1
|
Kimura M, Sakoh T, Sakaguchi M, Ishikawa S, Odagiri T, Yoshino N, Muraki Y. Expression and functional analysis of mouse chitinases without the ZZ domain of Staphylococcus aureus Protein A. Int J Biol Macromol 2025; 290:139932. [PMID: 39824406 DOI: 10.1016/j.ijbiomac.2025.139932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Chitinase plays a role in mammalian immune responses, particularly in the degradation of fungal cell walls. The aim of the present study was to express and characterize recombinant mouse chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) without the ZZ domain, a domain that may interfere with immunological analyses. We successfully expressed recombinant chitinases without the ZZ domain (Chit1-V5-His and AMCase-V5-His) as a soluble protein from an expression vector pET21a in the Escherichia coli Rosetta-gami B (DE3) strain. Chit1-V5-His exhibited chitinolytic activity similar to that of ProteinA-Chit1-V5-His (a recombinant Chit1 with the ZZ domain) and natural Chit1, both with synthetic and natural substrates. Differential scanning fluorimetry and thermal stability assays revealed that Chit1-V5-His retained functional stability comparable to that of ProteinA-Chit1-V5-His, although ProteinA-Chit1-V5-His was more thermally stable. AMCase-V5-His demonstrated prominent chitinolytic activity at pH 2.0, aligning with the properties of natural AMCase. Owing to the lack of the ZZ domain that potentially binds to immunoglobulin G Fc region, Chit1-V5-His and AMCase-V5-His are advantageous tools for immunological analyses, as they do not block the Fc receptor-mediated phagocytosis of fungi by polymorphonuclear neutrophils and macrophages. Thus, this expression system effectively produces functional chitinases, facilitating further studies on their roles in mammalian immunity.
Collapse
Affiliation(s)
- Masahiro Kimura
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan; Department of Chemistry and Life Science, Kogakuin University, 2665‑1 Nakano‑Cho, Hachioji, Tokyo 192-0015, Japan
| | - Takumi Sakoh
- Department of Chemistry and Life Science, Kogakuin University, 2665‑1 Nakano‑Cho, Hachioji, Tokyo 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, 2665‑1 Nakano‑Cho, Hachioji, Tokyo 192-0015, Japan
| | - Shizuma Ishikawa
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan.
| |
Collapse
|
2
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
3
|
Abstract
The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific toward particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications in proteins and peptides widen the application of affinity ligand-tag receptors pairs toward universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely the affinity tags and receptors employed on the production of recombinant fusion proteins, and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Collapse
|
4
|
Ghahremanifard P, Rezaeinezhad N, Rigi G, Ramezani F, Ahmadian G. Designing a novel signal sequence for efficient secretion of Candida antarctica lipase B in E. coli: The molecular dynamic simulation, codon optimization and statistical analysis approach. Int J Biol Macromol 2018; 119:291-305. [DOI: 10.1016/j.ijbiomac.2018.07.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
|
5
|
Zarai Y, Margaliot M, Sontag ED, Tuller T. Controllability Analysis and Control Synthesis for the Ribosome Flow Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1351-1364. [PMID: 28541906 PMCID: PMC5778923 DOI: 10.1109/tcbb.2017.2707420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ribosomal density along different parts of the coding regions of the mRNA molecule affects various fundamental intracellular phenomena including: protein production rates, global ribosome allocation and organismal fitness, ribosomal drop off, co-translational protein folding, mRNA degradation, and more. Thus, regulating translation in order to obtain a desired ribosomal profile along the mRNA molecule is an important biological problem. We study this problem by using a dynamical model for mRNA translation, called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as an ordered chain of $n$ sites. The RFM includes $n$ state-variables describing the ribosomal density profile along the mRNA molecule, and the transition rates from each site to the next are controlled by $n+1$ positive constants. To study the problem of controlling the density profile, we consider some or all of the transition rates as time-varying controls. We consider the following problem: given an initial and a desired ribosomal density profile in the RFM, determine the time-varying values of the transition rates that steer the system to the desired density profile, if they exist. More specifically, we consider two control problems. In the first, all transition rates can be regulated separately, and the goal is to steer the ribosomal density profile and the protein production rate from a given initial value to a desired value. In the second problem, one or more transition rates are jointly regulated by a single scalar control, and the goal is to steer the production rate to a desired value within a certain set of feasible values. In the first case, we show that the system is controllable, i.e., the control is powerful enough to steer the system to any desired value in finite time, and provide simple closed-form expressions for constant positive control functions (or transition rates) that asymptotically steer the system to the desired value. In the second case, we show that the system is controllable, and provide a simple algorithm for determining the constant positive control value that asymptotically steers the system to the desired value. We discuss some of the biological implications of these results.
Collapse
|
6
|
Bao RM, Yang HM, Yu CM, Zhang WF, Tang JB. An efficient protocol to enhance the extracellular production of recombinant protein from Escherichia coli by the synergistic effects of sucrose, glycine, and Triton X-100. Protein Expr Purif 2016; 126:9-15. [DOI: 10.1016/j.pep.2016.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 11/17/2022]
|
7
|
High-level SUMO-mediated fusion expression of ABP-dHC-cecropin A from multiple joined genes in Escherichia coli. Anal Biochem 2016; 509:15-23. [PMID: 27377968 DOI: 10.1016/j.ab.2016.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
Abstract
The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, evaluation of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve the expression level of ABP-dHC-cecropin A in E. coli, tandem repeats of the ABP-dHC-cecropin A gene were constructed and expressed as fusion proteins (SUMO-nABP-dHC-cecropin, n = 1, 2, 3, 4) via pSUMO-nABP-dHC-cecropin A vectors (n = 1, 2, 3, 4). Comparison of the expression levels of soluble SUMO-nABP-dHC-cecropin A fusion proteins (n = 1, 2, 3, 4) suggested that BL21 (DE3)/pSUMO-3ABP-dHC-cecropin A is an ideal recombinant strain for ABP-dHC-cecropin A production. Under the selected conditions of cultivation and isopropylthiogalactoside (IPTG) induction, the expression level of ABP-dHC-cecropin A was as high as 65 mg/L, with ∼21.3% of the fusion protein in soluble form. By large-scale fermentation, protein production reached nearly 300 mg/L, which is the highest yield of ABP-dHC-cecropin A reported to date. In antibacterial experiments, the efficacy was approximately the same as that of synthetic ABP-dHC-cecropin A. This method provides a novel and effective means of producing large amounts of ABP-dHC-cecropin A.
