1
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
2
|
Bandyopadhyay D, Mishra PP. Real-Time Monitoring of the Multistate Conformational Dynamics of Polypurine Reverse Hoogsteen Hairpin To Capture Their Triplex-Affinity for Gene Silencing by smFRET Microspectroscopy. J Phys Chem B 2020; 124:8230-8239. [DOI: 10.1021/acs.jpcb.0c05493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Debolina Bandyopadhyay
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI Mumbai, 1/AF Bidhannagar, Kolkata 700064, India
| | - Padmaja P. Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI Mumbai, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
3
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
4
|
Bahal R, Gupta A, Glazer PM. Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Lin LJ, Lin SB, Wu CW, Kan LS. 1H NMR Study on the pH-Dependent Polymorphism of a DNA Triplex with Oligonucleoside Methylphosphonate Analogues. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199500062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Abstract
Epidermal keratinocytes are particularly suitable candidates for in situ gene correction. Intraperitoneal administration of a triplex-forming oligonucleotide (TFO) was shown previously to introduce DNA base changes in a reporter gene in skin, without identifying which cells had been targeted. We extend those previous experiments using two triplex-forming molecules (TFMs), a peptide nucleic acid (PNA-Antp) and a TFO (AG30), and two lines of transgenic mice that have the chromosomally integrated λsupFG1 shuttle-reporter transgene. Successful in vivo genomic modification occurs in epidermis and dermis in CD1 transgenic mice following either intraperitoneal or intradermal delivery of the PNA-Antennapedia conjugate. FITC-PNA-Antp accumulates in nuclei of keratinocytes and, after intradermal delivery of the PNA-Antp, chromosomally modified, keratin 5 positive basal keratinocytes persist for at least 10 days. In hairless (SKH1) mice with the λsupFG1 transgene, intradermal delivery of the TFO, AG30, introduces gene modifications in both tail and back skin and those chromosomal modifications persist in basal keratinocytes for 10 days. Hairless mice should facilitate comparison of various targeting agents and methods of delivery. Gene targeting by repeated local administration of oligonucleotides may prove clinically useful for judiciously selected disease-causing genes in the epidermis.
Collapse
|
7
|
Awad AM, Collazo MJ, Carpio K, Flores C, Bruice TC. A convenient synthesis of the cytidyl 3′-terminal monomer for solid-phase synthesis of RNG oligonucleotides. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication. Appl Immunohistochem Mol Morphol 2011; 18:532-45. [PMID: 20502318 DOI: 10.1097/pai.0b013e3181e1ef6a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND One of the most fascinating discoveries in biology in recent years is unquestionably the identification of the family of small, noncoding RNAs known as microRNAs (miRNAs). Each miRNA targets multiple mRNA species through recognition of complementary sequences, typically located at multiple sites within the 3 untranslated region. In animals, single-stranded miRNA binds specific messenger RNA (mRNA) by a mechanism that is yet to be fully characterized. The bound mRNA remains untranslated resulting in reduced levels of the corresponding protein; however, if the sequence match between the miRNA and its target is precise, the bound mRNA can be degraded resulting in reduced levels of the corresponding transcript. Eukaryotic genes are also regulated by triplex formation between double helix and a third small RNA or DNA molecule. Thousands of triplex-forming (TF) islands in human genomes are mapped. However, the role of TF miRNAs within the hairpin structures of miRNA and the target mRNA has not been reported. We have explored TF complexes between human miRNAs (hsa-miR) that are complementary to human immunodeficiency virus (HIV)-1 and their antiviral potential as therapeutic agents. METHODS We downloaded mature miRNA sequences from the human miRBase Sequence Database (http://microrna.sanger.ac.uk/sequences/), and computationally analyzed miRNAs that have significant homologies to HIV-1 genome (pNL 4-3 Accession #AF324493). We developed an algorithm to look for triplex-binding motifs (C+CG and T AT) and selected 4 miRNAs with 3 negative controls. TF stability was tested by using fluorophore-labeled duplexes connected by a single hexaethylene glycol moiety, representing HIV-1 proviral motifs, and black-hole quencher-1 labeled oligonucleotides, representing miRNA. RESULTS Fifty miRNAs were discovered that showed greater than 80% homology to HIV-1, of which 4 hsa-miR that exhibited an ability to form stable triplex with double stranded-HIV-1 sequences were selected. Three negative controls were used. The TF stability of the 4 hsa-miRs and the negative controls were confirmed and measured. Stably transfected Hela-CD4+ cell lines expressing each of the hsa-miR were developed. All 4 miRNAs exhibited a significant inhibition of HIV-1 as measured by HIV-1 p24 enzyme-linked immunosorbent assay (>90%; P>0.001) when compared with the 3 negative controls. By using immunohistochemical staining with triplex binding monoclonal antibodies, significant expression of TF miRNAs was detected in the cell lines, but not in the negative controls (P<0.001). CONCLUSIONS In this study, we demonstrated for the first time that besides the well-established post-transcriptional silencing based on mRNA degradation, miRNAs may be responsible for long-term latency of HIV-1 by TF, a different mechanism. We provide a possible molecular mechanism by which HIV-1 homologous miRNAs may impart resistance to HIV-1 and suggest a new miRNA-based therapeutic strategy for HIV-1.
Collapse
|
9
|
Jain AK, Bhattacharya S. Groove Binding Ligands for the Interaction with Parallel-Stranded ps-Duplex DNA and Triplex DNA. Bioconjug Chem 2010; 21:1389-403. [DOI: 10.1021/bc900247s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akash K. Jain
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
10
|
Gfrörer A, Schnetter ME, Wolfrum J, Greulich KO. UV-Resonance-Raman Studies of Protonated Nucleic Acid Bases. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19910950711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Schneider UV, Mikkelsen ND, Jøhnk N, Okkels LM, Westh H, Lisby G. Optimal design of parallel triplex forming oligonucleotides containing Twisted Intercalating Nucleic Acids--TINA. Nucleic Acids Res 2010; 38:4394-403. [PMID: 20338879 PMCID: PMC2910062 DOI: 10.1093/nar/gkq188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Twisted intercalating nucleic acid (TINA) is a novel intercalator and stabilizer of Hoogsteen type parallel triplex formations (PT). Specific design rules for position of TINA in triplex forming oligonucleotides (TFOs) have not previously been presented. We describe a complete collection of easy and robust design rules based upon more than 2500 melting points (Tm) determined by FRET. To increase the sensitivity of PT, multiple TINAs should be placed with at least 3 nt in-between or preferable one TINA for each half helixturn and/or whole helixturn. We find that ΔTm of base mismatches on PT is remarkably high (between 7.4 and 15.2°C) compared to antiparallel duplexes (between 3.8 and 9.4°C). The specificity of PT by ΔTm increases when shorter TFOs and higher pH are chosen. To increase ΔTms, base mismatches should be placed in the center of the TFO and when feasible, A, C or T to G base mismatches should be avoided. Base mismatches can be neutralized by intercalation of a TINA on each side of the base mismatch and masked by a TINA intercalating direct 3′ (preferable) or 5′ of it. We predict that TINA stabilized PT will improve the sensitivity and specificity of DNA based clinical diagnostic assays.
