1
|
Dijkstra JM, Kondo Y. Comprehensive Sequence Analysis of Parvalbumins in Fish and Their Comparison with Parvalbumins in Tetrapod Species. BIOLOGY 2022; 11:biology11121713. [PMID: 36552222 PMCID: PMC9774829 DOI: 10.3390/biology11121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
Abstract
Parvalbumins are small molecules with important functions in Ca2+ signaling, but their sequence comparisons to date, especially in fish, have been relatively poor. We here, characterize sequence motifs that distinguish parvalbumin subfamilies across vertebrate species, as well as those that distinguish individual parvalbumins (orthologues) in fish, and map them to known parvalbumin structures. As already observed by others, all classes of jawed vertebrates possess parvalbumins of both the α-parvalbumin and oncomodulin subfamilies. However, we could not find convincing phylogenetic support for the common habit of classifying all non-α-parvalbumins together as "β-parvalbumins." In teleost (modern bony) fish, we here distinguish parvalbumins 1-to-10, of which the gene copy number can differ between species. The genes for α-parvalbumins (pvalb6 and pvalb7) and oncomodulins (pvalb8 and pvalb9) are well conserved between teleost species, but considerable variation is observed in their copy numbers of the non-α/non-oncomodulin genes pvalb1-to-5 and pvalb10. Teleost parvalbumins 1-to-4 are hardly distinguishable from each other and are highly expressed in muscle, and described allergens belong to this subfamily. However, in some fish species α-parvalbumin expression is also high in muscle. Pvalb5 and pvalb10 molecules form distinct lineages, the latter even predating the origin of teleosts, but have been lost in some teleost species. The present study aspires to be a frame of reference for future studies trying to compare different parvalbumins.
Collapse
Affiliation(s)
- Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Dengaku-gakubo 1-98, Toyoake 470-1192, Japan
| | - Yasuto Kondo
- Department of Pediatrics, Fujita Health University Bantane Hospital, Otobashi 3-6-10, Nakagawa, Nagoya 454-8509, Japan
- Correspondence:
| |
Collapse
|
2
|
The Highly Conservative Cysteine of Oncomodulin as a Feasible Redox Sensor. Biomolecules 2021; 11:biom11010066. [PMID: 33419032 PMCID: PMC7825312 DOI: 10.3390/biom11010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 11/17/2022] Open
Abstract
Oncomodulin (Ocm), or parvalbumin β, is an 11-12 kDa Ca2+-binding protein found inside and outside of vertebrate cells, which regulates numerous processes via poorly understood mechanisms. Ocm consists of two active Ca2+-specific domains of the EF-hand type ("helix-loop-helix" motif), covered by an EF-hand domain with inactive EF-hand loop, which contains a highly conservative cysteine with unknown function. In this study, we have explored peculiarities of the microenvironment of the conservative Cys18 of recombinant rat Ocm (rWT Ocm), redox properties of this residue, and structural/functional sensitivity of rWT Ocm to the homologous C18S substitution. We have found that pKa
of the Cys18 thiol lays beyond the physiological pH range. The measurement of redox dependence of rWT Ocm thiol-disulfide equilibrium (glutathione redox pair) showed that redox potential of Cys18 for the metal-free and Ca2+-loaded protein is of -168 mV and -176 mV, respectively. Therefore, the conservative thiol of rWT Ocm is prone to disulfide dimerization under physiological redox conditions. The C18S substitution drastically reduces α-helices content of the metal-free and Mg2+-bound Ocm, increases solvent accessibility of its hydrophobic residues, eliminates the cooperative thermal transition in the apo-protein, suppresses Ca2+/Mg2+ affinity of the EF site, and accelerates Ca2+ dissociation from Ocm. The distinct structural and functional consequences of the minor structural modification of Cys18 indicate its possible redox sensory function. Since some other EF-hand proteins also contain a conservative redox-sensitive cysteine located in an inactive EF-hand loop, it is reasonable to suggest that in the course of evolution, some of the EF-hands attained redox sensitivity at the expense of the loss of their Ca2+ affinity.