Collapse
|
8
|
Enhanced and Secretory Expression of Human Granulocyte Colony Stimulating Factor by Bacillus subtilis SCK6. BIOMED RESEARCH INTERNATIONAL 2016; 2015:636249. [PMID: 26881203 PMCID: PMC4735991 DOI: 10.1155/2015/636249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022]
Abstract
This study describes a simplified approach for enhanced expression and secretion of a pharmaceutically important human cytokine, that is, granulocyte colony stimulating factor (GCSF), in the culture supernatant of Bacillus subtilis SCK6 cells. Codon optimized GCSF and pNWPH vector containing SpymwC signal sequence were amplified by prolonged overlap extension PCR to generate multimeric plasmid DNA, which was used directly to transform B. subtilis SCK6 supercompetent cells. Expression of GCSF was monitored in the culture supernatant for 120 hours. The highest expression, which corresponded to 17% of the total secretory protein, was observed at 72 hours of growth. Following ammonium sulphate precipitation, GCSF was purified to near homogeneity by fast protein liquid chromatography on a QFF anion exchange column. Circular dichroism spectroscopic analysis showed that the secondary structure contents of the purified GCSF are similar to the commercially available GCSF. Biological activity, as revealed by the regeneration of neutrophils in mice treated with ifosfamine, was also similar to the commercial preparation of GCSF. This, to our knowledge, is the first study that reports secretory expression of human GCSF in B. subtilis SCK6 with final recovery of up to 96 mg/L of the culture supernatant, without involvement of any chemical inducer.
Collapse
|
9
|
Poker G, Zarai Y, Margaliot M, Tuller T. Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach. J R Soc Interface 2015; 11:20140713. [PMID: 25232050 DOI: 10.1098/rsif.2014.0713] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation-elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics.
Collapse
Affiliation(s)
- Gilad Poker
- School of EE-Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoram Zarai
- School of EE-Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Margaliot
- School of EE-Systems, Tel Aviv University, Tel Aviv 69978, Israel The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamir Tuller
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Sakaguchi M, Matsushima Y, Nankumo T, Seino J, Miyakawa S, Honda S, Sugahara Y, Oyama F, Kawakita M. Glucoamylase of Caulobacter crescentus CB15: cloning and expression in Escherichia coli and functional identification. AMB Express 2014; 4:5. [PMID: 24468405 PMCID: PMC3917699 DOI: 10.1186/2191-0855-4-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 11/20/2022] Open
Abstract
The biochemical properties of the maltodextrin-hydrolyzing enzymes of cold-tolerant proteobacterium Caulobacter crescentus CB15 remain to be elucidated, although whose maltodextrin transport systems were well investigated. We cloned the putative glucoamylase of C. crescentus CB15 (CauloGA) gene. The CauloGA gene product that was expressed in E. coli was prone to forming inclusion bodies; however, most of the gene product was expressed in a soluble and active form when it was expressed as a fusion protein with Staphylococcus Protein A. The fusion protein was purified using an IgG Sepharose column and was identified as the active GA. The optimum temperature and pH for the activity of this GA toward maltotriose as a substrate were approximately 40°C and 5.0, respectively, and a differential scanning fluorimetry (DSF) analysis revealed that the melting temperature (Tm) of CauloGA was 42.9°C. The kinetic analyses with maltotriose and other maltodextrins as the substrates indicated that CauloGA has higher kcat and smaller Km values at 30°C with both substrates compared with other GAs at lower substrate concentration. However, the enzyme activities toward the substrates decreased as the substrate concentrations increased at concentrations higher than approximately 10-fold the Km. The function-based identification of thermolabile Caulobacter GA contributes to the understanding of the maltodextrin-degradation system of C. crescentus as well as the bacterial GA’s function-structure relationship.
Collapse
|
11
|
Pina AS, Batalha IL, Roque ACA. Affinity tags in protein purification and peptide enrichment: an overview. Methods Mol Biol 2014; 1129:147-68. [PMID: 24648075 DOI: 10.1007/978-1-62703-977-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Collapse
Affiliation(s)
- Ana Sofia Pina
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | |
Collapse
|
12
|
Chittibabu G, Ma C, Netter HJ, Noronha SB, Coppel RL. Production, characterization, and immunogenicity of a secreted form of Plasmodium falciparum merozoite surface protein 4 produced in Bacillus subtilis. Appl Microbiol Biotechnol 2013; 98:3669-78. [PMID: 24146077 DOI: 10.1007/s00253-013-5275-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/04/2013] [Accepted: 09/07/2013] [Indexed: 01/08/2023]
Abstract
Plasmodium falciparum is the causative agent of the most serious form of malaria. Although a combination of control measures has significantly limited malaria morbidity and mortality in the last few years, it is generally agreed that sustained control or even eradication will require additional tools including an effective malaria vaccine. Merozoite surface protein 4, MSP4, which is present during the asexual stage of P. falciparum, is a recognized target that would be useful in a subunit vaccine against blood stages of malaria. Falciparum malaria is most prevalent in developing countries, and this in turn leads to a requirement for safe, low-cost vaccines. We have attempted to utilize the nonpathogenic, gram-positive organism Bacillus subtilis to produce PfMSP4. PfMSP4 was secreted into the culture medium at a yield of 4.5 mg/L. Characterization studies including SDS-PAGE, mass spectrometry, and N-terminal sequencing indicated that the B. subtilis expression system secreted a full length PfMSP4 protein compared to a truncated version in Escherichia coli. Equivalent amounts of purified B. subtilis and E. coli-derived PfMSP4 were used for immunization studies, resulting in statistically significant higher mean titer values for the B. subtilis-derived immunogen. The mouse antibodies raised against B. subtilis produced PfMSP4 that were reactive to parasite proteins as evidenced by immunoblotting on parasite lysate and indirect immunofluorescence assays of fixed parasites. The B. subtilis expression system, in contrast to E. coli, expresses higher amounts of full length PfMSP4 products, decreased levels of aggregates, and allows the development of simplified downstream processing procedures.
Collapse
Affiliation(s)
- G Chittibabu
- Department of Chemical engineering, IIT Bombay, Mumbai, 400076, India
| | | | | | | | | |
Collapse
|
13
|
Lundström H, Brobjer M, Osterlöf B, Moks T. A completely automated system for on-line monitoring of the production of a growth factor secreted during fermentation of Escherichia coli. Biotechnol Bioeng 2012; 36:1056-62. [PMID: 18595044 DOI: 10.1002/bit.260361011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The production of IGF-1 (insulin-like growth factor 1), expressed in Escherichia coli as a secreted fusion protein with affinity for the Fc region of IgG, was monitored automatically during fermentations. A sampling device was used to automatically inject filtered culture medium from the fermentor onto a small affinity column (IgG Sepharose(R) Fast Flow) connected to a chromatographic system. The area of the eluted peak was proportional to the concentration of the fusion protein. The relationship was linear over the range 25-630 microg/mL with relative standard deviation of around 1% at the higher concentrations. Samples could be monitored automatically every half hour during fermentation (48 h). The method of analysis is nondestructive, allowing further analysis of product quality. A complete evaluation of the monitoring system is described. With this system, fermentations based on the described expression system can be optimized on the basis of product concentration; this will lead to more effective fermentations and higher product yields. It should also be possible to monitor other secreted products with this system by using other affinity gels.
