1
|
Gao R, Ma S, Geng J, Zhang K, Xian L, Liu K, Cao P, Yuchi Z, Wu S. Functional Characterization of Double Mutations T929I/K1774N in the Voltage-Gated Sodium Channel of Megalurothrips usitatus (Bagnall) Related to Pyrethroid Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11958-11967. [PMID: 38761134 DOI: 10.1021/acs.jafc.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Megalurothrips usitatus (Bagnall), the main pest on legume vegetables, is controlled by pyrethroids in the field. Field strains of M. usitatus resistant to pyrethroids were collected from three areas in Hainan Province (Haikou, Ledong, and Sanya City), and two mutations, T929I and K1774N, were detected in the voltage-gated sodium channel. In this study, the sodium channel in M. usitatus was first subcloned and successfully expressed in Xenopus oocytes. The single mutation (T929I or K1774N) and double mutation (T929I/K1774N) shifted the voltage dependence of activation in the hyperpolarization direction. The three mutants all reduced the amplitude of tail currents induced by type I (permethrin and bifenthrin) and type II (deltamethrin and λ-cyhalothrin) pyrethroids. Homology modeling analysis of these two mutations shows that they may change the local hydrophobicity and positive charge of the sodium channel. Our data can be used to reveal the causes of the resistance of M. usitatus to pyrethroids and provide guidance for the comprehensive control of M. usitatus in the future.
Collapse
Affiliation(s)
- Ruibo Gao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Shuyue Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Junjie Geng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Limin Xian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| |
Collapse
|
2
|
Şengül Demirak MŞ, Canpolat E. Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. INSECTS 2022; 13:162. [PMID: 35206735 PMCID: PMC8878986 DOI: 10.3390/insects13020162] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
The use of synthetic insecticides has been a solution to reduce mosquito-borne disease transmission for decades. Currently, no single intervention is sufficient to reduce the global disease burden caused by mosquitoes. Problems associated with extensive usage of synthetic compounds have increased substantially which makes mosquito-borne disease elimination and prevention more difficult over the years. Thus, it is crucial that much safer and effective mosquito control strategies are developed. Natural compounds from plants have been efficiently used to fight insect pests for a long time. Plant-based bioinsecticides are now considered a much safer and less toxic alternative to synthetic compounds. Here, we discuss candidate plant-based compounds that show larvicidal, adulticidal, and repellent properties. Our discussion also includes their mode of action and potential impact in mosquito disease transmission and circumvention of resistance. This review improves our knowledge on plant-based bioinsecticides and the potential for the development of state-of-the-art mosquito control strategies.
Collapse
Affiliation(s)
- Meryem Ş. Şengül Demirak
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpaşa University, Tokat 60150, Turkey;
| | | |
Collapse
|
3
|
Deletre E, Martin T, Duménil C, Chandre F. Insecticide resistance modifies mosquito response to DEET and natural repellents. Parasit Vectors 2019; 12:89. [PMID: 30867033 PMCID: PMC6417241 DOI: 10.1186/s13071-019-3343-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/26/2019] [Indexed: 11/25/2022] Open
Abstract
Background Pyrethroid and organophosphate resistance in the malaria vector Anopheles gambiae has led to the search for not only alternative insecticides, but also repellent chemical compounds. However, little is known about the potential actions of repellents and the cross-resistance risk between insecticide and repellent compounds. Methods Here we show the action of permethrin, DEET, geraniol, carvacrol, culminaldehyde and cinnamaldehyde against three A. gambiae strains: ‘Kis’ (Kisumu susceptible strain), ‘KdrKis’ (pyrethroid resistant strain) and ‘AcerKis’ (organophosphate resistant strain), the last two differing from the first by a mutation on the kdr and ace1 genes, respectively. Conclusions Results from the DEET assays show it induced repellency for the resistant KdrKis and AcerKis strains but maintained irritancy for the susceptible strain. More generally, we show resistance genes modify the behavior of An. gambiae, increasing or decreasing the effectiveness of DEET and natural compounds, depending on the mutation. These findings offer a new avenue for research on the target and mechanism of repellent compounds. We discuss these findings in the context of vector control strategies. Electronic supplementary material The online version of this article (10.1186/s13071-019-3343-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emilie Deletre
- Cirad - Montpellier University - UPR Hortsys, Montpellier, France. .,International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.
| | - Thibaud Martin
- Cirad - Montpellier University - UPR Hortsys, Montpellier, France.,International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Claire Duménil
- Cirad - Montpellier University - UPR Hortsys, Montpellier, France
| | - Fabrice Chandre
- UMR MIVEGEC, IRD-CNRS-Montpellier University, Montpellier, France
| |
Collapse
|
4
|
Hemming-Schroeder E, Strahl S, Yang E, Nguyen A, Lo E, Zhong D, Atieli H, Githeko A, Yan G. Emerging Pyrethroid Resistance among Anopheles arabiensis in Kenya. Am J Trop Med Hyg 2018; 98:704-709. [PMID: 29363447 PMCID: PMC5930888 DOI: 10.4269/ajtmh.17-0445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vector control programs, particularly in the form of insecticide-treated bed nets (ITNs), are essential for achieving malaria elimination goals. Recent reports of increasing knockdown resistance (kdr) mutation frequencies for Anopheles arabiensis in Western Kenya heightens the concern on the future effectiveness of ITNs in Kenya. We examined resistance in An. arabiensis populations across Kenya through kdr mutations and World Health Organization–recommended bioassays. We detected two kdr alleles, L1014F and L1014S. Kdr mutations were found in five of the 11 study sites, with mutation frequencies ranging from 3% to 63%. In two Western Kenya populations, the kdr L1014F allele frequency was as high as 10%. The L1014S frequency was highest at Chulaimbo at 55%. Notably, the kdr L1014F mutation was found to be associated with pyrethroid resistance at Port Victoria, but kdr mutations were not significantly associated with resistance at Chulaimbo, which had the highest kdr mutation frequency among all sites. This study demonstrated the emerging pyrethroid resistance in An. arabiensis and that pyrethroid resistance may be related to kdr mutations. Resistance monitoring and management are urgently needed for this species in Kenya where resistance is emerging and its abundance is becoming predominant. Kdr mutations may serve as a biomarker for pyrethroid resistance in An. arabiensis.