Collapse
|
3
|
Simmons DD, Tong B, Schrader AD, Hornak AJ. Oncomodulin identifies different hair cell types in the mammalian inner ear. J Comp Neurol 2010; 518:3785-802. [PMID: 20653034 DOI: 10.1002/cne.22424] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tight regulation of Ca(2+) is essential for inner ear function, and yet the role of Ca(2+) binding proteins (CaBPs) remains elusive. By using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR), we investigated the expression of oncomodulin (Ocm), a member of the parvalbumin family, relative to other EF-hand CaBPs in cochlear and vestibular organs in the mouse. In the mouse cochlea, Ocm is found only in outer hair cells and is localized preferentially to the basolateral outer hair cell membrane and to the base of the hair bundle. Developmentally, Ocm immunoreactivity begins as early as postnatal day (P) 2 and shows preferential localization to the basolateral membrane and hair bundle after P8. Unlike the cochlea, Ocm expression is substantially reduced in vestibular tissues at older adult ages. In vestibular organs, Ocm is found in type I striolar or central hair cells, and has a more diffuse subcellular localization throughout the hair cell body. Additionally, Ocm immunoreactivity in vestibular hair cells is present as early as E18 and is not obviously affected by mutations that cause a disruption of hair bundle polarity. We also find Ocm expression in striolar hair cells across mammalian species. These data suggest that Ocm may have distinct functional roles in cochlear and vestibular hair cells.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
4
|
Das Dores S, Chopin C, Villaume C, Fleurence J, Guéant JL. A new oligomeric parvalbumin allergen of Atlantic cod (Gad mI) encoded by a gene distinct from that of Gad cI. Allergy 2002; 57 Suppl 72:79-83. [PMID: 12144561 DOI: 10.1034/j.1398-9995.57.s72.1.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The major allergen of Baltic cod (Gadus callarias) is a 12.3-kDa parvalbumin with two calcium-binding sites corresponding to EF-hand motifs. Our group found a 24-kDa IgE-reactive band that was also recognized by a monoclonal antiparvalbumin antibody in Atlantic cod (Gadus morhua). Our purpose was to purify and to determine the cDNA deduced sequence of this new cod allergen. METHODS Proteins from pre rigor mortis Atlantic cod were separated by gel filtration and the eluted peaks were analysed by SDS-PAGE and Western blotting with sera of sensitized patients and with antiparvalbumin. Protein bands were microsequenced, RNA transcripts were amplified by reverse transcription and polymerase chain reaction (RT-PCR) using primer combinations overlapping the open reading frame. RESULTS Four IgE and antiparvalbumin reactive proteins(12.5, 24, 38 and 51 kDa) were detected in gel filtration eluate. The cDNA deduced sequence of the 24 kDa protein had 109 amino acid residues with a molecular weight of 11.5 kDa and a theoretical pI of 4.34. The 24 kDa band corresponded therefore to a dimer of a beta-parvalbumin. Its homology was higher with Sal sI than with Gad cI. This new allergen was named Gad mI. CONCLUSION We have characterized a new parvalbumin allergen in Gadus morhua. This protein formed oligomers in native and in reducing conditions. Gad mI and Gad cI may correspond to two distinct genes of Gadus species.