Collapse
Affiliation(s)
- H Lundström
- Pharmacia LKB Biotechnology AB, S-751 82 Uppsala, Sweden
| | | | | | | |
Collapse
|
14
|
Fakruddin M, Mohammad Mazumdar R, Bin Mannan KS, Chowdhury A, Hossain MN. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli. ISRN BIOTECHNOLOGY 2012; 2013:590587. [PMID: 25969776 PMCID: PMC4403561 DOI: 10.5402/2013/590587] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/07/2012] [Indexed: 11/23/2022]
Abstract
E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.
Collapse
Affiliation(s)
- Md Fakruddin
- Industrial Microbiology Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | | | | | - Abhijit Chowdhury
- Industrial Microbiology Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md Nur Hossain
- Industrial Microbiology Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| |
Collapse
|
15
|
Dana A, Tuller T. Efficient manipulations of synonymous mutations for controlling translation rate: an analytical approach. J Comput Biol 2012; 19:200-31. [PMID: 22300321 DOI: 10.1089/cmb.2011.0275] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gene translation is a central process in all living organism with important ramifications to almost every biomedical field. Previous systems evolutionary studies in the field have demonstrated that in many organisms coding sequence features undergo selection to optimize this process. In the current study, we report for the first time analytical proofs related to the various aspects of this process and its optimality. Among our results we show that coding sequences with mono- tonic increasing profiles of translation efficiency (i.e., with slower codons near the 5'UTR), mathematically optimize ribosomal allocation by minimizing the number of ribosomes needed for translating a codon per time unit. Thus, the genomic translation efficiency profile reported in previous studies for many organisms is optimal in this sense. In addition, we show that improving translation efficiency of a codon in a gene may result in a decrease in the translation rate of other genes, demonstrating that the relation between codon bias and protein translation rate is less trivial than was assumed before. Based on these observations we describe an efficient heuristic for designing coding sequences with specific translation efficiency and minimal ribosomal allocation for heterologous gene expression. We demonstrate how this heuristic can be used in biotechnology for engineering a heterologous gene before expressing it in a new host.
Collapse
Affiliation(s)
- Alexandra Dana
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
16
|
Wang Q, Zhu F, Xin Y, Liu J, Luo L, Yin Z. Expression and purification of antimicrobial peptide buforin IIb in Escherichia coli. Biotechnol Lett 2011; 33:2121-6. [PMID: 21735257 DOI: 10.1007/s10529-011-0687-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 06/22/2011] [Indexed: 11/26/2022]
Abstract
A novel production method in Escherichia coli for an antimicrobial peptide of 21 amino acids, buforin IIb, which is a synthetic analog of buforin II, has been developed. The buforin IIb gene was cloned into the vector pET32a to construct an expression vector pET32a-buforin IIb. The fusion protein Trx-buforin IIb, purified by nickel nitrilo-triacetic acid (Ni-NTA) resin chromatography, was cleaved by hydroxylamine hydrochloride to release recombinant buforin IIb. Purification of recombinant buforin IIb was achieved by HPLC: about 3.1 mg/l active recombinant buforin IIb with purity >99% was obtained. The recombinant buforin IIb showed antimicrobial activities that were similar to the synthetic one.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Li W, Li L, Li K, Lin J, Sun X, Tang K. Expression of biologically active human insulin-like growth factor 1 in Arabidopsis thaliana seeds via oleosin fusion technology. Biotechnol Appl Biochem 2011; 58:139-46. [PMID: 21679237 DOI: 10.1002/bab.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/07/2011] [Indexed: 11/12/2022]
Abstract
Novel protein expression in plant-based systems has become an important tool in producing and studying therapeutic proteins. Among many plant-based systems developed so far, oleosin fusion technology is one of the most cost-effective and convenient methods. In this study, an important therapeutic protein, human insulin-like growth factor 1 (hIGF-1), was expressed in Arabidopsis thaliana seeds via this technology. The plant bias codon usage-optimized hIGF-1 gene was fused to the C-terminal of A. thaliana 18.5 kDa oleosin gene, and the fusion gene driven by an oleosin promoter was transferred into A. thaliana ecotype Col-0. The accumulation of oleosin-hIGF-1 fusion protein in transgenic seeds was up to 0.75% of total seed protein (TSP) and the expression level of hIGF-1 was 0.17% of the TSP, which was eight times higher than previously reported using other plant-based hIGF-1 production systems. The biological activity of the hIGF-1 as an oleosin-hIGF-1 fusion protein in vitro was demonstrated by using human SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Enhancing Functional Expression of Heterologous Burkholderia Lipase in Escherichia coli. Mol Biotechnol 2010; 47:130-43. [DOI: 10.1007/s12033-010-9320-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Li JF, Zhang J, Zhang Z, Kang CT, Zhang SQ. SUMO Mediating Fusion Expression of Antimicrobial Peptide CM4 from two Joined Genes in Escherichia coli. Curr Microbiol 2010; 62:296-300. [DOI: 10.1007/s00284-010-9705-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/21/2010] [Indexed: 11/29/2022]
|
20
|
Casales E, Aranda A, Quetglas JI, Ruiz-Guillen M, Rodriguez-Madoz JR, Prieto J, Smerdou C. A novel system for the production of high levels of functional human therapeutic proteins in stable cells with a Semliki Forest virus noncytopathic vector. N Biotechnol 2010; 27:138-48. [PMID: 20188220 DOI: 10.1016/j.nbt.2010.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 01/18/2023]
Abstract
Semliki Forest virus (SFV) vectors lead to high protein expression in mammalian cells, but expression is transient due to vector cytopathic effects, inhibition of host cell proteins and RNA-based expression. We have used a noncytopathic SFV mutant (ncSFV) RNA vector to generate stable cell lines expressing two human therapeutic proteins: insulin-like growth factor I (IGF-I) and cardiotrophin-1 (CT-1). Therapeutic genes were fused at the carboxy-terminal end of Puromycin N-acetyl-transferase gene by using as a linker the sequence coding for foot-and-mouth disease virus (FMDV) 2A autoprotease. These cassettes were cloned into the ncSFV vector. Recombinant ncSFV vectors allowed rapid and efficient selection of stable BHK cell lines with puromycin. These cells expressed IGF-I and CT-1 in supernatants at levels reaching 1.4 and 8.6 microg/10(6)cells/24 hours, respectively. Two cell lines generated with each vector were passaged ten times during 30 days, showing constant levels of protein expression. Recombinant proteins expressed at different passages were functional by in vitro signaling assays. Stability at RNA level was unexpectedly high, showing a very low mutation rate in the CT-1 sequence, which did not increase at high passages. CT-1 was efficiently purified from supernatants of ncSFV cell lines, obtaining a yield of approximately 2mg/L/24 hours. These results indicate that the ncSFV vector has a great potential for the production of recombinant proteins in mammalian cells.