Collapse
Affiliation(s)
- Uffe V Schneider
- QuantiBact Inc, Department of Clinical Microbiology, Hvidovre Hospital, Kettegaards Alle 30, 2650 Hvidovre, Denmark.
| | | | | | | | | | | |
Collapse
|
12
|
Schneider UV, Severinsen JK, Géci I, Okkels LM, Jøhnk N, Mikkelsen ND, Klinge T, Pedersen EB, Westh H, Lisby G. A novel FRET pair for detection of parallel DNA triplexes by the LightCycler. BMC Biotechnol 2010; 10:4. [PMID: 20102641 PMCID: PMC2823659 DOI: 10.1186/1472-6750-10-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melting temperature of DNA structures can be determined on the LightCycler using quenching of FAM. This method is very suitable for pH independent melting point (Tm) determination performed at basic or neutral pH, as a high throughput alternative to UV absorbance measurements. At acidic pH quenching of FAM is not very suitable, since the fluorescence of FAM is strongly pH dependent and drops with acidic pH.Hoogsteen based parallel triplex helix formation requires protonation of cytosines in the triplex forming strand. Therefore, nucleic acid triplexes show strong pH dependence and are stable only at acidic pH. This led us to establish a new pH independent fluorophore based measuring system on the LightCycler for thermal stability studies of parallel triplexes. RESULTS A novel LightCycler FRET pair labelled with ATTO495 and ATTO647N was established for parallel triplex detection with antiparallel duplex as a control for the general applicability of these fluorophores for Tm determination. The ATTO fluorophores were pH stable from pH 4.5 to 7.5. Melting of triplex and duplex structures were accompanied by a large decrease in fluorescence intensity leading to well defined Tm and high reproducibility. Validation of Tm showed low intra- and inter-assay coefficient of variation; 0.11% and 0.14% for parallel triplex and 0.19% and 0.12% for antiparallel duplex. Measurements of Tm and fluorescence intensity over time and multiple runs showed great time and light stability of the ATTO fluorophores. The variance on Tm determinations was significant lower on the LightCycler platform compared to UV absorbance measurements, which enable discrimination of DNA structures with very similar Tm. Labelling of DNA probes with ATTO fluorophore increased Tm of antiparallel duplexes significantly, but not Tm of parallel triplexes. CONCLUSIONS We have established a novel pH independent FRET pair with high fluorescence signals on the LightCycler platform for both antiparallel duplex and parallel triplex formation. The method has been thoroughly validated, and is characterized by an excellent accuracy and reproducibility. This FRET pair is especially suitable for DeltaTm and Tm determinations of pH dependent parallel triplex formation.
Collapse
Affiliation(s)
- Uffe V Schneider
- QuantiBact Inc, Department of Clinical Microbiology, Hvidovre Hospital, Kettegaards Alle 30, 2650 Hvidovre, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chin JY, Glazer PM. Repair of DNA lesions associated with triplex-forming oligonucleotides. Mol Carcinog 2009; 48:389-99. [PMID: 19072762 DOI: 10.1002/mc.20501] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) are gene targeting tools that can bind in the major groove of duplex DNA in a sequence-specific manner. When bound to DNA, TFOs can inhibit gene expression, can position DNA-reactive agents to specific locations in the genome, or can induce targeted mutagenesis and recombination. There is evidence that third strand binding, alone or with an associated cross-link, is recognized and metabolized by DNA repair factors, particularly the nucleotide excision repair pathway. This review examines the evidence for DNA repair of triplex-associated lesions.
Collapse
Affiliation(s)
- Joanna Y Chin
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, 15 York Street, New Haven, CT 06510, USA
| | | |
Collapse
|
14
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
15
|
Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008; 90:1117-30. [PMID: 18331847 DOI: 10.1016/j.biochi.2008.02.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/08/2008] [Indexed: 01/25/2023]
Abstract
DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence-specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park--Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
16
|
Mazo A, Hodgson JW, Petruk S, Sedkov Y, Brock HW. Transcriptional interference: an unexpected layer of complexity in gene regulation. J Cell Sci 2007; 120:2755-61. [PMID: 17690303 DOI: 10.1242/jcs.007633] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much of the genome is transcribed into long untranslated RNAs, mostly of unknown function. Growing evidence suggests that transcription of sense and antisense untranslated RNAs in eukaryotes can repress a neighboring gene by a phenomenon termed transcriptional interference. Transcriptional interference by the untranslated RNA may prevent recruitment of the initiation complex or prevent transcriptional elongation. Recent work in yeast, mammals, and Drosophila highlights the diverse roles that untranslated RNAs play in development. Previously, untranslated RNAs of the bithorax complex of Drosophila were proposed to be required for its activation. Recent studies show that these untranslated RNAs in fact silence Ultrabithorax in early embryos, probably by transcriptional interference.
Collapse
Affiliation(s)
- Alexander Mazo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
17
|
Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 2007; 445:666-70. [PMID: 17237763 DOI: 10.1038/nature05519] [Citation(s) in RCA: 557] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/08/2006] [Indexed: 12/15/2022]
Abstract
Alternative promoters within the same gene are a general phenomenon in gene expression. Mechanisms of their selective regulation vary from one gene to another and are still poorly understood. Here we show that in quiescent cells the mechanism of transcriptional repression of the major promoter of the gene encoding dihydrofolate reductase depends on a non-coding transcript initiated from the upstream minor promoter and involves both the direct interaction of the RNA and promoter-specific interference. The specificity and efficiency of repression is ensured by the formation of a stable complex between non-coding RNA and the major promoter, direct interaction of the non-coding RNA with the general transcription factor IIB and dissociation of the preinitiation complex from the major promoter. By using in vivo and in vitro assays such as inducible and reconstituted transcription, RNA bandshifts, RNA interference, chromatin immunoprecipitation and RNA immunoprecipitation, we show that the regulatory transcript produced from the minor promoter has a critical function in an epigenetic mechanism of promoter-specific transcriptional repression.
Collapse
Affiliation(s)
- Igor Martianov
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
18
|
Varganov Y, Amosova O, Fresco JR. Third strand-mediated psoralen-induced correction of the sickle cell mutation on a plasmid transfected into COS-7 cells. Gene Ther 2006; 14:173-9. [PMID: 16943853 DOI: 10.1038/sj.gt.3302850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A significant level of correction of the mutation responsible for sickle cell anemia has been achieved in monkey COS-7 cells on a plasmid containing a beta-globin gene fragment. The plasmid was treated in vitro with a nucleic acid 'third strand' bearing a terminal photoreactive psoralen moiety that binds immediately adjacent to the mutant base pair. Following covalent attachment of the psoralen by monoadduct or diadduct formation to the mutant T-residue on the coding strand, the treated plasmid was transfected into the cells, which were then incubated for 48 h to allow the cellular DNA repair mechanisms to remove the photoadducts. Upon re-isolation and amplification of the transfected plasmid, sickle cell mutation correction, as determined by sequence analysis of both complementary strands, was established in a full 1%. This result encourages extension of the approach to correct the mutation directly on the chromosome.