Collapse
Affiliation(s)
- S Das Dores
- Laboratoire de Pathologie Cellulaire et Moléculaire en Nutrition, EMI-INSERM 0014, URM IFREMER no. 20, Faculté de Médecine de Nancy, Université Henri Poincare, Vandouevre-lès-Nancy, France
| | | | | | | | | |
Collapse
|
5
|
King NM, Elkins KM, Nelson DJ. Reactivity of the invariant cysteine of silver hake parvalbumin (Isoform B) with dithionitrobenzoate (DTNB) and the effect of differing buffer species on reactivity. J Inorg Biochem 1999. [DOI: 10.1016/s0162-0134(99)00113-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Sakaguchi N, Henzl MT, Thalmann I, Thalmann R, Schulte BA. Oncomodulin is expressed exclusively by outer hair cells in the organ of Corti. J Histochem Cytochem 1998; 46:29-40. [PMID: 9405492 DOI: 10.1177/002215549804600105] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oncomodulin (OM) is a small, acidic calcium-binding protein first discovered in a rat hepatoma and later found in placental cytotrophoblasts, the pre-implantation embryo, and in a wide variety of neoplastic tissues. OM was considered to be exclusively an oncofetal protein until its recent detection in extracts of the adult guinea pig's organ of Corti. Here we report that light and electron microscopic immunostaining of gerbil, rat, and mouse inner ears with a monoclonal antibody against recombinant rat OM localizes the protein exclusively in cochlear outer hair cells (OHCs). At the ultrastructural level, high gold labeling density was seen overlying the nucleus, cytoplasm, and the cuticular plate of gerbil OHCs. Few, if any, gold particles were present over intracellular organelles and the stereocilia. Staining of a wide range of similarly processed gerbil organs failed to detect immunoreactive OM in any other adult tissues. The mammalian genome encodes one alpha- and one beta-isoform of parvalbumin (PV). The widely distributed alpha PV exhibits a very high affinity for Ca2+ and is believed to serve as a Ca2+ buffer. By contrast, OM, the mammalian beta PV, displays a highly attenuated affinity for Ca2+, consistent with a Ca2+-dependent regulatory function. The exclusive association of OM with cochlear OHCs in mature tissues is likely to have functional relevance. Teleological considerations favor its involvement in regulating some aspect of OHC electromotility. Although the fast electromotile response of OHCs does not require Ca2+, its gain and magnitude are modulated by efferent innervation. Therefore, OM may be involved in mediation of intracellular responses to cholinergic stimulation, which are known to be Ca2+ regulated. (J Histochem Cytochem 46:29-39, 1998)
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Calcium-Binding Proteins/biosynthesis
- Calcium-Binding Proteins/immunology
- Female
- Gerbillinae
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Immunoelectron
- Organ Specificity
- Organ of Corti/cytology
- Organ of Corti/metabolism
- Paraffin Embedding
- Parvalbumins/biosynthesis
- Protein Isoforms/biosynthesis
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- N Sakaguchi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
7
|
Abstract
A small, acidic Ca(2+)-binding protein (CBP-15) was recently detected in extracts of the mammalian auditory receptor organ, the organ of Corti [Senarita et al. (1995) Hear. Res. 90, 169-175]. N-terminal sequence data for CBP-15 [Thalmann et al. (1995) Biochem. Biophys. Res. Commun. 215, 142-147] implied membership in the parvalbumin family and possible identity with the mammalian beta-parvalbumin oncomodulin. As shown herein, the latter conclusion is supported by strong cross-reactivity between CBP-15 and isoform-specific antibodies to oncomodulin. Moreover, we have succeeded in amplifying the guinea pig CBP-15 coding sequence from organ of Corti cDNA using degenerate oligonucleotide primers based on the rat oncomodulin sequence. The deduced amino acid sequence of guinea pig CBP-15 displays 90%, 92%, and 98% identity with mouse, rat, and human oncomodulin isoforms. Demonstration of the presence of oncomodulin in the organ of Corti is the first documentation of this substance in a postnatal mammalian tissue.
Collapse
Affiliation(s)
- M T Henzl
- Biochemistry Department, University of Missouri at Columbia 65211, USA.
| | | | | | | | | |
Collapse
|
8
|
Pauls T, Durussel I, Cox J, Clark I, Szabo A, Gagné S, Sykes B, Berchtold M. Metal binding properties of recombinant rat parvalbumin wild-type and F102W mutant. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36871-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Föhr UG, Weber BR, Müntener M, Staudenmann W, Hughes GJ, Frutiger S, Banville D, Schäfer BW, Heizmann CW. Human alpha and beta parvalbumins. Structure and tissue-specific expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:719-27. [PMID: 8354278 DOI: 10.1111/j.1432-1033.1993.tb18084.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
alpha and beta parvalbumins are Ca(2+)-binding proteins of the EF-hand type. We determined the protein sequence of human brain alpha parvalbumin by mass spectrometry and cloned human beta parvalbumin (or oncomodulin) from genomic DNA and preterm placental cDNA. beta parvalbumin differs in 54 positions from alpha parvalbumin and lacks the C-terminal amino acid 109. From MS analyses of alpha and beta parvalbumins we conclude that parvalbumins generally lack posttranslational modifications. alpha and beta parvalbumins were differently expressed in human tissues when analyzed by immunoblotting and polymerase-chain-reaction techniques. Whereas alpha parvalbumin was found in a number of adult human tissues, beta parvalbumin was restricted to preterm placenta. The pattern of alpha parvalbumin expression also differs in man compared to other vertebrates. For example, in rat, alpha parvalbumin was found in extrafusal and intrafusal skeletal-muscle fibres whereas, in man, alpha parvalbumin was restricted to the muscle spindles. Different functions for alpha and beta parvalbumins are discussed.