Collapse
Affiliation(s)
- Erkuden Casales
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Narayanan N, Khan M, Chou CP. Enhancing functional expression of heterologous lipase B in Escherichia coli by extracellular secretion. J Ind Microbiol Biotechnol 2009; 37:349-61. [DOI: 10.1007/s10295-009-0680-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 12/08/2009] [Indexed: 12/13/2022]
|
22
|
Zhou L, Zhao Z, Li B, Cai Y, Zhang S. TrxA mediating fusion expression of antimicrobial peptide CM4 from multiple joined genes in Escherichia coli. Protein Expr Purif 2009; 64:225-30. [DOI: 10.1016/j.pep.2008.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 11/28/2022]
|
23
|
Expression and purification the antimicrobial peptide CM4 in Escherichia coli. Biotechnol Lett 2008; 31:437-41. [DOI: 10.1007/s10529-008-9893-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 10/31/2008] [Accepted: 11/12/2008] [Indexed: 11/27/2022]
|
24
|
Abstract
Targeting recombinant protein production to the periplasmic space of Escherichia coli presents several advantages over cytoplasmic production in inclusion bodies and at the same time overcomes the low productivity problem often associated with culture medium secretion. This chapter presents a strategy for periplasmic production of recombinant proteins fused to synthetic Z domains derived from staphylococcal protein A. Expression, purification, and monitoring strategies are discussed using green fluorescent protein and human proinsulin as model proteins.
Collapse
Affiliation(s)
- Filipe J Mergulhão
- LEPAE, Faculty of Engineering of the University of Porto, Chemical Engineering Department, Porto, Portugal
| | | |
Collapse
|
25
|
Gupta MN, Mattiasson B. Unique applications of immobilized proteins in bioanalytical systems. METHODS OF BIOCHEMICAL ANALYSIS 2006; 36:1-34. [PMID: 1552864 DOI: 10.1002/9780470110577.ch1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M N Gupta
- Department of Biotechnology, Chemical Center, Lund, Sweden
| | | |
Collapse
|
26
|
Malik A, Rudolph R, Söhling B. A novel fusion protein system for the production of native human pepsinogen in the bacterial periplasm. Protein Expr Purif 2006; 47:662-71. [PMID: 16600627 DOI: 10.1016/j.pep.2006.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/20/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Human pepsinogen is the secreted inactive precursor of pepsin. Under the acidic conditions present in the stomach it is autocatalytically cleaved into the active protease. Pepsinogen contains three consecutive disulfides, and was used here as a model protein to investigate the production of aspartic proteases in the Escherichia coli periplasm. Various N-terminal translocation signals were applied and several different expression vectors were tested. After fusion to pelB, dsbA or ompT signal peptides no recombinant product could be obtained in the periplasm using the T7 promoter. As a new approach, human pepsinogen was fused to E. coli ecotin (E. coli trypsin inhibitor), which is a periplasmic homodimeric protein of 142 amino acids per monomer containing one disulfide bridge. The fusion protein was expressed in pTrc99a. After induction, the ecotin-pepsinogen fusion protein was translocated into the periplasm and the ecotin signal peptide was cleaved. Upon acid treatment, the fusion protein was converted into pepsin, indicating that pepsinogen was produced in its native form. In shake flasks experiments, the amount of active fusion protein present in the periplasm was 100 microg per litre OD 1, corresponding to 70 microg pepsinogen. After large scale cultivation, the fusion protein was isolated from the periplasmic extract. It was purified to homogeneity with a yield of 20%. The purified protein was native. Acid-induced activation of the fusion protein proceeded very fast. As soon as pepsin was present, the ecotin part of the fusion protein was rapidly digested, followed by a further activation of pepsinogen.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Institut für Biotechnologie, Martin-Luther Universität Halle, Germany
| | | | | |
Collapse
|
27
|
Liew OW, Ching Chong JP, Yandle TG, Brennan SO. Preparation of recombinant thioredoxin fused N-terminal proCNP: Analysis of enterokinase cleavage products reveals new enterokinase cleavage sites. Protein Expr Purif 2005; 41:332-40. [PMID: 15866719 DOI: 10.1016/j.pep.2005.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/25/2005] [Indexed: 10/25/2022]
Abstract
C-type natriuretic peptide (CNP) acts as a paracrine hormone to dilate blood vessels and is also required for the growth of long bones. In vivo, CNP is produced by cleavage from the C-terminal end of a larger proCNP peptide. The remaining N-terminal proCNP fragment (NT-proCNP) escapes into the circulation where its concentration is much higher than that of CNP due presumably to a lower clearance rate. Our strategy to obtain large quantities of pure NT-proCNP for further physiological investigations was to express it as a fusion protein with His(6)-tagged thioredoxin followed by cleavage using enterokinase to yield NT-proCNP alone. We have successfully designed and artificially synthesized the coding sequence specifying both mouse and human NT-proCNP with built-in codon bias towards Escherichia coli codon preference. An enterokinase recognition sequence was incorporated immediately upstream of the NT-proCNP coding sequence to allow the fusion protein to be cleaved without leaving any extra residues on the NT-proCNP peptide. High levels of fusion proteins were obtained, constituting 50-58% of total bacterial proteins. Greater than 90% of recombinant thioredoxin/NT-proCNP was expressed in the soluble form and purified to near homogeneity in a single chromatographic step using nickel as the metal ion in IMAC. A time course analysis of the products released from enterokinase cleavage of the recombinant proteins by ESI-MS revealed three sensitive secondary cleavage sites: two were located on vector-associated sequences linking the thioredoxin moiety and NT-proCNP, and one at the C-terminal end of NT-proCNP. Clearly, substrate specificity of both the native and recombinant forms of enterokinase for the recognition sequence DDDDK was by no means exclusive. Hydrolysis at the unexpected LKGDR site located towards the carboxyl end on NT-proCNP was significantly more efficient than at the internally sited DDDDK target sequence. However, when this same sequence was sited internally replacing the DDDDK in another construct of thioredoxin/mouse NT-proCNP, it was found to be poorly processed by enterokinase. Our results showed that non-target sequences can be preferentially recognized over the canonical DDDDK sequence when located accessibly at the ends of proteins.