Collapse
Affiliation(s)
- Y Varganov
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
19
|
Prhavc M, Kobe J. SYNTHESIS OF PYRAZOLO[4,3-C]PYRIDINE C-RIBONUCLEOSIDESVIAAN EFFECTIVE TETRAZOLE TO PYRAZOLE TRANSFORMATION. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319608002732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Mills M, Klump* HH. Systematic Mutation in the Third Strand of a Purine Motif DNA Triple Helix: a Story of a Molecule Which Hides Its Tail. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319808004731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Martin. Mills
- a Department of Biochemistry , University of Cape Town , Private Bag 7700, Rondebosch , South Africa
| | - Horst H. Klump*
- a Department of Biochemistry , University of Cape Town , Private Bag 7700, Rondebosch , South Africa
| |
Collapse
|
21
|
Knauert MP, Kalish JM, Hegan DC, Glazer PM. Triplex-stimulated intermolecular recombination at a single-copy genomic target. Mol Ther 2006; 14:392-400. [PMID: 16731047 DOI: 10.1016/j.ymthe.2006.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/23/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022] Open
Abstract
Gene targeting via homologous recombination offers a potential strategy for therapeutic correction of mutations in disease-related human genes. However, there is a need to improve the efficiency of site-specific recombination by transfected donor DNAs. Oligonucleotide-mediated triple helix formation has been shown to constitute a DNA lesion sufficient to provoke DNA repair and thereby stimulate recombination. However, the ability of triplex-forming oligonucleotides (TFOs) to induce recombination between a target locus and a donor DNA has so far been demonstrated only with multicopy episomal targets in mammalian cells. Using cell lines containing the firefly luciferase reporter gene, we have now established the ability of TFOs to induce gene correction by exogenous donor DNAs at a single-copy chromosomal locus. We find that cotransfection of TFOs and short, single-stranded DNA donor molecules into mammalian cells yields gene correction in a dose-dependent manner at frequencies up to 0.1%, which is five- to ninefold above background. We demonstrate both oligonucleotide-specific and target site-specific effects. We also find that recombination can be induced by both parallel and antiparallel triple helix formation. These results provide further support for the development of TFOs as reagents to stimulate site-specific correction of defective human genes.
Collapse
Affiliation(s)
- Melissa P Knauert
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
22
|
DiPaolo JA, Alvarez-Salas LM. Advances in the development of therapeutic nucleic acids against cervical cancer. Expert Opin Biol Ther 2005; 4:1251-64. [PMID: 15268660 DOI: 10.1517/14712598.4.8.1251] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cervical cancer is the second most common neoplastic disease affecting women worldwide. Basic, clinical and epidemiological analyses indicate that expression of high-risk human papillomaviruses (HPVs) E6/E7 genes is the primary cause of cervical cancer and represent ideal targets for the application of therapeutic nucleic acids (TNAs). Antisense oligodeoxyribonucleotides (AS-ODNs) and ribozymes (RZs) are the most effective TNAs able to inhibit in vivo tumour growth by eliminating HPV-16 and HPV-18 E6/E7 transcripts. Expression of multiple RZs directed against alternative target sites by triplex expression systems may result in the abrogation of highly variable HPVs. More recently, RNA interference (RNAi) gene knockdown phenomenon, induced by small interfering RNA (siRNA), has demonstrated its potential value as an effective TNA for cervical cancer. siRNA and aptamers as TNAs will have a place in the armament for cervical cancer. TNAs against cervical cancer is in a dynamic state, and clinical trials will define the TNAs in preventive and therapeutic roles to control tumour growth, debulk tumour mass, prevent metastasis and facilitate immune interaction.
Collapse
MESH Headings
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Gene Targeting
- Genetic Therapy
- Humans
- Nucleic Acid Conformation
- Nucleic Acids/administration & dosage
- Nucleic Acids/genetics
- Nucleic Acids/therapeutic use
- Oligodeoxyribonucleotides, Antisense/administration & dosage
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- Oncogene Proteins, Viral/antagonists & inhibitors
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/physiology
- Papillomaviridae/genetics
- Papillomaviridae/pathogenicity
- Papillomavirus Infections/genetics
- Papillomavirus Infections/therapy
- RNA Interference
- RNA, Catalytic/administration & dosage
- RNA, Catalytic/genetics
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/therapy
- Uterine Cervical Neoplasms/virology
Collapse
Affiliation(s)
- Joseph A DiPaolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
23
|
Kalish JM, Seidman MM, Weeks DL, Glazer PM. Triplex-induced recombination and repair in the pyrimidine motif. Nucleic Acids Res 2005; 33:3492-502. [PMID: 15961731 PMCID: PMC1151591 DOI: 10.1093/nar/gki659] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) bind DNA in a sequence-specific manner at polypurine/polypyrimidine sites and mediate targeted genome modification. Triplexes are formed by either pyrimidine TFOs, which bind parallel to the purine strand of the duplex (pyrimidine, parallel motif), or purine TFOs, which bind in an anti-parallel orientation (purine, anti-parallel motif). Both purine and pyrimidine TFOs, when linked to psoralen, have been shown to direct psoralen adduct formation in cells, leading to mutagenesis or recombination. However, only purine TFOs have been shown to mediate genome modification without the need for a targeted DNA-adduct. In this work, we report the ability of a series of pyrimidine TFOs, with selected chemical modifications, to induce repair and recombination in two distinct episomal targets in mammalian cells in the absence of any DNA-reactive conjugate. We find that TFOs containing N3′→P5′ phosphoramidate (amidate), 5-(1-propynyl)-2′-deoxyuridine (pdU), 2′-O-methyl-ribose (2′-O-Me), 2′-O-(2-aminoethyl)-ribose, or 2′-O, 4′-C-methylene bridged or locked nucleic acid (LNA)-modified nucleotides show substantially increased formation of non-covalent triplexes under physiological conditions compared with unmodified DNA TFOs. However, of these modified TFOs, only the amidate and pdU-modified TFOs mediate induced recombination in cells and stimulate repair in cell extracts, at levels comparable to those seen with purine TFOs in similar assays. These results show that amidate and pdU-modified TFOs can be used as reagents to stimulate site-specific gene targeting without the need for conjugation to DNA-reactive molecules. By demonstrating the potential for induced repair and recombination with appropriately modified pyrimidine TFOs, this work expands the options available for triplex-mediated gene targeting.