Collapse
Affiliation(s)
- U G Föhr
- Department of Pediatrics, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ahmed FR, Przybylska M, Rose DR, Birnbaum GI, Pippy ME, MacManus JP. Structure of oncomodulin refined at 1.85 A resolution. An example of extensive molecular aggregation via Ca2+. J Mol Biol 1990; 216:127-40. [PMID: 2231727 DOI: 10.1016/s0022-2836(05)80065-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The crystal structure of oncomodulin, a 12,000 Mr protein isolated from rat tumours, has been determined by molecular replacement using the carp parvalbumin structure as a starting model. Refinement was performed by cycles of molecular fitting and restrained least-squares, using area-detector intensity data to 1.85 A resolution. For the 5770 reflections in the range 6.0 to 1.85 A, which were used in the refinement, the crystallographic R-factor is 0.166. The refined model includes residues 2 to 108, three Ca2+ and 87 water molecules per oncomodulin molecule. The oncomodulin backbone is closely related to that of parvalbumin; however, some differences are found after a least-squares fit of the two backbones, with root-mean-square (r.m.s.) deviations of 1 to 2 A in residues 2 to 6, 59 to 61 of the CD loop, 87, 90 and 108. The overall r.m.s. deviation of the backbone residues 5 to 108 is 0.62 A. Each of the two Ca2+ atoms that are bound to the CD and EF loops is co-ordinated to seven oxygen atoms, including one water molecule. The third Ca2+ is also seven-co-ordinated, to five oxygen atoms belonging to three different oncomodulin molecules and to two water molecules which form hydrogen bonds to a fourth oncomodulin; thus, this intermolecular Ca2+ and its equivalents interlink the molecules into zigzag layers normal to the b axis with a spacing of b/2 or 32.14 A. No such extensive molecular aggregation has been reported for any of the related Ca-binding regulatory proteins of the troponin-C family studied thus far. The Ca-O distances in all three polyhedra are in the range 2.07 A to 2.64 A, indicating tightly bound Ca polyhedra.
Collapse
Affiliation(s)
- F R Ahmed
- Division of Biological Sciences, National Research Council of Canada, Ottawa
| | | | | | | | | | | |
Collapse
|
11
|
Nielsen SU, Vorum H, Spener F, Brodersen R. Two-dimensional electrophoresis of the fatty acid binding protein from human heart: evidence for a thiol group which can form an intermolecular disulfide bond. Electrophoresis 1990; 11:870-7. [PMID: 2079029 DOI: 10.1002/elps.1150111017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 100,000 g supernatant from human heart muscle, containing cytosolic proteins with some contaminating plasma proteins, was analyzed for fatty acid binding protein (FABP) by two-dimensional electrophoresis (2-DE) using isoelectric focusing under nondenaturing conditions in the first dimension. FABP purified from human heart muscle was found to comigrate with a major spot in 2-DE gels of the supernatant. This spot was comparable with those of the myoglobins in staining intensity. When purified FABP was charged with [3H]palmitate and subjected to nondenaturing 2-DE, radioactivity always comigrated with this protein. Under denaturing and reducing conditions in the second dimension, FABP was found to have a pI of 5.3 and an apparent molecular weight of 15,000. Isoforms of FABP, reported here for the first time to occur in human heart muscle, were observed as minor spots focusing at pH 5.1 and 5.7. When electrophoresis in the second dimension was carried out under denaturing but nonreducing conditions, an additional protein appeared at pH 5.3 with an apparent molecular weight of about 30,000. This protein was identified as a dimer of FABP and evidence for the involvement of an intermolecular disulfide bond in this dimerization is presented.