Collapse
Affiliation(s)
- Oi Wah Liew
- Deputy Principal (Academic)'s Office, Technology Centre for Life Sciences, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| | | | | | | |
Collapse
|
28
|
Hedhammar M, Gräslund T, Hober S. Protein Engineering Strategies for Selective Protein Purification. Chem Eng Technol 2005. [DOI: 10.1002/ceat.200500144] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Enfors SO, Hellebust H, Köhler K, Strandberg L, Veide A. Impact of genetic engineering on downstream processing of proteins produced in E. coli. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 43:31-42. [PMID: 2291441 DOI: 10.1007/bfb0009078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic engineering can be used to give a protein properties that are advantageous for downstream processing. Many heterologous proteins are degraded at high rates by proteases. Depending on which type of proteolytic degradation is encountered the strategy may be different: induction of inclusion bodies, change of the amino acid sequence in the sensitive site of the product, or protection by fusion of the product with other proteins. The number of unit operations needed to purify a protein may be reduced by addition of other polypeptides or amino acids to the product. Affinity chromatography, immobilized metal ion affinity chromatography, and extraction in aqueous two-phase systems are unit operations which can be made more versatile by the fusion technique.
Collapse
Affiliation(s)
- S O Enfors
- Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
30
|
Fu YJ, Yin LT, Wang W, Chai BF, Liang AH. Synthesis, Expression and Purification of a Type of Chlorotoxin-like Peptide from the Scorpion, Buthus martensii Karsch, and its Acute Toxicity Analysis. Biotechnol Lett 2005; 27:1597-603. [PMID: 16245180 DOI: 10.1007/s10529-005-2514-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/02/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
A gene, rBmK Cta, encoding a chlorotoxin-like peptide from the scorpion, Buthus martensii Karsch, was synthesized according to the sequence optimized for codon usage in Escherichia coli and was expressed in E. coli BL21 (DE3) using a pExSecI expression system in which the IgG-binding domain-ZZ of protein A is fused to the N-terminal of rBmK CTa. The fusion protein, ZZ-rBmK CTa, was expressed in soluble form (7.8 mg l(-1)) and was purified to give a single band on SDS-PAGE. The domain-ZZ of fusion protein ZZ-rBmK CTa was removed by cleavage of an Asn-Gly peptide bond with hydroxylamine. The rBmK CTa was separated from the IgG-binding moiety by a second passage through the IgG affinity column. Western blot analysis demonstrated that this protein was rBmK CTa. Acute toxicity assay in mice demonstrated that the rBmK CTa had an LD(50) value of 4.3 mg kg(-1).
Collapse
Affiliation(s)
- Yue-jun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 030006, Taiyuan, People's Republic of China.
| | | | | | | | | |
Collapse
|
31
|
Mergulhão FJM, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 2005; 23:177-202. [PMID: 15763404 DOI: 10.1016/j.biotechadv.2004.11.003] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/23/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
The secretory production of recombinant proteins by the Gram-negative bacterium Escherichia coli has several advantages over intracellular production as inclusion bodies. In most cases, targeting protein to the periplasmic space or to the culture medium facilitates downstream processing, folding, and in vivo stability, enabling the production of soluble and biologically active proteins at a reduced process cost. This review presents several strategies that can be used for recombinant protein secretion in E. coli and discusses their advantages and limitations depending on the characteristics of the target protein to be produced.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
| | | | | |
Collapse
|
32
|
Abdullah N, Chase HA. Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption. Biotechnol Bioeng 2005; 92:501-13. [PMID: 16080185 DOI: 10.1002/bit.20633] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinity chromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1) for the removal of C-terminus and N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidine tag of MBP-His(6) by Factor Xa and HT15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-His(6) to MBP was 16 h, as judged by SDS-PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. On-column tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-I system was superior to the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-I system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-I (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-I digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-I digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-I for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions.
Collapse
Affiliation(s)
- N Abdullah
- Department of Chemical and Environmental Engineering, University Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
33
|
Mergulhão FJM, Taipa MA, Cabral JMS, Monteiro GA. Evaluation of bottlenecks in proinsulin secretion by Escherichia coli. J Biotechnol 2004; 109:31-43. [PMID: 15063612 DOI: 10.1016/j.jbiotec.2003.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Revised: 09/08/2003] [Accepted: 10/14/2003] [Indexed: 10/26/2022]
Abstract
This work evaluates three potential bottlenecks in recombinant human proinsulin secretion by Escherichia coli: protein stability, secretion capacity and the effect of molecular size on secretion efficiency. A maximum secretion level of 7.2 mg g(-1) dry cell weight was obtained in the periplasm of E. coli JM109(DE3) host cells. This value probably represents an upper limit in the transport capacity of E. coli cells secreting ZZ-proinsulin and similar proteins with the protein A signal peptide. A selective deletion study was performed in the fusion partner and no effect of the molecular size (17-24 kDa) was detected on secretion efficiency. The protective effect against proteolysis provided by the ZZ domain was thoroughly demonstrated in the periplasm of E. coli and it was also shown that a single Z domain is able to provide the same protection level without compromising the downstream processing. The use of this shorter fusion partner enables a 1.6-fold increase in the recovery of the target protein after cleavage of the affinity handle.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | |
Collapse
|
34
|
Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:299-310. [PMID: 15546673 DOI: 10.1016/j.bbamcr.2004.02.011] [Citation(s) in RCA: 322] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/13/2004] [Accepted: 02/16/2004] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis is a rod-shaped, Gram-positive soil bacterium that secretes numerous enzymes to degrade a variety of substrates, enabling the bacterium to survive in a continuously changing environment. These enzymes are produced commercially and this production represents about 60% of the industrial-enzyme market. Unfortunately, the secretion of heterologous proteins, originating from Gram-negative bacteria or from eukaryotes, is often severely hampered. Several bottlenecks in the B. subtilis secretion pathway, such as poor targeting to the translocase, degradation of the secretory protein, and incorrect folding, have been revealed. Nevertheless, research into the mechanisms and control of the secretion pathways will lead to improved Bacillus protein secretion systems and broaden the applications as industrial production host. This review focuses on studies that aimed at optimizing B. subtilis as cell factory for commercially interesting heterologous proteins.
Collapse
Affiliation(s)
- Lidia Westers
- Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
35
|
Flaschel E, Friehs K. Improvement of downstream processing of recombinant proteins by means of genetic engineering methods. Biotechnol Adv 2003; 11:31-77. [PMID: 14544808 DOI: 10.1016/0734-9750(93)90409-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid advancement of genetic engineering has allowed to produce an impressive number of proteins on a scale which would not have been achieved by classical biotechnology. At the beginning of this development research was focussed on elucidating the mechanisms of protein overexpression. The appearance of inclusion bodies may illustrate the success. In the meantime, genetic engineering is not only expected to achieve overexpression, but to improve the whole process of protein production. For downstream processing of recombinant proteins, the synthesis of fusion proteins is of primary importance. Fusion with certain proteins or peptides may protect the target protein from proteolytic degradation and may alter its solubility. Intracellular proteins may be translocated by means of fusions with signal peptides. Affinity tags as fusion complements may render protein separation and purification highly selective. These methods as well as similar ones for improving the downstream processing of proteins will be discussed on the basis of recent literature.