Collapse
Affiliation(s)
- Jennifer M. Kalish
- Department of Therapeutic Radiology, Yale University School of MedicinePO Box 208040, HRT 140, New Haven, CT 06520-8040, USA
- Department of Genetics, Yale University School of MedicinePO Box 208040, HRT 140, New Haven, CT 06520-8040, USA
| | - Michael M. Seidman
- National Institute on Aging, National Institutes of Health5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Daniel L. Weeks
- Department of Biochemistry, University of IowaIowa City, IA 52242, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of MedicinePO Box 208040, HRT 140, New Haven, CT 06520-8040, USA
- Department of Genetics, Yale University School of MedicinePO Box 208040, HRT 140, New Haven, CT 06520-8040, USA
- To whom correspondence should be addressed. Tel: +1 203 737 2788; Fax: +1 203 785 6309;
| |
Collapse
|
24
|
Nagatsugi F, Sasaki S. Chemical tools for targeted mutagenesis of DNA based on triple helix formation. Biol Pharm Bull 2004; 27:463-7. [PMID: 15056848 DOI: 10.1248/bpb.27.463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of methods for targeted mutagenesis shows promise as an alternative form of gene therapy. Triple helix-forming oligonucleotides (TFOs) provide an attractive strategy for inducing mutations. Especially, alkylation of nucleobases with functionalized TFOs would have potential for site-directed mutation. Several studies have demonstrated that treatment of mammalian cells with TFOs can be exploited to introduce desired sequence changes and point mutations. This review summarizes targeted mutagenesis using reactive TFOs, including studies with photo reactive psolaren derivatives as well as a new reactive derivative recently developed by our group.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
25
|
Hunziker J, Roth HJ, Böhringer M, Giger A, Diederichsen U, Göbel M, Krishnan R, Jaun B, Leumann C, Eschenmoser A. Warum pentose-und nicht hexose-nucleinsäuren? Teil III. Oligo(2′,3′-dideoxy-β-D-glucopyranosyl) nucleotide (‘homo-DNS’): Paarungesigenschaften. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19930760119] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Raghavan SC, Houston S, Hegde BG, Langen R, Haworth IS, Lieber MR. Stability and strand asymmetry in the non-B DNA structure at the bcl-2 major breakpoint region. J Biol Chem 2004; 279:46213-25. [PMID: 15328356 DOI: 10.1074/jbc.m406280200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The t(14;18) translocation involving the Ig heavy chain locus and the BCL-2 gene is the single most common chromosomal translocation in human cancer. Recently we reported in vitro and in vivo chemical probing data indicating that the 150-bp major breakpoint region (Mbr), which contains three breakage subregions (hotspots) (known as peaks I, II, and III), has single-stranded character and hence a non-B DNA conformation. Although we could document the non-B DNA structure formation at the bcl-2 Mbr, the structural studies were limited to chemical probing. Therefore, in the present study, we used multiple methods including circular dichroism to detect the non-B DNA at the bcl-2 Mbr. We established a new gel shift method to detect the altered structure at neutral pH on shorter DNA fragments containing the bcl-2 Mbr and analyzed the fine structural features. We found that the single-stranded region in the non-B DNA structure observed is stable for days and is asymmetric with respect to the Watson and Crick strands. It could be detected by oligomer probing, a bisulfite modification assay, or a P1 nuclease assay. We provide evidence that two different non-B conformations exist at peak I in addition to the single one observed at peak III. Finally we used mutagenesis and base analogue incorporation to show that the non-B DNA structure formation requires Hoogsteen pairing. These findings place major constraints on the location and nature of the non-B conformations assumed at peaks I and III of the bcl-2 Mbr.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kundu M, Nagatsugi F, Majumdar A, Miller PS, Seidman MM. Enhancement and inhibition by 2'-O-hydroxyethyl residues of gene targeting mediated by triple helix forming oligonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 22:1927-38. [PMID: 14609232 DOI: 10.1081/ncn-120025240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reagents that recognize and bind specific genomic sequences in living mammalian cells would have great potential for genetic manipulation, including gene knockout, strain construction, and gene therapy. Triple helix forming oligonucleotides (TFOs) bind specific sequences via the major groove, but pyrimidine motif TFOs are limited by their poor activity under physiological conditions. Base and sugar analogues that overcome many of these limitations have been described. In particular, 2'-O-modifications influence sugar pucker and third strand conformation, and have been important to the development of bioactive TFOs. Here we have analyzed the impact of 2'-O-hydroxyethyl (2'-HE) substitutions, in combination with other 2' modifications. We prepared modified TFOs conjugated to psoralen and measured targeting activity in a gene knockout assay in cultured hamster cells. We find that 2'-HE residues enhance the bioactivity of TFOs containing 2'-O-methyl (2'-OMe) modifications, but reduce the bioactivity of TFOs containing, in addition, 2'-O-aminoethyl (2'-AE) residues.
Collapse
Affiliation(s)
- Mrinalkanti Kundu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
28
|
Lavelle L, Fresco JR. Enhanced stabilization of the triplexes d(C(+)-T)(6):d(A-G)(6);d(C-T)(6), d(T)(21):d(A)(21);d(T)(21) and poly r(U:AU) by water structure-making solutes. Biophys Chem 2004; 105:701-20. [PMID: 14499928 DOI: 10.1016/s0301-4622(03)00098-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A variety of organic cations, cationic lipids, low molecular weight alcohols, sodium dodecylsulfate, trehalose, glycerol, low molecular weight polyethylene glycols, and DMSO were tested for their ability to modulate the stability of the triplexes d(C(+)-T)(6):d(A-G)(6);d(C-T)(6), d(T)(21):d(A)(21);d(T)(21), poly r(U:A U) and their respective core duplexes, d(A-G)(6);d(C-T)(6), d(A)(21);d(T)(21), poly r(A-U). Very substantial enhancement of triplex stability over that in a physiological salt buffer at pH 7 is obtained with different combinations of triplex and high concentrations of these additives, e.g. trimethylammonium chloride and d(C(+)-T)(6):d(A-G)(6);d(C-T)(6); 2-propanol and d(T)(21):d(A)(21);d(T)(21); ethanol and poly r(U:A;U). Triplex formation is even observed with a 1:1 strand mixture of d(A-G)(6) and d(C-T)(6) in the presence of dimethylammonium, tetramethylammonium, and tetraethylammonium-chloride, as well as methanol, ethanol, and 2-propanol. Triplex stability follows the water structure-making ability (and in some cases the duplex unwinding ability) of the organic cations, the low molecular weight alcohols and other neutral organic compounds, whereas water structure-breaking additives decrease triplex stability. These findings are consistent with those reported in the accompanying paper that triplex formation occurs with a net uptake of water. Since the findings suggest that third strand-binding is facilitated by unwinding of the target duplex, it is inferred that triplex formation may be enhanced by nucleic acid binding proteins operating similarly.