Collapse
Affiliation(s)
| | - Stephanie Strahl
- Program in Public Health, University of California, Irvine, California
| | - Eugene Yang
- Program in Public Health, University of California, Irvine, California
| | - Amanda Nguyen
- Program in Public Health, University of California, Irvine, California
| | - Eugenia Lo
- Program in Public Health, University of California, Irvine, California
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California
| | - Harrysone Atieli
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California
| |
Collapse
|
5
|
Wang X, Puinean AM, O Reilly AO, Williamson MS, Smelt CLC, Millar NS, Wu Y. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:50-57. [PMID: 28576654 DOI: 10.1016/j.ibmb.2017.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Abamectin is one of the most widely used avermectins for agricultural pests control, but the emergence of resistance around the world is proving a major threat to its sustained application. Abamectin acts by directly activating glutamate-gated chloride channels (GluCls) and modulating other Cys-loop ion channels. To date, three mutations occurring in the transmembrane domain of arthropod GluCls are associated with target-site resistance to abamectin: A309V in Plutella xylostella GluCl (PxGluCl), G323D in Tetranychus urticae GluCl1 (TuGluCl1) and G326E in TuGluCl3. To compare the effects of these mutations in a single system, A309V/I/G and G315E (corresponding to G323 in TuGluCl1 and G326 in TuGluCl3) substitutions were introduced individually into the PxGluCl channel. Functional analysis using Xenopus oocytes showed that the A309V and G315E mutations reduced the sensitivity to abamectin by 4.8- and 493-fold, respectively. In contrast, the substitutions A309I/G show no significant effects on the response to abamectin. Interestingly, the A309I substitution increased the channel sensitivity to glutamate by one order of magnitude (∼12-fold). Analysis of PxGluCl homology models indicates that the G315E mutation interferes with abamectin binding through a steric hindrance mechanism. In contrast, the structural consequences of the A309 mutations are not so clear and an allosteric modification of the binding site is the most likely mechanism. Overall the results show that both A309V and G315E mutations may contribute to target-site resistance to abamectin and may be important for the future prediction and monitoring of abamectin resistance in P. xylostella and other arthropod pests.
Collapse
Affiliation(s)
- Xingliang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Alin M Puinean
- Rothamsted Research, Biological Chemistry and Crop Protection Department, Harpenden, UK.
| | - Andrias O O Reilly
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.
| | - Martin S Williamson
- Rothamsted Research, Biological Chemistry and Crop Protection Department, Harpenden, UK.
| | - Charles L C Smelt
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| | - Neil S Millar
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Zhorov BS, Dong K. Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel. Neurotoxicology 2017; 60:171-177. [PMID: 27567732 PMCID: PMC5730328 DOI: 10.1016/j.neuro.2016.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022]
Abstract
DDT and pyrethroid insecticides were among the earliest neurotoxins identified to act on voltage-gated sodium channels. In the 1960s, equipped with, at the time, new voltage-clamp techniques, Professor Narahashi and associates provided the initial evidence that DDT and allethrin (the first commercial pyrethroid insecticide) caused prolonged flow of sodium currents in lobster and squid giant axons. Over the next several decades, continued efforts by Prof. Narahashi's group as well as other laboratories led to a comprehensive understanding of the mechanism of action of DDT and pyrethroids on sodium channels. Fast forward to the 1990s, genetic, pharmacological and toxicological data all further confirmed voltage-gated sodium channels as the primary targets of DDT and pyrethroid insecticides. Modifications of the gating kinetics of sodium channels by these insecticides result in repetitive firing and/or membrane depolarization in the nervous system. This mini-review focuses on studies from Prof. Narahashi's pioneer work and more recent mutational and computational modeling analyses which collectively elucidated the elusive pyrethroid receptor sites as well as the molecular basis of differential sensitivities of insect and mammalian sodium channels to pyrethroids.
Collapse
Affiliation(s)
- Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
7
|
Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS. Molecular biology of insect sodium channels and pyrethroid resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:1-17. [PMID: 24704279 PMCID: PMC4484874 DOI: 10.1016/j.ibmb.2014.03.012] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 05/06/2023]
Abstract
Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.
Collapse
Affiliation(s)
- Ke Dong
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA.
| | - Yuzhe Du
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Frank Rinkevich
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Yoshiko Nomura
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Peng Xu
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Lingxin Wang
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Kristopher Silver
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Silver KS, Du Y, Nomura Y, Oliveira EE, Salgado VL, Zhorov BS, Dong K. Voltage-Gated Sodium Channels as Insecticide Targets. ADVANCES IN INSECT PHYSIOLOGY 2014; 46:389-433. [PMID: 29928068 PMCID: PMC6005695 DOI: 10.1016/b978-0-12-417010-0.00005-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Voltage-gated sodium channels are critical for the generation and propagation of action potentials. They are the primary target of several classes of insecticides, including DDT, pyrethroids and sodium channel blocker insecticides (SCBIs). DDT and pyrethroids preferably bind to open sodium channels and stabilize the open state, causing prolonged currents. In contrast, SCBIs block sodium channels by binding to the inactivated state. Many sodium channel mutations are associated with knockdown resistance (kdr) to DDT and pyrethroids in diverse arthropod pests. Functional characterization of kdr mutations together with computational modelling predicts dual pyrethroid receptor sites on sodium channels. In contrast, the molecular determinants of the SCBI receptor site remain largely unknown. In this review, we summarize current knowledge about the molecular mechanisms of action of pyrethroids and SCBIs, and highlight the differences in the molecular interaction of these insecticides with insect versus mammalian sodium channels.