Collapse
Affiliation(s)
- E Flaschel
- Universität Bielefeld, Technische Fakultät, Arbeitsgruppe Fermentationstechnik, Bielefeld, Germany
| | | |
Collapse
|
36
|
Mergulhão FJM, Monteiro GA, Larsson G, Sandén AM, Farewell A, Nystrom T, Cabral JMS, Taipa MA. Medium and copy number effects on the secretion of human proinsulin in Escherichia coli using the universal stress promoters uspA and uspB. Appl Microbiol Biotechnol 2003; 61:495-501. [PMID: 12764564 DOI: 10.1007/s00253-003-1232-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 12/17/2002] [Accepted: 12/19/2002] [Indexed: 10/25/2022]
Abstract
The use of the uspA and uspB promoters (universal stress promoters) for heterologous protein production in Escherichia coli is described. Best results were obtained with a moderate copy number vector (15-60 copies) bearing the uspA promoter, reaching 4.6 mg/g dry cell weight (DCW) of ZZ-proinsulin secreted to the periplasm and 1.9 mg/g DCW secreted to the culture medium. These values are about 1.7-fold higher than those previously reported with the same ZZ fusion tag and the SpA leader peptide showing that these stress promoters are potentially valuable for recombinant protein secretion in E. coli. It is further demonstrated that the use of M9 minimal medium is advantageous for protein secretion as compared to LB rich medium.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Feng YM, Zhang YM, Jing GZ. Soluble expression in Escherichia coli, purification and characterization of a human TF-1 cell apoptosis-related protein TFAR19. Protein Expr Purif 2002; 25:323-9. [PMID: 12135567 DOI: 10.1016/s1046-5928(02)00016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel human TF-1 cell apoptosis-related protein, TFAR19, cloned from a human leukemia cell line, TF-1, was first overexpressed in Escherichia coli with the sequence Met-Gly-His(6)-Gly-Thr-Asn-Gly, a hexahistidine sequence followed by a hydroxylamine cleavage site attached to its amino terminus. The resulting protein was soluble and single-step purified to homogeneity by metal chelating affinity chromatography. After cleavage of the purified His(6)-tagged TFAR19 sample with hydroxylamine, highly purified untagged TFAR19 protein was then obtained through an FPLC Resource Q column. The structural characteristics and function of the His(6)-tagged and untagged TFAR19 proteins were studied using circular dichroism, intrinsic fluorescence, and ANS-binding fluorescence spectra and apoptosis activity assay. The results show that alpha-helix is the main secondary structure of the proteins and the two forms of TFAR19 protein fold properly, which correspond well to their apoptosis activity expression. The results also indicate that the extra sequence including the His(6)-tag fused to the N-terminus of TFAR19 protein has a minimal effect on its structure and function, suggesting that the His(6)-tagged TFAR19 protein could be further used as an immobilized target for finding potential proteins which interact with TFAR19 from a cDNA library using in vitro ribosome display technique.
Collapse
Affiliation(s)
- Yan-ming Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, People's Republic of China
| | | | | |
Collapse
|
38
|
Hearn MT, Acosta D. Applications of novel affinity cassette methods: use of peptide fusion handles for the purification of recombinant proteins. J Mol Recognit 2001; 14:323-69. [PMID: 11757069 DOI: 10.1002/jmr.555] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this article, recent progress related to the use of different types of polypeptide fusion handles or 'tags' for the purification of recombinant proteins are critically discussed. In addition, novel aspects of the molecular cassette concept are elaborated, together with areas of potential application of these fundamental principles in molecular recognition. As evident from this review, the use of these concepts provides a powerful strategy for the high throughput isolation and purification of recombinant proteins and their derived domains, generated from functional genomic or zeomic studies, as part of the bioprocess technology leading to their commercial development, and in the study of molecular recognition phenomena per se. In addition, similar concepts can be exploited for high sensitivity analysis and detection, for the characterisation of protein bait/prey interactions at the molecular level, and for the immobilisation and directed orientation of proteins for use as biocatalysts/biosensors.
Collapse
Affiliation(s)
- M T Hearn
- Centre for Bioprocess Technology, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800 Australia.
| | | |
Collapse
|
39
|
Mergulhão FJ, Monteiro GA, Cabral JM, Taipa MA. A quantitative ELISA for monitoring the secretion of ZZ-fusion proteins using SpA domain as immunodetection reporter system. Mol Biotechnol 2001; 19:239-44. [PMID: 11721620 DOI: 10.1385/mb:19:3:239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A sandwich-type enzyme-linked immunosorbent assay (ELISA) was established for monitoring the secretion of ZZ-fusion proteins. Two antibodies, a monoclonal mouse anti-human proinsulin and a rabbit anti-bovine IgG (strongly binding to the ZZ-domain), were used to quantify the secretion of recombinant human ZZ-proinsulin to the growth medium of Escherichia coli cultures. The method here reported conjugates the advantages of sandwich-type ELISA assays, namely, high sensitivity, specificity, and throughput, with the possibility of quantifying small protein molecules (e.g., peptides). A further advantage of gene fusion techniques integrating both downstream processing and product detection and quantitation is highlighted. The method is capable of detecting levels of 0.05 ng of ZZ-proinsulin.
Collapse
Affiliation(s)
- F J Mergulhão
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | |
Collapse
|
40
|
Einhauer A, Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 49:455-65. [PMID: 11694294 DOI: 10.1016/s0165-022x(01)00213-5] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A fusion tag, called FLAG and consisting of eight amino acids (AspTyrLysAspAspAspAspLys) including an enterokinase-cleavage site, was specifically designed for immunoaffinity chromatography. It allows elution under non-denaturing conditions [Bio/Technology, 6 (1988) 1204]. Several antibodies against this peptide have been developed. One antibody, denoted as M1, binds the peptide in the presence of bivalent metal cations, preferably Ca(+). Elution is effected by chelating agents. Another strategy is competitive elution with excess of free FLAG peptide. Antibodies M2 and M5 are applied in this procedure. Examples demonstrating the versatility, practicability and limitations of this technology are given.