Collapse
Affiliation(s)
- Laurence Lavelle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
29
|
Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31:6064-78. [PMID: 14576293 PMCID: PMC275457 DOI: 10.1093/nar/gkg815] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger proteins. These different types of designer molecules with their different principles of engineered sequence specificity are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
30
|
Amosova O, Broitman SL, Fresco JR. Repairing the Sickle Cell mutation. II. Effect of psoralen linker length on specificity of formation and yield of third strand-directed photoproducts with the mutant target sequence. Nucleic Acids Res 2003; 31:4673-81. [PMID: 12907706 PMCID: PMC169896 DOI: 10.1093/nar/gkg659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three identical deoxyoligonucleotide third strands with a 3'-terminal psoralen moiety attached by linkers that differ in length (N = 16, 6 and 4 atoms) and structure were examined for their ability to form triplex-directed psoralen photoproducts with both the mutant T residue of the Sickle Cell beta-globin gene and the comparable wild-type sequence in linear duplex targets. Specificity and yield of UVA (365 nm) and visible (419 nm) light-induced photoadducts were studied. The total photoproduct yield varies with the linker and includes both monoadducts and crosslinks at various available pyrimidine sites. The specificity of photoadduct formation at the desired mutant T residue site was greatly improved by shortening the psoralen linker. In particular, using the N-4 linker, psoralen interaction with the residues of the non-coding duplex strand was essentially eliminated, while modification of the Sickle Cell mutant T residue was maximized. At the same time, the proportion of crosslink formation at the mutant T residue upon UV irradiation was much greater for the N-4 linker. The photoproducts formed with the wild-type target were fully consistent with its single base pair difference. The third strand with the N-4 linker was also shown to bind to a supercoiled plasmid containing the Sickle Cell mutation site, giving photoproduct yields comparable with those observed in the linear mutant target.
Collapse
Affiliation(s)
- Olga Amosova
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
31
|
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner. The specificity of this binding raises the possibility of using triplex formation for directed genome modification, with the ultimate goal of repairing genetic defects in human cells. Several studies have demonstrated that treatment of mammalian cells with TFOs can provoke DNA repair and recombination, in a manner that can be exploited to introduce desired sequence changes. This review will summarize recent advances in this field while also highlighting major obstacles that remain to be overcome before the application of triplex technology to therapeutic gene repair can be achieved.
Collapse
Affiliation(s)
- Michael M Seidman
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
32
|
Majumdar A, Puri N, Cuenoud B, Natt F, Martin P, Khorlin A, Dyatkina N, George AJ, Miller PS, Seidman MM. Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J Biol Chem 2003; 278:11072-7. [PMID: 12538585 DOI: 10.1074/jbc.m211837200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Successful gene-targeting reagents must be functional under physiological conditions and must bind chromosomal target sequences embedded in chromatin. Triple helix-forming oligonucleotides (TFOs) recognize and bind specific sequences via the major groove of duplex DNA and may have potential for gene targeting in vivo. We have constructed chemically modified, psoralen-linked TFOs that mediate site-specific mutagenesis of a chromosomal gene in living cells. Here we show that targeting efficiency is sensitive to the biology of the cell, specifically, cell cycle status. Targeted mutagenesis was variable across the cycle with the greatest activity in S phase. This was the result of differential TFO binding as measured by cross-link formation. Targeted cross-linking was low in quiescent cells but substantially enhanced in S phase cells with adducts in approximately 20-30% of target sequences. 75-80% of adducts were repaired faithfully, whereas the remaining adducts were converted into mutations (>5% mutation frequency). Clones with mutations could be recovered by direct screening of colonies chosen at random. These results demonstrate high frequency target binding and target mutagenesis by TFOs in living cells. Successful protocols for TFO-mediated manipulation of chromosomal sequences are likely to reflect a combination of appropriate oligonucleotide chemistry and manipulation of the cell biology.
Collapse
Affiliation(s)
- Alokes Majumdar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nagatsugi F, Sasaki S, Miller PS, Seidman MM. Site-specific mutagenesis by triple helix-forming oligonucleotides containing a reactive nucleoside analog. Nucleic Acids Res 2003; 31:e31. [PMID: 12626730 PMCID: PMC152885 DOI: 10.1093/nar/gng031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The specific recognition of homopurine-homo pyrimidine regions in duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Alkylation of nucleobases with functionalized TFOs would have the potential for site-directed mutagenesis. Recently, we demonstrated that a TFO bearing 2-amino-6-vinylpurine derivative, 1, achieves triplex-mediated reaction with high selectivity toward the cytosine of the G-C target site. In this report, we have investigated the use of this reagent to target mutations to a specific site in a shuttle vector plasmid, which replicates in mammalian cells. TFOs bearing 1 produced adducts at the complementary position of 1 and thereby introduced mutations at that site during replication/repair of the plasmid in mammalian cells. Reagents that produce covalent cytosine modifications are relatively rare. These TFOs enable the preparation of templates carrying targeted cytosine adducts for in vitro and in vivo studies. The ability to target mutations may prove useful as a tool for studying DNA repair, and as a technique for gene therapy and genetic engineering.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, CREST (JST), Japan
| | | | | | | |
Collapse
|
34
|
Macris MA, Glazer PM. Transcription dependence of chromosomal gene targeting by triplex-forming oligonucleotides. J Biol Chem 2003; 278:3357-62. [PMID: 12431993 DOI: 10.1074/jbc.m206542200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) recognize and bind to specific DNA sequences and have been used to modify gene function in cells. To study factors that might influence triplex formation at chromosomal sites in mammalian cells, we developed a restriction protection assay to detect triplex-directed psoralen crosslinks in genomic DNA prepared from TFO-transfected cells. Using this assay, we detected binding of a G-rich TFO to a chromosomal site even in the absence of transcription when high concentrations of the TFO were used for transfection. However, experimental induction of transcription at the target site, via an ecdysone-responsive promoter, resulted in substantial increases (3-fold or more) in target site crosslinking, especially at low TFO concentrations. When RNA polymerase activity was inhibited, even in the ecdysone-induced cells, the level of TFO binding was significantly decreased, indicating that transcription through the target region, and not just transcription factor binding, is necessary for the enhanced chromosomal targeting by TFOs. These findings provide evidence that physiologic activity at a chromosomal target site can influence its accessibility to TFOs and suggest that gene targeting by small molecules may be most effective at highly expressed chromosomal loci.