Collapse
Affiliation(s)
- S U Nielsen
- Institut für Biochemie, Universität Münster, Germany
| | | | | | | |
Collapse
|
12
|
Hutnik CM, MacManus JP, Banville D, Szabo AG. Comparison of metal ion-induced conformational changes in parvalbumin and oncomodulin as probed by the intrinsic fluorescence of tryptophan 102. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38419-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Gulati J, Persechini A, Babu A. Central helix role in the contraction-relaxation switching mechanisms of permeabilized skeletal and smooth muscles with genetic manipulation of calmodulin. FEBS Lett 1990; 263:340-4. [PMID: 2335238 DOI: 10.1016/0014-5793(90)81409-h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A prominent common feature of calmodulin and troponin structures is the unusually long central helix which separates the two lobes, each containing two Ca2(+)-binding sites. To study the role of certain highly conserved residues in the helix in the contraction-relaxation switching mechanism in muscle, we measured the Ca2(+)-activated force of permeabilized skeletal and smooth muscles with three genetically manipulated forms of calmodulin. Mutated calmodulin was made to substitute for troponin-C in vertebrate skeletal fiber. The mutants had 1-4 deletions in the conserved cluster (positions 81-84) in the solvent-exposed region of the central helix, which also substantially shortened the helix. The force of the maximally activated fiber was found to be diminished only with the mutant in which the entire cluster Ser-81 to Glu-84 (CaM delta 81-84) was deleted. All such deletions were found to be completely ineffective in blocking the Ca2(+)-switching process in smooth muscle strips. The results show for the first time that at least a part of the highly conserved four-residue cluster in the central helix is critical for the contraction mechanism of striated muscle. Further, the possibility is raised that the reduced length of the central helix may be a determining factor in the Ca2(+)-switching mechanism in fast-twitch muscle. These findings combined with the results on smooth muscle indicate diversity in the structure-function specifications for the central helix of calmodulin for different target proteins.
Collapse
Affiliation(s)
- J Gulati
- Albert Einstein College of Medicine, Department of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
14
|
Abstract
Evidence for a specific interaction between oncomodulin and glutathione reductase is presented. Glutathione reductase (EC 1.6.4.2) isolated from either the bovine intestinal mucosa or the rat liver was bound in a Ca2(+)-dependent manner to oncomodulin which was covalently attached to Sepharose. In addition, glutathione reductase was able to catalyze the reduction of the disulfide-linked dimer of oncomodulin. The interaction of these proteins could also be indirectly demonstrated by monitoring glutathione reductase activity since oncomodulin was shown to inhibit the enzyme in a dose-dependent manner with an apparent IC50 of approximately 5 microM. The kinetic analysis of the oncomodulin-dependent effects on glutathione reductase activity indicates that oncomodulin interacts at a site other than the active site as the oncomodulin-induced inhibition was of the noncompetitive type. The in vivo inhibition of glutathione reductase appears to be an oncomodulin-specific effect as closely related members of the troponin C superfamily such as rabbit (pI 5.5) or carp (pI 4.25) parvalbumins, as well as calmodulin, failed to affect the activity of this enzyme. The present in vitro study indicating that oncomodulin can regulate the activity of glutathione reductase could be very significant with respect to the elucidation of a physiological role for oncomodulin.
Collapse
Affiliation(s)
- E J Palmer
- Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | |
Collapse
|
15
|
MacManus JP, Brewer LM, Banville D. Oncomodulin in normal and transformed cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 269:107-10. [PMID: 2191548 DOI: 10.1007/978-1-4684-5754-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J P MacManus
- Division of Biological Sciences, National Research Council, Ottawa, Canada
| | | | | |
Collapse
|
16
|
Szabo AG. Application of laser-based fluorescence to study protein structure and dynamics. BIOTECHNOLOGY (READING, MASS.) 1990; 14:159-86. [PMID: 2183897 DOI: 10.1016/b978-0-409-90116-0.50016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
|
18
|
Sommer EW, Blum JK, Berger MC, Berchtold MW. A chemically transformed rat fibroblast cell line expresses high levels of oncomodulin. FEBS Lett 1989; 257:307-10. [PMID: 2583278 DOI: 10.1016/0014-5793(89)81558-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemically (by N-methyl-N'-nitro-N-nitrosoguanidine) treated rat fibroblasts (T14c) exhibited growth characteristics and a morphology typical for transformed cells and markedly different from untreated, parental cells. In contrast to untransformed cells, T14c fibroblasts produced significant levels of oncomodulin mRNA as analyzed on Northern blots even when compared to rat Morris hepatomas, the richest source of oncomodulin known so far. The levels of transcripts for both calmodulin and oncomodulin in T14c cells were higher in log phase growth as compared to confluent stages. The T14c model system may be useful in the elucidation of mechanisms involved in the regulation of oncomodulin synthesis.