Collapse
Affiliation(s)
- Kristopher S Silver
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - Yuzhe Du
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| | - Yoshiko Nomura
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Vic¸osa, Vic¸osa, Minas Gerais, Brasil
| | - Vincent L Salgado
- BASF Agricultural Products, BASF Corporation, Research Triangle Park, North Carolina, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ke Dong
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Rinkevich FD, Du Y, Dong K. Diversity and Convergence of Sodium Channel Mutations Involved in Resistance to Pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 106:93-100. [PMID: 24019556 PMCID: PMC3765034 DOI: 10.1016/j.pestbp.2013.02.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pyrethroid insecticides target voltage-gated sodium channels, which are critical for electrical signaling in the nervous system. The intensive use of pyrethroids in controlling arthropod pests and disease vectors has led to many instances of pyrethroid resistance around the globe. In the past two decades, studies have identified a large number of sodium channel mutations that are associated with resistance to pyrethroids. The purpose of this review is to summarize both common and unique sodium channel mutations that have been identified in arthropod pests of importance to agriculture or human health. Identification of these mutations provides valuable molecular markers for resistance monitoring in the field and helped the discovery of the elusive pyrethroid receptor site(s) on the sodium channel.
Collapse
Affiliation(s)
- Frank D Rinkevich
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824-1115 USA
| | | | | |
Collapse
|
10
|
Du Y, Nomura Y, Luo N, Liu Z, Lee JE, Khambay B, Dong K. Molecular determinants on the insect sodium channel for the specific action of type II pyrethroid insecticides. Toxicol Appl Pharmacol 2008; 234:266-72. [PMID: 19022275 DOI: 10.1016/j.taap.2008.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/14/2008] [Accepted: 10/21/2008] [Indexed: 11/20/2022]
Abstract
Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an alpha-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report the identification of a residue G(1111) and two positively charged lysines immediately downstream of G(1111) in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G(1111), a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G(1111) had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.
Collapse
Affiliation(s)
- Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
The dominant cold-sensitive Out-cold mutants of Drosophila melanogaster have novel missense mutations in the voltage-gated sodium channel gene paralytic. Genetics 2008; 180:873-84. [PMID: 18723887 DOI: 10.1534/genetics.108.090951] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Here we report the molecular characterization of Out-cold (Ocd) mutants of Drosophila melanogaster, which produce a dominant, X-linked, cold-sensitive paralytic phenotype. From its initial 1.5-Mb cytological location within 13F1-16A2, P-element and SNP mapping reduced the Ocd critical region to <100 kb and to six candidate genes: hangover, CG9947, CG4420, eIF2a, Rbp2, and paralytic (para). Complementation testing with para null mutations strongly suggests Ocd and para are allelic, as does gene rescue of Ocd semilethality with a wild-type para transgene. Pesticide resistance and electrophysiological phenotypes of Ocd mutants support this conclusion. The para gene encodes a voltage-gated sodium channel. Sequencing the Ocd lines revealed mutations within highly conserved regions of the para coding sequence, in the transmembrane segment S6 of domain III (I1545M and T1551I), and in the linker between domains III and IV (G1571R), the location of the channel inactivation gate. The G1571R mutation is of particular interest as mutations of the orthologous residue (G1306) in the human skeletal muscle sodium channel gene SCN4A are associated with cases of periodic paralysis and myotonia, including the human cold-sensitive disorder paramyotonia congenita. The mechanisms by which sodium channel mutations cause cold sensitivity are not well understood. Therefore, in the absence of suitable vertebrate models, Ocd provides a system in which genetic, molecular, physiological, and behavioral tools can be exploited to determine mechanisms underlying sodium channel periodic paralyses.
Collapse
|
12
|
Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stühmer W, Tytgat J, Gurevitz M. The differential preference of scorpion α-toxins for insect or mammalian sodium channels: Implications for improved insect control. Toxicon 2007; 49:452-72. [PMID: 17215013 DOI: 10.1016/j.toxicon.2006.11.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022]
Abstract
Receptor site-3 on voltage-gated sodium channels is targeted by a variety of structurally distinct toxins from scorpions, sea anemones, and spiders whose typical action is the inhibition of sodium current inactivation. This site interacts allosterically with other topologically distinct receptors that bind alkaloids, lipophilic polyether toxins, pyrethroids, and site-4 scorpion toxins. These features suggest that design of insecticides with specificity for site-3 might be rewarding due to the positive cooperativity with other toxins or insecticidal agents. Yet, despite the central role of scorpion alpha-toxins in envenomation and their vast use in the study of channel functions, molecular details on site-3 are scarce. Scorpion alpha-toxins vary greatly in preference for sodium channels of insects and mammals, and some of them are highly active on insects. This implies that despite its commonality, receptor site-3 varies on insect vs. mammalian channels, and that elucidation of these differences could potentially be exploited for manipulation of toxin preference. This review provides current perspectives on (i) the classification of scorpion alpha-toxins, (ii) their mode of interaction with sodium channels and pharmacological divergence, (iii) molecular details on their bioactive surfaces and differences associated with preference for channel subtypes, as well as (iv) a summary of the present knowledge about elements involved in constituting receptor site-3. These details, combined with the variations in allosteric interactions between site-3 and the other receptor sites on insect and mammalian sodium channels, may be useful in new strategies of insect control and future design of anti-insect selective ligands.
Collapse
Affiliation(s)
- Dalia Gordon
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dong K. Insect sodium channels and insecticide resistance. INVERTEBRATE NEUROSCIENCE : IN 2007; 7:17-30. [PMID: 17206406 PMCID: PMC3052376 DOI: 10.1007/s10158-006-0036-9] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/12/2006] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides.