Collapse
Affiliation(s)
- Margaret A Macris
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
35
|
Blume SW, Meng Z, Shrestha K, Snyder RC, Emanuel PD. The 5'-untranslated RNA of the human dhfr minor transcript alters transcription pre-initiation complex assembly at the major (core) promoter. J Cell Biochem 2003; 88:165-80. [PMID: 12461786 DOI: 10.1002/jcb.10326] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human dhfr minor transcript is distinguished from the predominant dhfr mRNA by an approximately 400 nucleotide extension of the 5'-untranslated region, which corresponds to the major (core) promoter DNA (its template). Based on its unusual sequence composition, we hypothesized that the minor transcript 5'-UTR might be capable of altering transcription pre-initiation complex assembly at the core promoter, through direct interactions of the RNA with specific regulatory polypeptides or the promoter DNA itself. We found that the minor transcript 5'-UTR selectively sequesters transcription factor Sp3, and to a lesser extent Sp1, preventing their binding to the dhfr core promoter. This allows a third putative transcriptional regulatory protein, which is relatively resistant to sequestration by the minor transcript RNA, the opportunity to bind the dhfr core promoter. The selective sequestration of Sp3 > Sp1 by the minor transcript 5'-UTR involves an altered conformation of the RNA, and a structural domain of the protein distinct from that required for binding to DNA. As a consequence, the minor transcript 5'-UTR inhibits transcription from the core promoter in vitro (in trans) in a concentration-dependent manner. These results suggest that the dhfr minor transcript may function in vivo (in cis) to regulate the transcriptional activity of the major (core) promoter.
Collapse
Affiliation(s)
- Scott W Blume
- Department of Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
36
|
Carmona P, Molina M. Binding of oligonucleotides to a viral hairpin forming RNA triplexes with parallel G*G*C triplets. Nucleic Acids Res 2002; 30:1333-7. [PMID: 11884630 PMCID: PMC101366 DOI: 10.1093/nar/30.6.1333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infrared and UV spectroscopies have been used to study the assembly of a hairpin nucleotide sequence (nucleotides 3-30) of the 5' non-coding region of the hepatitis C virus RNA (5'-GGCGGGGAUUAUCCCCGCUGUGAGGCGG-3') with a RNA 20mer ligand (5'-CCGCCUCACAAAGGUGGGGU-3') in the presence of magnesium ion and spermidine. The resulting complex involves two helical structural domains: the first one is an intermolecular duplex stem at the bottom of the target hairpin and the second one is a parallel triplex generated by the intramolecular hairpin duplex and the ligand. Infrared spectroscopy shows that N-type sugars are exclusively present in the complex. This is the first case of formation of a RNA parallel triplex with purine motif and shows that this type of targeting RNA strands to viral RNA duplexes can be used as an alternative to antisense oligonucleotides or ribozymes.
Collapse
Affiliation(s)
- Pedro Carmona
- Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain.
| | | |
Collapse
|
37
|
Vasquez KM, Dagle JM, Weeks DL, Glazer PM. Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides. J Biol Chem 2001; 276:38536-41. [PMID: 11504712 DOI: 10.1074/jbc.m101797200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) bind specifically to duplex DNA and provide a strategy for site-directed modification of genomic DNA. Recently we demonstrated TFO-mediated targeted gene knockout following systemic administration in animals. However, a limitation to this approach is the requirement for a polypurine tract (typically 15-30 base pairs (bp)) in the target DNA to afford high affinity third strand binding, thus restricting the number of sites available for effective targeting. To overcome this limitation, we have investigated the ability of chemically modified TFOs to target a short (10 bp) site in a chromosomal locus in mouse cells and induce site-specific mutations. We report that replacement of the phosphodiester backbone with cationic phosphoramidate linkages, either N,N-diethylethylenediamine or N,N-dimethylaminopropylamine, in a 10-nucleotide, psoralen-conjugated TFO confers substantial increases in binding affinity in vitro and is required to achieve targeted modification of a chromosomal reporter gene in mammalian cells. The triplex-directed, site-specific induction of mutagenesis in the chromosomal target was charge- and modification-dependent, with the activity of N,N-diethylethylenediamine > N,N-dimethylaminopropylamine phosphodiester, resulting in 10-, 6-, and <2-fold induction of target gene mutagenesis, respectively. Similarly, N,N-diethylethylenediamine and N,N-dimethylaminopropylamine TFOs were found to enhance targeting at a 16-bp G:C bp-rich target site in a chromatinized episomal target in monkey COS cells, although this longer site was also targetable by a phosphodiester TFO. These results indicate that replacement of phosphodiester bonds with positively charged N,N-diethylethylenediamine linkages enhances intracellular activity and allows targeting of relatively short polypurine sites, thereby substantially expanding the number of potential triplex target sites in the genome.
Collapse
Affiliation(s)
- K M Vasquez
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | |
Collapse
|
38
|
Casey BP, Glazer PM. Gene targeting via triple-helix formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:163-92. [PMID: 11525382 DOI: 10.1016/s0079-6603(01)67028-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A report on a recent workshop entitled "Gene-Targeted Drugs: Function and Delivery" conveys a justified optimism for the eventual feasibility and therapeutic benefit of gene-targeting strategies. Although multiple approaches are being explored, this chapter focuses primarily on the uses of triplex-forming oligonucleotides (TFOs). TFOs are molecules that bind in the major groove of duplex DNA and by so doing can produce triplex structures. They bind to the purine-rich strand of the duplex through Hoogsteen or reverse Hoogsteen hydrogen bonding. They exist in two sequence motifs, either pyrimidine or purine. Improvements in delivery of these TFOs are reducing the quantities required for an effective intracellular concentration. New TFO chemistries are increasing the half-life of these oligos and expanding the range of sequences that can be targeted. Alone or conjugated to active molecules, TFOs have proven to be versatile agents both in vitro and in vivo. Foremost, TFOs have been employed in antigene strategies as an alternative to antisense technology. Conversely, they are also being investigated as possible upregulators of transcription. TFOs have also been shown to produce mutagenic events, even in the absence of tethered mutagens. TFOs can increase rates of recombination between homologous sequences in close proximity. Directed sequence changes leading to gene correction have been achieved through the use of TFOs. Because it is theorized that these modifications are due to the instigation of DNA repair mechanisms, an important area of TFO research is the study of triple-helix recognition and repair.
Collapse
Affiliation(s)
- B P Casey
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
39
|
Cubero E, Güimil-García R, Luque FJ, Eritja R, Orozco M. The effect of amino groups on the stability of DNA duplexes and triplexes based on purines derived from inosine. Nucleic Acids Res 2001; 29:2522-34. [PMID: 11410660 PMCID: PMC55742 DOI: 10.1093/nar/29.12.2522] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of amino groups attached at positions 2 and 8 of the hypoxanthine moiety in the structure, reactivity and stability of DNA duplexes and triplexes is studied by means of quantum mechanical calculations, as well as extended molecular dynamics (MD) and thermodynamic integration (MD/TI) simulations. Theoretical estimates of the change in stability related to 2'-deoxyguanosine (G) --> 2'-deoxyinosine (I) --> 8-amino-2'-deoxyinosine (8AI) mutations have been experimentally verified, after synthesis of the corresponding compounds. An amino group placed at position 2 stabilizes the duplex, as expected, and surprisingly also the triplex. The presence of an amino group at position 8 of the hypoxanthine moiety stabilizes the triplex but, surprisingly, destabilizes the duplex. The subtle electronic redistribution occurring upon the introduction of an amino group on the purine seems to be responsible for this surprising behavior. Interesting 'universal base' properties are found for 8AI.
