of 2.5 occurred over 24 h. In addition to ethanol, a significant amount of glycerol was also produced. When immobilized C. tropicalis consumed xylose, cell growth within the beads was minimal. The intracellular pH dropped rapidly by 1.05 pH units to 6.4. Intracellular ATP levels were lower and intracellular Pi levels were higher than observed with glucose-perfused cells. Consumption of xylose by immobilized C. tropicalis was slower than was previously observed for oxygen-limited cell suspensions, and xylitol was the only fermentation product.
Collapse
Affiliation(s)
- E M Lohmeier-Vogel
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
30
|
Cortassa S, Aon MA. Metabolic control analysis of glycolysis and branching to ethanol production in chemostat cultures of Saccharomyces cerevisiae under carbon, nitrogen, or phosphate limitations. Enzyme Microb Technol 1994. [DOI: 10.1016/0141-0229(94)90033-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Beauvoit B, Rigoulet M, Bunoust O, Raffard G, Canioni P, Guérin B. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:163-72. [PMID: 8508788 DOI: 10.1111/j.1432-1033.1993.tb17909.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this work was to analyze the interactions between oxidative phosphorylations and glucose metabolism on yeast cells aerobically grown on lactate as carbon source and incubated in a resting cell medium. On such respiratory-competent yeast cells, four different metabolic steady states have particularly been studied: (a) glucose feeding under anaerobiosis, (b) ethanol supply under aerobiosis, (c) glucose supply under aerobiosis and (d) glucose plus ethanol under aerobiosis. For each condition, we measured: (a) the cellular ATP/ADP ratio and NADH content sustained under these conditions, (b) the glucose consumption rate (glucose conditions) and the respiratory rate (aerobic conditions). Under aerobic conditions, when ethanol is used as substrate, the ATP/ADP ratio and NADH level are very high as compared with glucose feeding. However, the rate of oxygen consumption is similar under both conditions. The main observation is a large increase in the respiratory rate when both glucose and ethanol are added. This increase corresponds to an ATP/ADP ratio and a NADH level lower than those observed with ethanol but higher than those with glucose. Therefore the response of the respiratory rate to the ATP/ADP ratio depends on the redox potential. We studied the way in which the ATP-consuming activity was increased under glucose+ethanol conditions. By NMR experiments, it appears that neither the futile cycle at the level of the phosphofructo-1-kinase/fructo-1,6-bisphosphatase couple nor the synthesis of carbohydrate stores could account for the increase in oxidative phosphorylation. However, it is shown that, in the presence of glucose+ethanol, ATP consumption is strongly stimulated. It is hypothesized that this consumption is essentially due to the combination of the well-known plasma membrane proton-ATPase activation by glucose and the high phosphate potential due to oxidative ethanol metabolism. While it is well documented that oxidative phosphorylations inhibit the glycolytic flux, i.e. the Pasteur effect, we clearly show in this work that the glycolytic pathway limits the ability of mitochondria to maintain a cellular phosphate potential.
Collapse
Affiliation(s)
- B Beauvoit
- Institut de Biochimie Cellulaire du CNRS, Université de Bordeaux II, France
| | | | | | | | | | | |
Collapse
|
32
|
Taipa MA, Cabral JMS, Santos H. Comparison of glucose fermentation by suspended and gel-entrapped yeast cells: An in vivo nuclear magnetic resonance study. Biotechnol Bioeng 1993; 41:647-53. [DOI: 10.1002/bit.260410607] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Petroff OA, Burlina AP, Black J, Prichard JW. Metabolism of [1-13C]glucose in a synaptosomally enriched fraction of rat cerebrum studied by 1H/13C magnetic resonance spectroscopy. Neurochem Res 1992. [PMID: 1667675 DOI: 10.1016/0140-6736(90)902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study explored the utility of 1H and 13C magnetic resonance spectroscopy to study a standard synaptosomally enriched fraction (P2 pellet) made from rat cerebrum. The preparations contained high concentrations of N-acetylaspartate and gamma-aminobutyric acid and low concentrations of glutamine, indicating that they were in fact rich in neuronal cytosol. The metabolic competence of the preparation was assessed by quantitative measurements of its ability to convert [1-13C]glucose into lactate, glutamate, aspartate, and other metabolites under well oxygenated conditions in 30 minutes. The minimum mean glycolytic rate was 0.8 mM glucose/min and the flow through the tricarboxylic acid cycle was equivalent to 0.2 mM glucose/min.