Collapse
Affiliation(s)
- Ke Dong
- Department of Entomology, Genetics Program and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Latli B, Greenfield LJ, Casida JE. (αS, Z, 1R, 3R)-[4′,4″-3H]cyhalothrin and -[4″,6′,-3H]4″-fluorocyhalothrin: Synthesis of candidate pyrethroid radioligands for the sodium channel. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580330708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
McCaffery AR, Holloway JW, Gladwell RT. Nerve insensitivity resistance to cypermethrin in larvae of the tobacco budwormHeliothis virescensfrom USA cotton field populations. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780440306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Gibson AJ, Osborne MP, Ross HF, Sawicki RM. An electrophysiological study of susceptible (cooper) and resistant (kdr; super-kdr) strains of the adult housefly (Musca domestica L.) using an isolated mesothoracic leg preparation. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780300403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Abstract
Voltage-gated sodium channels open (activate) when the membrane is depolarized and close on repolarization (deactivate) but also on continuing depolarization by a process termed inactivation, which leaves the channel refractory, i.e., unable to open again for a period of time. In the “classical” fast inactivation, this time is of the millisecond range, but it can last much longer (up to seconds) in a different slow type of inactivation. These two types of inactivation have different mechanisms located in different parts of the channel molecule: the fast inactivation at the cytoplasmic pore opening which can be closed by a hinged lid, the slow inactivation in other parts involving conformational changes of the pore. Fast inactivation is highly vulnerable and affected by many chemical agents, toxins, and proteolytic enzymes but also by the presence of β-subunits of the channel molecule. Systematic studies of these modulating factors and of the effects of point mutations (experimental and in hereditary diseases) in the channel molecule have yielded a fairly consistent picture of the molecular background of fast inactivation, which for the slow inactivation is still lacking.
Collapse
Affiliation(s)
- Werner Ulbricht
- Psychologisches Institut, University of Kiel, Hermann-Rodewald-Strasse 5, D-24118 Kiel, Germany.
| |
Collapse
|
18
|
da-Cunha MP, Lima JBP, Brogdon WG, Moya GE, Valle D. Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Mem Inst Oswaldo Cruz 2005; 100:441-4. [PMID: 16113895 DOI: 10.1590/s0074-02762005000400017] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance to cypermethrin of different Aedes aegypti Brazilian populations, collected at two successive periods (2001 and 2002/2003), was monitored using the insecticide-coated bottles bioassay. Slight modifications were included in the method to discriminate between mortality and the knock down effect. Although this pyrethroid was recently started to be used in the country to control the dengue vector, a decrease in susceptibility was noted between both periods analyzed, particularly in the city of Rio de Janeiro. The results indicate that resistance is due at least in part to a target site alteration.
Collapse
|
19
|
Tan J, Liu Z, Wang R, Huang ZY, Chen AC, Gurevitz M, Dong K. Identification of Amino Acid Residues in the Insect Sodium Channel Critical for Pyrethroid Binding. Mol Pharmacol 2004; 67:513-22. [PMID: 15525757 DOI: 10.1124/mol.104.006205] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated sodium channel is the primary target site of pyrethroids, which constitute a major class of insecticides used worldwide. Pyrethroids prolong the opening of sodium channels by inhibiting deactivation and inactivation. Despite numerous attempts to characterize pyrethroid binding to sodium channels in the past several decades, the molecular determinants of the pyrethroid binding site on the sodium channel remain elusive. Here, we show that an F-to-I substitution at 1519 (F1519I) in segment 6 of domain III (IIIS6) abolished the sensitivity of the cockroach sodium channel expressed in Xenopus laevis oocytes to all eight structurally diverse pyrethroids examined, including permethrin and deltamethrin. In contrast, substitution by tyrosine or tryptophan reduced the channel sensitivity to deltamethrin only by 3- to 10-fold, indicating that an aromatic residue at this position is critical for the interaction of pyrethroids with sodium channels. The F1519I mutation, however, did not alter the action of two other classes of sodium channel toxins, batrachotoxin (a site 2 toxin) and Lqhalpha-IT (a site 3 toxin). Schild analysis using competitive interaction of pyrethroid-stereospecific isomers demonstrated that the F1519W mutation and a previously known pyrethroid-resistance mutation, L993F in IIS6, reduced the binding affinity of 1S-cis-permethrin, an inactive isomer that shares the same binding site with the active isomer 1R-cis-permethrin. Our results provide the first direct proof that Leu993 and Phe1519 are part of the pyrethroid receptor site on an insect sodium channel.
Collapse
Affiliation(s)
- Jianguo Tan
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Vais H, Atkinson S, Pluteanu F, Goodson SJ, Devonshire AL, Williamson MS, Usherwood PNR. Mutations of the para Sodium Channel of Drosophila melanogaster Identify Putative Binding Sites for Pyrethroids. Mol Pharmacol 2003; 64:914-22. [PMID: 14500748 DOI: 10.1124/mol.64.4.914] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of two pyrethroids on recombinant wild-type and mutant (pyrethroid-resistant) Na+ channels of Drosophila melanogaster have been studied. Three mutations that confer resistance (kdr/superkdr) to pyrethroids were inserted, either individually or in combination, into the para Na+ channel of D. melanogaster: L1014F in domain IIS6, M918T in the IIS4-S5 linker, and T929I in domain IIS5. Channels were expressed in Xenopus laevis oocytes and the effects of the pyrethroids permethrin (type I) and deltamethrin (type II) on Na+ currents were investigated using voltage clamp. The Na+ channels deactivated slowly after deltamethrin treatment, the resultant "tail" currents being used to quantify the effects of this pyrethroid. The Hill slope of 2 for deltamethrin action on the wild-type channel and the mutant L1014F channel is indicative of cooperative binding at two or more sites on these channels. In contrast, binding to the mutants M918T and T929I is noncooperative. Tail currents for the wild-type channel and L1014F channel decayed biphasically, whereas those for M918T and T929I mutants decayed monophasically. The L1014F mutant was approximately 20-fold less sensitive than the wild-type to deltamethrin. Surprisingly, the sensitivity of the double mutant M918T+L1014F to deltamethrin was similar to that of M918T alone, whereas the sensitivity of T929I+L1014F was >30,000-fold lower than that of T929I. Permethrin was less potent than deltamethrin, and its binding to all channel types was noncooperative. The decays of permethrin-induced tail currents were exclusively monophasic. These findings are discussed in terms of the properties and possible locations of pyrethroid binding sites on the D. melanogaster Na+ channel.