Collapse
Affiliation(s)
- E Cubero
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franques 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
40
|
Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 2000; 20:990-1000. [PMID: 10629056 PMCID: PMC85216 DOI: 10.1128/mcb.20.3.990-1000.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells. Based on work showing that triple helices, even in the absence of associated psoralen adducts, are able to provoke DNA repair and cause mutations, we asked whether intermolecular triplexes could stimulate recombination. Here, we report that triple-helix formation itself is capable of promoting recombination and that this effect is dependent on a functional nucleotide excision repair (NER) pathway. Transfection of COS cells carrying the dual supF vector with a purine-rich TFO, AG30, designed to bind as a third strand to a region between the two mutant supF genes yielded recombinants at a frequency of 0.37%, fivefold above background, whereas a scrambled sequence control oligomer was ineffective. In human cells deficient in the NER factor XPA, the ability of AG30 to induce recombination was eliminated, but it was restored in a corrected subline expressing the XPA cDNA. In comparison, the ability of triplex-directed psoralen cross-links to induce recombination was only partially reduced in XPA-deficient cells, suggesting that NER is not the only pathway that can metabolize targeted psoralen photoadducts into recombinagenic intermediates. Interestingly, the triplex-induced recombination was unaffected in cells deficient in DNA mismatch repair, challenging our previous model of a heteroduplex intermediate and supporting a model based on end joining. This work demonstrates that oligonucleotide-mediated triplex formation can be recombinagenic, providing the basis for a potential strategy to direct genome modification by using high-affinity DNA binding ligands.
Collapse
Affiliation(s)
- A F Faruqi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | |
Collapse
|
41
|
Broitman S, Amosova O, Dolinnaya NG, Fresco JR. Repairing the sickle cell mutation. I. Specific covalent binding of a photoreactive third strand to the mutated base pair. J Biol Chem 1999; 274:21763-8. [PMID: 10419490 DOI: 10.1074/jbc.274.31.21763] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair. The 24-nucleotide purine-rich target sequence switches from one strand to the other and has four pyrimidine interruptions. Therefore, a third strand sequence favorable to two triplex motifs was used, one parallel and the other antiparallel to it. To cope with the pyrimidine interruptions, which weaken third strand binding, 5-methylcytosine and 5-propynyluracil were used in the third strand. Further, a six residue "hook" complementary to an overhang of a linear duplex target was added to the 5'-end of the third strand via a T(4) linker. In binding to the overhang by Watson-Crick pairing, the hook facilitates triplex formation. This third strand also binds specifically to the target within a supercoiled plasmid. The psoralen moiety at the 3'-end of the third strand forms photoadducts to the targeted T with high efficiency. Such monoadducts are known to preferentially trigger reversion of the mutation by DNA repair enzymes.
Collapse
Affiliation(s)
- S Broitman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
42
|
Blume SW, Lebowitz J, Zacharias W, Guarcello V, Mayfield CA, Ebbinghaus SW, Bates P, Jones DE, Trent J, Vigneswaran N, Miller DM. The integral divalent cation within the intermolecular purine*purine. pyrimidine structure: a variable determinant of the potential for and characteristics of the triple helical association. Nucleic Acids Res 1999; 27:695-702. [PMID: 9862999 PMCID: PMC148234 DOI: 10.1093/nar/27.2.695] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In vitro assembly of an intermolecular purine*purine.pyrimidine triple helix requires the presence of a divalent cation. The relationships between cation coordination and triplex assembly were investigated, and we have obtained new evidence for at least three functionally distinct potential modes of divalent cation coordination. (i) The positive influence of the divalent cation on the affinity of the third strand for its specific target correlates with affinity of the cation for coordination to phosphate. (ii) Once assembled, the integrity of the triple helical structure remains dependent upon its divalent cation component. A mode of heterocyclic coordination/chelation is favorable to triplex formation by decreasing the relative tendency for efflux of integral cations from within the triple helical structure. (iii) There is also a detrimental mode of base coordination through which a divalent cation may actively antagonize triplex assembly, even in the presence of other supportive divalent cations. These results demonstrate the considerable impact of the cationic component, and suggest ways in which the triple helical association might be positively or negatively modulated.
Collapse
Affiliation(s)
- S W Blume
- Comprehensive Cancer Center and Department of Medicine and Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bhaumik SR, Chary KV, Govil G. Molecular mechanics calculations on a triple stranded DNA involving C+.G-T and T.A+-C mismatched base triples. J Biomol Struct Dyn 1998; 16:527-34. [PMID: 10052611 DOI: 10.1080/07391102.1998.10508267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have carried out molecular modeling of a triple stranded pyrimidine(Y). purine(R): pyrimidine(Y) (where ':' refers to Watson-Crick and '.' to Hoogsteen bonding) DNA, formed by a homopurine (d-TGAGGAAAGAAGGT) and homo-pyrimidine (d-CTCCTTTCTTCC). Molecular mechanics calculations using NMR constraints have provided a detailed three dimensional structure of the triplex. The entire stretches of purine and the pyrimidine nucleotides have a conformation close to B-DNA. The three strands are held by the canonical C+.G:C and T.A:T hydrogen bonds. The structure also contains two mismatch C+.G-T and T.A+-C base triples which have been characterized for the first time. In the A+-C base-pair of the T.A+-C triple, both hydrogen donors are situated on the purine (A+(1N) and A+(6N)). We observe a unique hydrogen bonding interaction scheme in case of C+.G-T where one acceptor, G(60), is bonded to three donors (C+(3NH), C+(4NH2) and T(3NH)). Though the C+.G-T base triple is less stable than C+.G:C, it is significantly more stable than T.A:T. On the other hand, T.A+-C is as stable as the T.A:T base triad.
Collapse
Affiliation(s)
- S R Bhaumik
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
44
|
Belousov ES, Afonina IA, Kutyavin IV, Gall AA, Reed MW, Gamper HB, Wydro RM, Meyer RB. Triplex targeting of a native gene in permeabilized intact cells: covalent modification of the gene for the chemokine receptor CCR5. Nucleic Acids Res 1998; 26:1324-8. [PMID: 9469844 PMCID: PMC147384 DOI: 10.1093/nar/26.5.1324] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A 12 nucleotide oligodeoxyribopurine tract in the gene for the chemokine receptor CCR5 has been targeted and covalently modified in intact cells by a 12mer triplex forming oligonucleotide (TFO) bearing a reactive group. A nitrogen mustard placed on the 5'-end of the purine motif TFO modified a guanine on the DNA target with high efficiency and selectivity. A new use of a guanine analog in these TFOs significantly enhanced triplex formation and efficiency of modification, as did the use of the triplex-stabilizing intercalator coralyne. This site-directed modification of a native chromosomal gene in intact human cells under conditions where many limitations of triplex formation have been partially addressed underscores the potential of this approach for gene control via site-directed mutagenesis.