Collapse
Affiliation(s)
- E W Sommer
- Institute of Toxicology, ETH-Zürich, Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
19
|
Isolation and analysis of a rat genomic clone containing a long terminal repeat with high similarity to the oncomodulin mRNA leader sequence. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51458-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Kuźnicki J, Filipek A, Hunziker PE, Huber S, Heizmann CW. Calcium-binding protein from mouse Ehrlich ascites-tumour cells is homologous to human calcyclin. Biochem J 1989; 263:951-6. [PMID: 2597136 PMCID: PMC1133522 DOI: 10.1042/bj2630951] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A Ca2+-binding protein was purified from mouse Ehrlich ascites-tumour cells. The protein forms monomers and disulphide-linked dimers, which can be separated by reverse-phase h.p.l.c. A partial amino acid sequence analysis demonstrated that the protein has an EF-hand structure. A striking homology was found to rat and human calcyclin (a member of the S-100 protein family), which is possibly involved in cell-cycle regulation.
Collapse
Affiliation(s)
- J Kuźnicki
- Nencki Institute of Experimental Biology, Department of Muscle Biochemistry, Warszawa, Poland
| | | | | | | | | |
Collapse
|
21
|
Abstract
To determine the significance of the global structure of the regulatory proteins in the mechanism of the Ca2+-switch in cardiac and skeletal muscle contractions, the properties of a family of Ca2+-binding proteins with 4 or 3 EF-hand motifs have been studied with desensitized skinned fiber preparations. Proteins with 4 EF hands (such as troponins C - TnCs) are dumb-bell shaped, those with 3 EF hands (parvalbumin) being ellipsoidal. The number of active sites varied between four and two. We find that the ability to anchor in the fiber is limited to proteins with 4 EF hands and, at least, two active Ca2+-binding sites, one each in the N- and C-termini. The results suggest that the dumb-bell shaped global structure is critical for the switching action in muscular contraction, and a trigger site in the N-terminus and a structural site in the C-terminus need to be active in order to regulate contractility.
Collapse
Affiliation(s)
- A Babu
- Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
22
|
Brewer LM, Gillen MF, MacManus JP. Localization of mRNA for the oncotrophoblastic protein oncomodulin during implantation and early placentation in the rat. Placenta 1989; 10:359-75. [PMID: 2780516 DOI: 10.1016/0143-4004(89)90018-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mRNA for the oncodevelopmental calcium-binding protein oncomodulin (MW 11,700) has been detected in tissues of the rat conceptus by in situ hybridization using biotinylated RNA probes. Oncomodulin mRNA was detected in the basal zone and labyrinth of rat placenta, following a similar distribution to that shown for oncomodulin by immunohistochemistry. Oncomodulin mRNA was also detected in rat ectoplacental cone at ten days and in amnion and PYS, but not VYS from 11 days onward. Previously oncomodulin was not detected embryonically from day 14 to birth, but in the present study of oncomodulin mRNA and protein, both were detected in implantation stages from blastula through egg cylinder. Staining was also present on decidual tissue. The suggestion is made that the oncomodulin gene is initially active in all cell types, but later its activity is confined to extraembryonic tissues.
Collapse
Affiliation(s)
- L M Brewer
- Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | |
Collapse
|
23
|
MacManus JP, Hutnik CML, Sykes BD, Szabo AG, Williams TC, Banville D. Characterization and Site-specific Mutagenesis of the Calcium-binding Protein Oncomodulin Produced by Recombinant Bacteria. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94090-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|