Collapse
Affiliation(s)
- H Vais
- Division of Molecular Toxicology, School of Life and Environmental Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J. Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. MEDICAL AND VETERINARY ENTOMOLOGY 2003; 17:138-144. [PMID: 12823830 DOI: 10.1046/j.1365-2915.2003.00418.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mosquito Anopheles stephensi Liston (Diptera: Culicidae) is the urban vector of malaria in several countries of the Middle East and Indian subcontinent. Extensive use of residual insecticide spraying for malaria vector control has selected An. stephensi resistance to DDT, dieldrin, malathion and other organophosphates throughout much of its range and to pyrethroids in the Middle East. Metabolic resistance mechanisms and insensitivity to pyrethroids, so-called knockdown resistance (kdr), have previously been reported in An. stephensi. Here we provide molecular data supporting the hypothesis that a kdr-like pyrethroid-resistance mechanism is present in An. stephensi. We found that larvae of a pyrethroid-selected strain from Dubai (DUB-R) were 182-fold resistant to permethin, compared with a standard susceptible strain of An. stephensi. Activities of some enzymes likely to confer pyrethroid-resistance (i.e. esterases, monooxygenases and glutathione S-transferases) were significantly higher in the permethrin-resistant than in the susceptible strain, but the use of synergists--piperonyl butoxide (PBO) to inhibit monooxygenases and/or tribufos (DEF) to inhibit esterases--did not fully prevent resistance in larvae (permethrin LC50 reduced by only 51-68%), indicating the involvement of another mechanism. From both strains of An. stephensi, we obtained a 237-bp fragment of genomic DNA encoding segment 6 of domain II of the para type voltage-gated sodium channel, i.e. the putative kdr locus. By sequencing this 237 bp fragment, we identified one point mutation difference involving a single A-T base change encoding a leucine to phenylalanine amino acid substitution in the pyrethroid-resistant strain. This mutation appears to be homologous with those detected in An. gambiae and other insects with kdr-like resistance. A diagnostic polymerase chain reaction assay using nested primers was therefore designed to detect this mechanism in An. stephensi.
Collapse
Affiliation(s)
- A A Enayati
- Medical Entomology Group, School of Public Health, Mazandaran University of Medical Sciences, Amir Boulevard, Sari, Iran
| | | | | | | | | |
Collapse
|
22
|
Gilles N, Gurevitz M, Gordon D. Allosteric interactions among pyrethroid, brevetoxin, and scorpion toxin receptors on insect sodium channels raise an alternative approach for insect control. FEBS Lett 2003; 540:81-5. [PMID: 12681487 DOI: 10.1016/s0014-5793(03)00226-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intensive pyrethroid use in insect control has led to resistance buildup among various pests. One alternative to battle this problem envisions the combined use of synergistically acting insecticidal compounds. Pyrethroids, scorpion alpha- and beta-toxins, and brevetoxins bind to distinct receptor sites on voltage-gated sodium channels (NaChs) and modify their function. The binding affinity of scorpion alpha-toxins to locust, but not rat-brain NaChs, is allosterically increased by pyrethroids and by brevetoxin-1. Brevetoxin-1 also increases the binding of an excitatory beta-toxin to insect NaChs. These results reveal differences between insect and mammalian NaChs and may be exploited in new strategies of insect control.
Collapse
Affiliation(s)
- Nicolas Gilles
- CEA, Département d'Ingénierie et d'Etudes des Protéines, CE Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
23
|
Lüleyap HU, Alptekin D, Kasap H, Kasap M. Detection of knockdown resistance mutations in Anopheles sacharovi (Diptera: Culicidae) and genetic distance with Anopheles gambiae (Diptera: Culicidae) using cDNA sequencing of the voltage-gated sodium channel gene. JOURNAL OF MEDICAL ENTOMOLOGY 2002; 39:870-874. [PMID: 12495185 DOI: 10.1603/0022-2585-39.6.870] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The knockdown resistance (kdr) mutation in the voltage-gated sodium channel gene (VGSCG), an important resistance mechanism against pyrethroids, was studied in Anopheles sacharovi Favre. It was found that the specific primers Agd1 and Agd2 used for polymerase chain reaction (PCR) amplification of Anopheles gambiae Giles VGSCG also amplified this genomic region in An. sacharovi. Comparison of the IIs4-IIs6 domain segments of the gene indicated 70% nucleotides common to both species and a genetic distance of 0.255 between them. Four different samples of pyrethroid-resistant An. sacharovi produced three types of amino acid, serine (TCG),leucine (TTG),and phenylalanine (TTT) at the kdr mutation point, whereas only two kdr mutations, leucine to phenylalanine and leucine to serine, occur in An. gambiae.
Collapse
Affiliation(s)
- H Umit Lüleyap
- University of Cukurova, Faculty of Medicine, Department of Medical Biology and Genetics, 01330 Adana, Turkey.
| | | | | | | |
Collapse
|
24
|
Darboux I, Pauchet Y, Castella C, Silva-Filha MH, Nielsen-LeRoux C, Charles JF, Pauron D. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance. Proc Natl Acad Sci U S A 2002; 99:5830-5. [PMID: 11983886 PMCID: PMC122862 DOI: 10.1073/pnas.092615399] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mosquitocidal activity of Bacillus sphaericus is because of a binary toxin (Bin), which binds to Culex pipiens maltase 1 (Cpm1), an alpha-glucosidase present in the midgut of Culex pipiens larvae. In this work, we studied the molecular basis of the resistance to Bin developed by a strain (GEO) of C. pipiens. Immunohistochemical and in situ hybridization experiments showed that Cpm1 was undetectable in the midgut of GEO larvae, although the gene was correctly transcribed. The sequence of the cpm1(GEO) cDNA differs from the sequence we previously reported for a susceptible strain (cpm1(IP)) by seven mutations: six missense mutations and a mutation leading to the premature termination of translation. When produced in insect cells, Cpm1(IP) was attached to the membrane by a glycosylphosphatidylinositol (GPI). In contrast, the premature termination of translation of Cpm1(GEO) resulted in the targeting of the protein to the extracellular compartment because of truncation of the GPI-anchoring site. The interaction between Bin and Cpm1(GEO) and the enzyme activity of the receptor were not affected. Thus, Bin is not toxic to GEO larvae because it cannot interact with the midgut cell membrane, even though its receptor site is unaffected. This mechanism contrasts with other known resistance mechanisms in which point mutations decrease the affinity of binding between the receptor and the toxin.