Collapse
Affiliation(s)
- E S Belousov
- Epoch Pharmaceuticals Inc., 1725 220th Street S.E., #104 Bothell, WA 98021, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Raha M, Lacroix L, Glazer PM. Mutagenesis Mediated by Triple Helix–Forming Oligonucleotides Conjugated to Psoralen: Effects of Linker Arm Length and Sequence Context. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05201.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Ouali M, Gousset H, Geinguenaud F, Liquier J, Gabarro-Arpa J, Le Bret M, Taillandier E. Hydration of the dTn.dAn x dTn parallel triple helix: a Fourier transform infrared and gravimetric study correlated with molecular dynamics simulations. Nucleic Acids Res 1997; 25:4816-24. [PMID: 9365262 PMCID: PMC147119 DOI: 10.1093/nar/25.23.4816] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We present a comparative analysis of the water organization around the dTn.dAn x dTn triple helix and the Watson-Crick double helix dTn.dAn respectively by means of gravimetric measurements, infrared spectroscopy and molecular dynamics simulations. The hydration per nucleotide determined by gravimetric and spectroscopic methods correlated with the molecular dynamics simulations shows that at high relative humidity (98% RH) the triple helix is less solvated than the duplex (17 +/- 2 water molecules per nucleotide instead of 21 +/-1). The experimental desorption curves are different for both structures and indicate that below 81% RH the triplex becomes more hydrated than the duplex. At this RH the FTIR spectra show the emergence of N-type sugars in the adenosine strand of the triplex. When the third strand is bound in the major groove of the Watson-Crick duplex molecular dynamics simulations show the formation of a spine of water molecules between the two thymidine strands.
Collapse
Affiliation(s)
- M Ouali
- Laboratoire CSSB, URA CNRS 1430, UFR Santé Médecine et Biologie Humaine, Université Paris XIII, 74 rue Marcel Cachin, 93017 Bobigny, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The delineation of gene function has always been an intensive subject of investigations. Recent advances in the synthesis and chemistry of oligonucleotides have now made these molecules important tools to study and identify gene function and regulation. Modulation of gene expression using oligonucleotides has been targeted at different levels of the cellular machinery. Triplex forming oligonucleotides, as well as peptide nucleic acids, have been used to inhibit gene expression at the level of transcription; after binding of these specific oligonucleotides, conformational change of the DNA's helical structure prevents any further DNA/protein interactions necessary for efficient transcription. Gene regulation can also be achieved by targeting the translation of mRNAs. Antisense oligonucleotides have been used to down-regulate mRNA expression by annealing to specific and determined region of an mRNA, thus inhibiting its translation by the cellular machinery. The exact mechanism of this type of inhibition is still under intense investigation and is thought to be related to the activation of RNase H, a ribonuclease that is widely available that can cleave the RNA/DNA duplex, thus making it inactive. Another well-characterized means of interfering with the translation of mRNAs is the use of ribozymes. Ribozymes are small catalytic RNAs that possess both site specificity and cleavage capability for an mRNA substrate, inhibiting any further protein formation. This review describes how these different oligonucleotides can be used to define gene function and discusses in detail their chemical structure, mechanism of action, advantages and disadvantages, and their applications.
Collapse
Affiliation(s)
- L D Curcio
- Department of General and Oncologic Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | |
Collapse
|
48
|
Faruqi AF, Krawczyk SH, Matteucci MD, Glazer PM. Potassium-resistant triple helix formation and improved intracellular gene targeting by oligodeoxyribonucleotides containing 7-deazaxanthine. Nucleic Acids Res 1997; 25:633-40. [PMID: 9016606 PMCID: PMC146453 DOI: 10.1093/nar/25.3.633] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Triple helix formation by purine-rich oligonucleotides in the anti-parallel motif is inhibited by physiological concentrations of potassium. Substitution with 7-deazaxanthine (c7X) has been suggested as a strategy to overcome this effect. We have tested this by examining triple helix formation both in vitro and in vivo by a series of triple helix-forming oligonucleotides (TFOs) containing guanine plus either adenine, thymine, or c7X. The TFOs were conjugated to psoralen at the 5'end and were designed to bind to a portion of the supF mutation reporter gene. Using in vitro gel mobility shift assays, we found that triplex formation by the c7X-substituted TFOs was relatively resistant to the presence of 140 mM K+. The c7X-containing TFOs were also superior in gene targeting experiments in mammalian cells, yielding 4- to 5-fold higher mutation frequencies in a shuttle vector-based mutagenesis assay designed to detect mutations induced by third strand-directed psoralen adducts. When the phosphodiester backbone was replaced by a phosphorothioate one, the in vitro binding of the c7X-TFOs was not affected, but the efficiency of in vivo triple helix formation was reduced. These results indicate the utility of the c7X substitution for in vivo gene targeting experiments, and they show that the feasibility of the triplex anti-gene strategy can be significantly enhanced by advances in nucleotide chemistry.
Collapse
Affiliation(s)
- A F Faruqi
- Department of Therapeutic Radiology, Yale University School of Medicine, PO Box 208040, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
49
|
Blume SW, Guarcello V, Zacharias W, Miller DM. Divalent transition metal cations counteract potassium-induced quadruplex assembly of oligo(dG) sequences. Nucleic Acids Res 1997; 25:617-25. [PMID: 9016604 PMCID: PMC146479 DOI: 10.1093/nar/25.3.617] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nucleic acids containing tracts of contiguous guanines tend to self-associate into four-stranded (quadruplex) structures, based on reciprocal non-Watson-Crick (G*G*G*G) hydrogen bonds. The quadruplex structure is induced/stabilized by monovalent cations, particularly potassium. Using circular dichroism, we have determined that the induction/stabilization of quadruplex structure by K+is specifically counteracted by low concentrations of Mn2+(4-10 mM), Co2+(0.3-2 mM) or Ni2+(0.3-0.8 mM). G-Tract-containing single strands are also capable of sequence-specific non-Watson-Crick interaction with d(G. C)-tract-containing (target) sequences within double-stranded DNA. The assembly of these G*G.C-based triple helical structures is supported by magnesium, but is potently inhibited by potassium due to sequestration of the G-tract single strand into quadruplex structure. We have used DNase I protection assays to demonstrate that competition between quadruplex self-association and triplex assembly is altered in the presence of Mn2+, Co2+or Ni2+. By specifically counteracting the induction/stabilization of quadruplex structure by potassium, these divalent transition metal cations allow triplex formation in the presence of K+and shift the position of equilibrium so that a very high proportion of triplex target sites are bound. Thus, variation of the cation environment can differentially promote the assembly of multistranded nucleic acid structural alternatives.
Collapse
Affiliation(s)
- S W Blume
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
50
|
|