Collapse
Affiliation(s)
- O A Petroff
- Department of Neurology, Yale University, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
34
|
Petroff OA, Burlina AP, Black J, Prichard JW. Metabolism of [1-13C]glucose in a synaptosomally enriched fraction of rat cerebrum studied by 1H/13C magnetic resonance spectroscopy. Neurochem Res 1991; 16:1245-51. [PMID: 1667675 DOI: 10.1007/bf00966703] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study explored the utility of 1H and 13C magnetic resonance spectroscopy to study a standard synaptosomally enriched fraction (P2 pellet) made from rat cerebrum. The preparations contained high concentrations of N-acetylaspartate and gamma-aminobutyric acid and low concentrations of glutamine, indicating that they were in fact rich in neuronal cytosol. The metabolic competence of the preparation was assessed by quantitative measurements of its ability to convert [1-13C]glucose into lactate, glutamate, aspartate, and other metabolites under well oxygenated conditions in 30 minutes. The minimum mean glycolytic rate was 0.8 mM glucose/min and the flow through the tricarboxylic acid cycle was equivalent to 0.2 mM glucose/min.
Collapse
Affiliation(s)
- O A Petroff
- Department of Neurology, Yale University, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
35
|
31P NMR and 13C NMR studies of recombinant Saccharomyces cerevisiae with altered glucose phosphorylation activities. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf00369557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Lundberg P, Harmsen E, Ho C, Vogel HJ. Nuclear magnetic resonance studies of cellular metabolism. Anal Biochem 1990; 191:193-222. [PMID: 2085167 DOI: 10.1016/0003-2697(90)90210-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- P Lundberg
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
37
|
Galazzo JL, Bailey JE. Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 1990. [DOI: 10.1016/0141-0229(90)90033-m] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Coppella SJ, Dhurjati P. A mathematical description of recombinant yeast. Biotechnol Bioeng 1990; 35:356-74. [DOI: 10.1002/bit.260350405] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Delort AM, Dauphin G, Guyot J, Jeminet G. Study by NMR of the mode of action of monensin on Streptococcus faecalis de-energized and energized cells. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1013:11-20. [PMID: 2551382 DOI: 10.1016/0167-4889(89)90121-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Streptococcus faecalis was used as a bacterial model for studying the mode of action of monensin by NMR investigations. Experiments were carried out in two states, characterized by several complementary methods: (i) the resting (de-energized) cell which was considered as an inert biological membrane, on which cationic transport induced by the ionophore alone can be investigated; (ii) the active (energized) cell where the ionophore-sensitive response of the living organism, particularly the cation pumps and the glycolysis, is probed. Studies of resting cells were performed, with changing external ionic concentrations, in the presence of monensin, which is preferentially a sodium carrier. Internal and external Na+ and H+ were followed by corresponding 23Na and 31P (inorganic phosphate) NMR resonances, K+ fluxes were measured by atomic absorption. It was shown that the induced cationic movements were linked to the existing ionic gradients for K+ and Na+. 31P and 13C NMR spectra for the intermediary metabolites detected in active cells showed that glycolysis is dramatically modified in the presence of monensin.