Collapse
Affiliation(s)
- Isabelle Darboux
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1112 "Réponses des Organismes aux Stress Environnementaux," 123 Boulevard Meilland, B.P. 2078, 06606 Antibes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Vais H, Williamson MS, Devonshire AL, Usherwood PN. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. PEST MANAGEMENT SCIENCE 2001; 57:877-888. [PMID: 11695180 DOI: 10.1002/ps.392] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent progress in the cloning of alpha (para) and beta (TipE) Na channel sub-units from Drosophila melanogaster (fruit fly) and Musca domestica (housefly) have facilitated functional expression studies of insect Na channels in Xenopus laevis oocytes, assayed by voltage clamp techniques. The effects of Type I and Type III pyrethroids on the biophysical properties of these channels are critically reviewed. Pyrethroid resistance mutations (termed kdr and super-kdr) that reduce the sensitivity of the insect Na channel to pyrethroids have been identified in a range of insect species. Some of these mutations (e.g. L1014F, M918T and T929I) have been incorporated into the para Na channel of Drosophila, either individually or in combination, to investigate their effects on the sensitivity of this channel to pyrethroids. The kdr mutation (L1014F) shifts the voltage dependence of both activation and steady-state inactivation by approximately 5 mV towards more positive potentials and facilitates Na channel inactivation. Incorporation of the super-kdr mutation (M918T) into the Drosophila Na channel also increases channel inactivation and causes a > 100-fold reduction in deltamethrin sensitivity. These effects are shared by T929I, an alternative mutation that confers super-kdr-like resistance. Parallel studies have been undertaken using the rat IIA Na channel to investigate the molecular basis for the low sensitivity of mammalian brain Na channels to pyrethroids. Rat IIA channels containing the mutation L1014F exhibit a shift in their mid-point potential for Na activation, but their overall sensitivity to permethrin remains similar to that of the wild-type rat channel (i.e. both are 1000-fold less sensitive than the wild-type insect channel). Mammalian neuronal Na channels have an isoleucine rather than a methionine at the position (874) corresponding to the super-kdr (M918) residue of the insect channel. Replacement of the isoleucine of the wild-type rat IIA Na channel with a methionine (I874M) increases deltamethrin sensitivity 100-fold. In this way, studies of wild-type and mutant Na channels of insects and mammals are providing a molecular understanding of kdr and super-kdr resistance in insects, and of the low pyrethroid sensitivity of most mammalian Na channels. They are also giving valuable insights into the binding sites for pyrethroids on these channels.
Collapse
Affiliation(s)
- H Vais
- Division of Molecular Toxicology, School of Life and Environmental Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
26
|
Lee SE, Lees EM. Biochemical mechanisms of resistance in strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) resistant to malathion and chlorpyrifos-methyl. JOURNAL OF ECONOMIC ENTOMOLOGY 2001; 94:706-713. [PMID: 11425027 DOI: 10.1603/0022-0493-94.3.706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The acetylcholinesterase, carboxylesterase, and cytochrome P450 monooxygenase activities of three strains of Oryzaephilus srinamensis (L.) were examined to better understand biochemical mechanisms of resistance. The three strains were VOS49 and VOSCM, selected for resistance to malathion and chlorpyrifos-methyl, respectively, and VOS48, a standard susceptible strain. Cross-resistance to malathion and chlorpyrifos-methyl was confirmed in VOS49 and VOSCM. Acetylcholinesterase activity was not correlated to resistance among these strains. VOS49 and VOSCM showed elevated levels of carboxylesterase activity based on p-nitrophenylacetate, alpha-naphthyl acetate, or beta-naphthyl acetate substrates. PAGE zymograms showed major differences in caboxylesterase isozyme banding among strains. VOSCM had one strongly staining isozyme band. A band having the same Rf-value was very faint in VOS48. The VOS49 carboxylesterase banding pattern was different from both VOSCM and VOS48. Cytochrome P450 monooxygenase activity was based on cytochrome P450 content, aldrin epoxidase activity, and oxidation of organophosphate insecticides, all elevated in resistant strains. The monooxygenase activity varied with insecticide substrate and resistant strain, suggesting specific cytochromes P450 may exist for different insecticides. The monooxygenase activity of the VOS49 strain was much higher with malathion than chlorpyrifos-methyl as substrates, whereas VOSCM monooxygenase activity was higher with malathion than chlorpyrifos-methyl as substrates. Results are discussed in the context of resistance mechanisms to organophosphate insecticides in O. surinamensis.
Collapse
Affiliation(s)
- S E Lee
- Plant Protection Research Unit, WRRC, USDA-ARS, Albany, CA 94710, USA
| | | |
Collapse
|
27
|
Vais H, Williamson MS, Goodson SJ, Devonshire AL, Warmke JW, Usherwood PN, Cohen CJ. Activation of Drosophila sodium channels promotes modification by deltamethrin. Reductions in affinity caused by knock-down resistance mutations. J Gen Physiol 2000; 115:305-18. [PMID: 10694259 PMCID: PMC2217214 DOI: 10.1085/jgp.115.3.305] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1999] [Accepted: 01/24/2000] [Indexed: 11/23/2022] Open
Abstract
kdr and super-kdr are mutations in houseflies and other insects that confer 30- and 500-fold resistance to the pyrethroid deltamethrin. They correspond to single (L1014F) and double (L1014F+M918T) mutations in segment IIS6 and linker II(S4-S5) of Na channels. We expressed Drosophila para Na channels with and without these mutations and characterized their modification by deltamethrin. All wild-type channels can be modified by <10 nM deltamethrin, but high affinity binding requires channel opening: (a) modification is promoted more by trains of brief depolarizations than by a single long depolarization, (b) the voltage dependence of modification parallels that of channel opening, and (c) modification is promoted by toxin II from Anemonia sulcata, which slows inactivation. The mutations reduce channel opening by enhancing closed-state inactivation. In addition, these mutations reduce the affinity for open channels by 20- and 100-fold, respectively. Deltamethrin inhibits channel closing and the mutations reduce the time that channels remain open once drug has bound. The super-kdr mutations effectively reduce the number of deltamethrin binding sites per channel from two to one. Thus, the mutations reduce both the potency and efficacy of insecticide action.