Collapse
Affiliation(s)
- A Einhauer
- Institute for Applied Microbiology, University of Agriculture and Forestry, Muthgasse 18, 1190 Vienna, Austria.
| | | |
Collapse
|
41
|
Franken KL, Hiemstra HS, van Meijgaarden KE, Subronto Y, den Hartigh J, Ottenhoff TH, Drijfhout JW. Purification of his-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expr Purif 2000; 18:95-9. [PMID: 10648174 DOI: 10.1006/prep.1999.1162] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant proteins overexpressed in and purified from Escherichia coli contain impurities that are toxic in biological assays. The application of affinity purification procedures is often not sufficient to remove these toxic components. We here describe a simple and fast, one-step protocol to remove these impurities highly efficiently. Four recombinant proteins were overexpressed in E. coli as His-tagged fusion proteins and purified by immobilized metal chelate affinity chromatography on Ni-NTA beads. Depending on the protein, the composition of the lysis buffer, and the washing protocol, various impurities appeared to be present in the purified protein preparations. Here we show how the use of 60% isopropanol during washing steps removed most of these contaminants from the end products. In addition to the removal of proteins that aspecifically adhere to the beads or to the tagged protein, this procedure was particularly useful in removing endotoxins. Moreover, we show that detergents such as NP-40, that are necessarily employed during lysis, are also efficiently removed. Finally, we show that proteins are able to refold correctly after isopropanol treatment. Thus, the resulting end products contain significantly less contaminating E. coli proteins, endotoxins, and detergents.
Collapse
Affiliation(s)
- K L Franken
- Department of Immunohematology and Blood Bank, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Tooyama I, Kimura H. A protein encoded by an alternative splice variant of choline acetyltransferase mRNA is localized preferentially in peripheral nerve cells and fibers. J Chem Neuroanat 2000; 17:217-26. [PMID: 10697248 DOI: 10.1016/s0891-0618(99)00043-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Central cholinergic systems have been visualized by immunohistochemistry using antibodies to choline acetyltransferase (ChAT). Peripheral cholinergic cells and fibers, however, have been hardly detectable with most of these antibodies. This phenomenon suggests that a different form of ChAT may exist in peripheral tissues. Here we report two types of mRNA for ChAT expressed by alternative splicing in rat pterygopalatine ganglion. One is exactly identical with ChAT mRNA reported in the central nervous system (ChAT of a common type; cChAT). The other lacks exons 6, 7, 8 and 9, which was detected only in the pterygopalatine ganglion (ChAT of a peripheral type; pChAT). The peculiarity of pChAT in chemical structure, possessing a splice joint of the exons 5 and 10, led us to produce rabbit antisera against a recombinant peptide of 41 amino acids which spans over the splice joint. On Western blots using a successfully obtained antiserum, an intense band of about 50 kDa, corresponding to the expected molecular weight of pChAT, was detected in the pterygopalatine ganglion but not in the brain. Immunohistochemistry using the antiserum failed to reveal positive staining of known brain cholinergic structures, while it permitted us to observe peripheral, probably cholinergic, nerve cells and fibers including those in the pterygopalatine ganglion and enteric nervous system.
Collapse
Affiliation(s)
- I Tooyama
- Neuroanatomny Unit, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan.
| | | |
Collapse
|
43
|
Hober S, Lundström Ljung J, Uhlén M, Nilsson B. Insulin-like growth factors I and II are unable to form and maintain their native disulfides under in vivo redox conditions. FEBS Lett 1999; 443:271-6. [PMID: 10025946 DOI: 10.1016/s0014-5793(98)01737-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Insulin-like growth factor (IGF) I does not quantitatively form its three native disulfide bonds in the presence of 10 mM reduced and 1 mM oxidized glutathione in vitro [Hober, S. et al. (1992) Biochemistry 31, 1749-1756]. In this paper, we show (i) that both IGF-I and IGF-II are unable to form and maintain their native disulfide bonds at redox conditions that are similar to the situation in the secretory vesicles in vivo and (ii) that the presence of protein disulfide isomerase does not overcome this problem. The results indicate that the previously described thermodynamic disulfide exchange folding problem of IGF-I in vitro is also present in vivo. Speculatively, we suggest that the thermodynamic disulfide exchange properties of IGF-I and II are biologically significant for inactivation of the unbound growth factors by disulfide exchange reactions to generate variants destined for rapid clearance.
Collapse
Affiliation(s)
- S Hober
- Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden.
| | | | | | | |
Collapse
|
44
|
Jansson M, Dixelius J, Uhlen M, Nilsson BO. Binding affinities of insulin-like growth factor-I (IGF-I) fusion proteins to IGF binding protein 1 and IGF-I receptor are not correlated with mitogenic activity. FEBS Lett 1997; 416:259-64. [PMID: 9373165 DOI: 10.1016/s0014-5793(97)01149-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this report, comparisons between molecular affinities and cellular proliferation activities have been made for insulin-like growth factor-I (IGF-I) and two IGF-I fusion proteins in order to evaluate fusion proteins as tools for receptor binding studies. Binding affinities and growth promoting effects of the N-terminal fusion Z-IGF-I and the C-terminal fusion IGF-I-Z, and native recombinant human IGF-I, were analyzed. Binding kinetic properties of the three IGF-I variants were analyzed using BIAcore kinetic interaction analysis testing for binding to both human IGF binding protein 1 (IGFBP-1) and a soluble form of the human IGF type I receptor extracellular domains (sIGF-IR). The growth promoting effects on SaOS-2 human osteosarcoma cells of the different fusion proteins were analyzed. A comparison of receptor binding affinities and growth promoting effects shows that the fusion protein receptor affinity does not correlate with proliferative potential. The IGF-I-Z fusion, with the lowest receptor affinity, shows similar proliferative potential to native IGF-I. However, the Z-IGF-I fusion protein, with twice the receptor affinity of IGF-I-Z, displays only about 70% of the IGF-I-Z growth promoting activity. Both IGF-I fusion proteins possess similar affinity to IGFBP-1. These results indicate that determinants other than the receptor affinity could be involved in the regulation of IGF-I proliferative action. This study demonstrates that ligand fusion proteins may be useful to study mechanisms of ligand induced receptor activation.
Collapse
Affiliation(s)
- M Jansson
- Royal Institute of Technology, Department of Biochemistry and Biotechnology, Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Nilsson J, Ståhl S, Lundeberg J, Uhlén M, Nygren PA. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 1997; 11:1-16. [PMID: 9325133 DOI: 10.1006/prep.1997.0767] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J Nilsson
- Department of Biochemistry and Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
Xie W, Qiu Q, Dong X, Hua Z, Xu X. Fusion expression of mutated cecropin CMIV inE. coli. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 1997; 40:225-231. [PMID: 18726320 DOI: 10.1007/bf02879080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/1996] [Indexed: 05/26/2023]
Abstract
A cDNA coding mutated cecropin CMIV fromBombyx mori was synthesized according to its amino acid sequence usingE. coli biased codons. The gene was cloned into the fusion expression vector pEZZ318 and was expressed inE. coli HB101. The fusion protein produced was purified by affinity chromatography to yield 26 mg/L fusion product. The anti-bacterial activities of recombinant cecropin CMIV were recovered after cleavage by chemical method.