Collapse
Affiliation(s)
- A M Delort
- Laboratoire de Chimie Organique Biologique, U.R.A. 485 du CNRS, Université Blaise Pascal Aubière, France
| | | | | | | |
Collapse
|
40
|
van Urk H, Schipper D, Breedveld GJ, Mak PR, Scheffers WA, van Dijken JP. Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 992:78-86. [PMID: 2665820 DOI: 10.1016/0304-4165(89)90053-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of pyruvate metabolism in the triggering of aerobic, alcoholic fermentation in Saccharomyces cerevisiae has been studied. Since Candida utilis does not exhibit a Crabtree effect. this yeast was used as a reference organism. The localization, activity and kinetic properties of pyruvate carboxylase (EC 6.4.1.1), the pyruvate dehydrogenase complex and pyruvate decarboxylase (EC 4.1.1.1) in cells of glucose-limited chemostat cultures of the two yeasts were compared. In contrast to the general situation in fungi, plants and animals, pyruvate carboxylase was found to be a cytosolic enzyme in both yeasts. This implies that for anabolic processes, transport of C4-dicarboxylic acids into the mitochondria is required. Isolated mitochondria from both yeasts exhibited the same kinetics with respect to oxidation of malate. Also, the affinity of isolated mitochondria for pyruvate oxidation and the in situ activity of the pyruvate dehydrogenase complex was similar in both types of mitochondria. The activity of the cytosolic enzyme pyruvate decarboxylase in S. cerevisiae from glucose-limited chemostat cultures was 8-fold that in C. utilis. The enzyme was purified from both organisms, and its kinetic properties were determined. Pyruvate decarboxylase of both yeasts was competitively inhibited by inorganic phosphate. The enzyme of S. cerevisiae was more sensitive to this inhibitor than the enzyme of C. utilis. The in vivo role of phosphate inhibition of pyruvate decarboxylase upon transition of cells from glucose limitation to glucose excess and the associated triggering of alcoholic fermentation was investigated with 31P-NMR. In both yeasts this transition resulted in a rapid drop of the cytosolic inorganic phosphate concentration. It is concluded that the relief from phosphate inhibition does stimulate alcoholic fermentation, but it is not a prerequisite for pyruvate decarboxylase to become active in vivo. Rather, a high glycolytic flux and a high level of this enzyme are decisive for the occurrence of alcoholic fermentation after transfer of cells from glucose limitation to glucose excess.
Collapse
Affiliation(s)
- H van Urk
- Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Alterthum F, Dombek KM, Ingram LO. Regulation of Glycolytic Flux and Ethanol Production in
Saccharomyces cerevisiae
: Effects of Intracellular Adenine Nucleotide Concentrations on the In Vitro Activities of Hexokinase, Phosphofructokinase, Phosphoglycerate Kinase, and Pyruvate Kinase. Appl Environ Microbiol 1989; 55:1312-4. [PMID: 16347921 PMCID: PMC184300 DOI: 10.1128/aem.55.5.1312-1314.1989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The progressive decline in the glycolytic activity of
Saccharomyces cerevisiae
during batch fermentation is accompanied by changes in adenine nucleotide pools. The relative activities of four glycolytic enzymes were examined in vitro in the presence of nucleotide concentrations equivalent to intracellular pools. Phosphofructokinase and pyruvate kinase were not inhibited. Phosphoglycerate kinase was inhibited by AMP but was judged unlikely to be of physiological consequence owing to enzyme abundance. Both isoenzymes of hexokinase were strongly inhibited by AMP. The degree of hexokinase inhibition was sufficient to account for the observed decline in glycolytic activity during batch fermentation.
Collapse
Affiliation(s)
- F Alterthum
- Departamento de Microbiología, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil, and Department of Microbiology and Cell Science, 1052 McCarty Hall, University of Florida, Gainesville, Florida 32611
| | | | | |
Collapse
|
42
|
Galazzo JL, Bailey JE. In vivo nuclear magnetic resonance analysis of immobilization effects on glucose metabolism of yeastSaccharomyces cerevisiae. Biotechnol Bioeng 1989; 33:1283-9. [DOI: 10.1002/bit.260331009] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
|
44
|
Gaunt DM, Degn H, Lloyd D. The influence of oxygen and organic hydrogen acceotors on glycolytic dioxide production inBrettanomyces anomalus. Yeast 1988. [DOI: 10.1002/yea.320040403] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Keleti T, Ovádi J. Control of metabolism by dynamic macromolecular interactions. CURRENT TOPICS IN CELLULAR REGULATION 1988; 29:1-33. [PMID: 3293924 DOI: 10.1016/b978-0-12-152829-4.50003-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- T Keleti
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
46
|
Mechanism of stimulation of endogenous fermentation in yeast by carbonyl cyanide m-chlorophenylhydrazone. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47917-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Abstract
An exciting aspect of NMR spectroscopy is its ability to monitor, non-invasively, a variety of small molecules in cells and tissues. This leads to the possibility of investigating details of cellular biochemistry previously obscured by separation and purification procedures.
Collapse
Affiliation(s)
- K M Brindle
- Department of Biochemistry, University of Oxford, U.K
| | | |
Collapse
|
48
|
|