Collapse
Affiliation(s)
- Horia Vais
- From the Division on Molecular Toxicology, School of Biology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Martin S. Williamson
- Institute of Arable Crops Research-Rothamsted, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Susannah J. Goodson
- Institute of Arable Crops Research-Rothamsted, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Alan L. Devonshire
- Institute of Arable Crops Research-Rothamsted, Harpenden, Herts AL5 2JQ, United Kingdom
| | | | - Peter N.R. Usherwood
- From the Division on Molecular Toxicology, School of Biology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|
28
|
Martinez-Torres D, Chevillon C, Brun-Barale A, Bergé J, Pasteur N, Pauron D. Voltage-dependent Na+channels in pyrethroid-resistantCulex pipiensL mosquitoes. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-9063(199910)55:10<1012::aid-ps39>3.0.co;2-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Tan JG, McCaffery AR. Expression and inheritance of nerve insensitivity resistance in larvae ofHelicoverpa armigera(Lepidoptera: Noctuidae) from China. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-9063(199906)55:6<617::aid-ps969>3.0.co;2-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Martinez-Torres D, Devonshire AL, Williamson MS. Molecular studies of knockdown resistance to pyrethroids: cloning of domain II sodium channel gene sequences from insects. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-9063(199711)51:3<265::aid-ps626>3.0.co;2-p] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Zlotkin E. The insect voltage-gated sodium channel as target of insecticides. ANNUAL REVIEW OF ENTOMOLOGY 1999; 44:429-455. [PMID: 9990721 DOI: 10.1146/annurev.ento.44.1.429] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Examination of the function, chemistry, and pharmacology of the voltage-gated insect sodium channel (ISC) reveals that the ISC closely resembles its vertebrate counterpart in electrophysiology and ion conductance, primary structure and allocation of all functional domains, and its pharmacological diversity and flexibility exhibited by the occurrence of different allosterically coupled receptor-binding sites for various neurotoxicants. The toxicants include several groups of insecticides, namely DDT and its analogues, pyrethroids, N-alkylamides, and dihydropyrazoles, which affect channel gating and ion permeability. Despite their similarity, the insect and vertebrate channels are pharmacologically distinguishable, as revealed by the responsiveness of the heterologously expressed Drosophila para clone to channel modifiers and blockers and the occurrence of the insect-selective sodium channel neurotoxins derived from arachnid venoms presently used for the design of recombinant baculovirus-mediated selective bioinsecticides. The pharmacological specificity of the ISC may lead to the design of insect-selective toxicants, and its pharmacological flexibility may direct the use of ISC insecticides for resistance management. Insecticide resistance [such as knockdown resistance (KDR)] is acquired by natural selection and operated by increased metabolism, channel mutagenesis, or both. The resistance issue can be dealt with in several ways. One is by simultaneous application of low doses of synergistic, allosterically coupled mixtures (thus delaying or preventing the onset of resistance). An alternative is to replace an insecticide to which resistance was acquired by channel mutation with a different ISC toxicant to which increased susceptibility was conferred by the same mutation. Such a possibility was exemplified by a significant increase in susceptibility to N-alkylamides, as well as an insect-selective neurotoxin revealed by KDR insects. Third, both of these methods can be combined. Thus owing to its pharmacological uniqueness, the ISC may serve as a high-priority target for future selective and resistance-manageable insecticides.
Collapse
Affiliation(s)
- E Zlotkin
- Department of Cell and Animal Biology, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
32
|
Liu MY, Bull DL, Plapp FW. Effects of exposure to cypermethrin on saxitoxin binding in susceptible and pyrethroid-resistant houseflies. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1998; 37:73-79. [PMID: 9397515 DOI: 10.1002/(sici)1520-6327(1998)37:1<73::aid-arch9>3.0.co;2-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Saxitoxin (STX) binding was measured in susceptible (SBO) and pyrethroid-resistant (KDR) female houseflies having only target site insensitivity as a resistance mechanism. In KDR flies, there was a quantitative decrease in STX binding capacity (Bmax) relative to SBO flies coupled with an increase in binding affinity (Kd). Treatment of SBO flies with sublethal doses of cypermethrin resulted in a large decrease in the number of STX binding sites and an increase in STX binding affinity. In KDR flies, identical treatments had the opposite effects. Treatment of both strains with higher doses of cypermethrin resulted in smaller decreases in Bmax values coupled with decreases in binding affinities. The results show that physiological changes in STX binding occur upon exposure to extremely low doses of cypermethrin. The data suggest that the kdr resistant gene may be expressed as changes in STX binding kinetics and that measurements of STX binding in pyrethroid-treated insects may be a useful approach for studying pyrethroid's mode of action and resistance.
Collapse
Affiliation(s)
- M Y Liu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China.
| | | | | |
Collapse
|
33
|
Park Y, Taylor MF, Feyereisen R. A valine421 to methionine mutation in IS6 of the hscp voltage-gated sodium channel associated with pyrethroid resistance in Heliothis virescens F. Biochem Biophys Res Commun 1997; 239:688-91. [PMID: 9367829 DOI: 10.1006/bbrc.1997.7511] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multiple mutations in a locus encoding a voltage-gated sodium channel have been predicted for pyrethroid resistance in insects. Previously we reported a mutation associated with pyrethroid resistance, Leu1029 to His, in domain II transmembrane segment S6 (IIS6) of the Heliothis virescens F. sodium channel (para homologue) hscp locus. Sequence analysis of additional resistance haplotypes 5' to this mutation in the hscp locus has uncovered a G to A transition leading to a Val to Met mutation at amino acid position 421 in IS6 (V421M, numbering from Drosophila para). The V421M mutation is found only in a unique resistant haplotype, but not in two susceptible and a distinct resistant haplotype carrying the L1029H mutation. Implications of this finding in the evolution and mechanisms of pyrethroid resistance are discussed.