Collapse
Affiliation(s)
- W Xie
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, 210093, Nanjing, China
| | | | | | | | | |
Collapse
|
47
|
Hober S, Uhlén M, Nilsson B. Disulfide exchange folding of disulfide mutants of insulin-like growth factor I in vitro. Biochemistry 1997; 36:4616-22. [PMID: 9109671 DOI: 10.1021/bi9611265] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously concluded that insulin-like growth factor-I (IGF-I) is thermodynamically unable to quantitatively form its disulfide bonds under reversible redox conditions in vitro. From detailed analyses it was hypothesized that the 47-52 disulfide is energetically unfavorable in the native IGF-I structure [Hober et al. (1992) Biochemistry 31, 1749-1756]. In this paper, this hypothesis has been tested by refolding of IGF-I mutant proteins lacking either the 47-52 or 6-48 disulfide bond. The disulfide exchange folding equilibrium behavior of these mutated IGF-I variants were examined in a glutathione redox buffer. The mutant protein IGF-I(C47A,C52A) was demonstrated to form both remaining native disulfide bonds. In contrast, IGF-I(C6A,C48A) was unable to quantitatively form both of its disulfides and was shown to accumulate a one disulfide variant lacking the 47-52 disulfide bond. These folding data corroborate the hypothesis that the 47-52 disulfide bond of IGF-I is energetically unfavorable also in the absence of the 6-48 disulfide bond. The two IGF-I variants were purified in oxidized forms where both native disulfides are formed. Both variants were suggested to be structurally perturbed compared with the native molecule as determined by circular dichroism spectroscopy. Further, binding affinities to the IGF binding protein 1 and a soluble IGF type I receptor, respectively, were severely lowered in both disulfide mutant proteins compared to the native IGF-I molecule. Interestingly, the binding affinity toward the IGF type I receptor is higher for IGF-I(C6A,C48A) than for IGF-I(C47A,C52A) while the binding affinity to IGFBP-1 is higher for IGF-I(C47A,C52A) than for IGF-I(C6A,C48A). Thus, the structural changes due to removal of the 6-48 or 47-52 disulfide bonds, respectively, yield structural changes in different regions of the IGF-I molecule reflected in the different binding activities.
Collapse
Affiliation(s)
- S Hober
- Department of Biology, Pharmacia & Upjohn, Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Jansson M, Uhlen M, Nilsson B. Structural changes in insulin-like growth factor (IGF) I mutant proteins affecting binding kinetic rates to IGF binding protein 1 and IGF-I receptor. Biochemistry 1997; 36:4108-17. [PMID: 9100004 DOI: 10.1021/bi961553i] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ligand binding properties of five single amino acid substituted variants (V11A, D12A, Q15A, Q15E, and F16A) of human insulin-like growth factor I (IGF-I) were analyzed with respect to their binding affinities and binding kinetics to recombinant IGF binding protein 1 (IGFBP-1) and a soluble form of the IGF type I receptor (sIGF-I(R)), respectively. Side chains of the substituted residues are all predicted to be the most surface exposed in the alpha-helical portion of the B-region of the IGF-I molecule. The IGF-I variants were produced as fusion proteins to a IgG(Fc) binding protein domain, Z. Ligand binding kinetic rates were determined using BIAcore biosensor interaction analysis technology. All IGF-I variants showed altered binding affinities to both IGFBP- I and sIGF-I(R). Secondary structure content of the IGF-I variants was estimated using far-UV circular dichroism spectroscopy, followed by variable selection secondary structure calculations. The amount of calculated alpha-helicity is reduced for all the mutants, most predominantly for IGF-I(V11A) and IGF-I(F16A) proteins. Surprisingly, most of the effects of reduced binding affinities to both target proteins are attributed to lowered on-rates of binding, and these are correlated with the amount of alpha-helicity in each IGF-I variant. In addition, in some of the IGF-I variants, lowered off-rates of binding are observed. From the results, we propose that IGF-I is unusually sensitive to structural changes by surface amino acid substitutions in the B-region of the molecule. Therefore, biochemical or biological properties of amino acid substituted variants of IGF-I cannot be used in a straightforward way to dissect the direct involvement in binding of individual amino acid residues since structural changes may be involved.
Collapse
Affiliation(s)
- M Jansson
- Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | |
Collapse
|
49
|
Jansson M, Hallén D, Koho H, Andersson G, Berghard L, Heidrich J, Nyberg E, Uhlén M, Kördel J, Nilsson B. Characterization of ligand binding of a soluble human insulin-like growth factor I receptor variant suggests a ligand-induced conformational change. J Biol Chem 1997; 272:8189-97. [PMID: 9079636 DOI: 10.1074/jbc.272.13.8189] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Details of the signal transduction mechanisms of the tyrosine kinase family of growth factor receptors remain elusive. In this work, we describe an extensive study of kinetic and thermodynamic aspects of growth factor binding to a soluble extracellular human insulin-like growth factor-I receptor (sIGF-IR) variant. The extracellular receptor domains were produced fused to an IgG-binding protein domain (Z) in transfected human 293 cells as a correctly processed secreted alpha-beta'-Z dimer. The receptor was purified using IgG affinity chromatography, rendering a pure and homogenous protein in yields from 1 to 5 mg/liter of conditioned cell media. Biosensor technology (BIAcore) was applied to measure the insulin-like growth factor-I (IGF-I), des(1-3)IGF-I, insulin-like growth factor-II, and insulin ligand binding rate constants to the immobilized IGF-IR-Z. The association equilibrium constant, Ka, for the IGF-I interaction is determined to 2.8 x 10(8) M-1 (25 degrees C). Microcalorimetric titrations on IGF-I/IGF-IR-Z were performed at three different temperatures (15, 25, and 37 degrees C) and in two different buffer systems at 25 degrees C. From these measurements, equilibrium constants for the 1:1 (IGF-I:(alpha-beta'-Z)2) receptor complex in solution are deduced to 0.96 x 10(8) M-1 (25 degrees C). The determined heat capacity change for the process is large and negative, -0.51 kcal (K mol)-1. Further, the entropy change (DeltaS) at 25 degrees C is large and negative. Far- and near-UV circular dichroism measurements display significant changes over the entire wavelength range upon binding of IGF-I to IGF-IR-Z. These data are all consistent with a significant change in structure of the system upon IGF-I binding.
Collapse
Affiliation(s)
- M Jansson
- Department of Biochemistry and Biotechnology, Royal Institute of Technology, S-100 44 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- S C Makrides
- Department of Molecular Biology, T Cell Sciences, Inc., Needham, Massachusetts 02194, USA
| |
Collapse
|