Collapse
Affiliation(s)
- Y Park
- Interdisciplinary Program in Insect Science, University of Arizona, Tucson 85721, USA.
| | | | | |
Collapse
|
34
|
Castella C, Castells-Brooke N, Bergé JB, Pauron D. Expression and distribution of voltage-sensitive sodium channels in pyrethroid-susceptible and pyrethroid-resistant Musca domestica. INVERTEBRATE NEUROSCIENCE : IN 1997; 3:41-7. [PMID: 9706700 DOI: 10.1007/bf02481713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Knockdown resistance (kdr) to pyrethroid insecticides has been found in numerous insect species. kdr causes nerve insensitivity by altering the primary target of these insecticides, the voltage-sensitive sodium channel. In Musca domestica, cloning and sequencing of susceptible, kdr, and super-kdr alleles of the sodium channel gene (Msc) homologous to the Drosophila melanogaster para channel gene has revealed point mutations. The conservation of the nature and of the position of these mutations strongly suggests a role in the kdr mechanism. To determine if these mutations are associated with modifications of channel expression in adult flies, we investigated the localization of the Msc transcripts, and the size and the tissue distribution of the channel protein in pyrethroid-susceptible and super-kdr strains. Msc channels were mainly found in the cortical regions of the central nervous system with additional labeling in some neuronal processes and in the eyes. No qualitative or quantitative difference was observed between the strains. In immunoblotting experiments, anti-Msc antibodies bound to only one polypeptide of 260 kDa in adult brain. No differences were found in antibody staining between susceptible and pyrethroid-resistant strains. These results were correlated with those on Drosophila melanogaster, for which two sodium channel genes have been identified.
Collapse
Affiliation(s)
- C Castella
- Institut National de la Recherche Agronomique, Laboratoire de Biologie des Invertébrés, Antibes, France
| | | | | | | |
Collapse
|
35
|
|
36
|
Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:51-60. [PMID: 8804403 DOI: 10.1007/bf02173204] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the isolation of cDNA clones containing the full 6.3-kb coding sequence of the para-type sodium channel gene of the housefly, Musca domestica. This gene has been implicated as the site of knockdown resistance (kdr), an important resistance mechanism that confers nerve insensitivity to DDT and pyrethroid insecticides. The cDNAs predict a polypeptide of 2108 amino acids with close sequence homology (92% identity) to the Drosophila para sodium channel, and around 50% homology to vertebrate sodium channels, Only one major splice form of the housefly sodium channel was detected, in contrast to the Drosophila para transcript which has been reported to undergo extensive alternative splicing. Comparative sequence analysis of housefly strains carrying kdr or the more potent super-kdr factor revealed two amino acid mutations that correlate with these resistance phenotypes. Both mutations are located in domain II of the sodium channel. A leucine to phenylalanine replacement in the hydro-phobic IIS6 transmembrane segment was found in two independent kdr strains and six super-kdr strains of diverse geographic origin, while an additional methionine to threonine replacement within the intracellular IIS4-S5 loop was found only in the super-kdr strains. Neither mutation was present in five pyrethroid-sensitive strains. The mutations suggest a binding site for pyrethroids at the intracellular mouth of the channel pore in a region known to be important for channel inactivation.
Collapse
Affiliation(s)
- M S Williamson
- Department of Biological and Ecological Chemistry, IACR-Rothamsted, Harpenden, Herts, UK
| | | | | | | |
Collapse
|
37
|
Nielsen-Leroux C, Charles JF, Thiéry I, Georghiou GP. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:206-10. [PMID: 7883005 DOI: 10.1111/j.1432-1033.1995.tb20251.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Direct binding experiments with isolated brush border membrane fractions (BBMF) from larvae of a susceptible laboratory strain of Culex quinquefasciatus Say, indicated the presence of a single class of Bacillus sphaericus binary toxin receptors. The dissociation constant (Kd) was approximately 11 nM and the maximum binding capacity (Bmax) approximately 8 pmol/mg BBMF protein. Similar binding experiments with a field population of C. quinquefasciatus that had been selected in the laboratory to more than 100,000-fold resistance to B. sphaericus binary toxin failed to reveal the presence of any specific binding. Thus this resistant strain had lost the functional receptor for B. sphaericus toxin. The binding characteristics of BBMF from the F1 larval progeny (susceptible females x resistant males) were very close to those of the parental susceptible strain, consistent with the resistance being recessive.
Collapse
|
38
|
Nielsen-Leroux C, Charles JF, Thiery I, Georghiou GP. Resistance in a Laboratory Population of Culex Quinquefasciatus (Diptera: Culicidae) to Bacillus Sphaericus Binary Toxin is Due to a Change in the Receptor on Midgut Brush-Border Membranes. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0206o.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Scott JG, Dong K. kdr-Type resistance in insects with special reference to the German cockroach, Blattella germanica. Comp Biochem Physiol B Biochem Mol Biol 1994; 109:191-8. [PMID: 7553340 DOI: 10.1016/0305-0491(94)90002-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The phenomenon of knockdown resistance (kdr) was first noted in the housefly (Musca domestica), and has subsequently be found (i.e. kdr-type resistance) in several other insect pests including the German cockroach (Blattella germanica). This type of resistance causes insensitivity of the nervous system to pyrethroids, DDT and a limited number of sodium channel neurotoxins. In the German cockroach, kdr-type resistance is incompletely recessive, monogenic and not sex linked or due to cytoplasmic factors. Additionally, kdr-type resistance is not associated with a change in sodium channel density. kdr or kdr-type loci are tightly linked or identical to the para-homologous sodium channel locus in German cockroach, housefly and tobacco budworm (Heliothis virescens), suggesting that kdr and kdr-type resistance are due to mutations in the para-homologous sodium channel gene. kdr-Type resistance in the German cockroach appears similar, although not necessarily identical, to kdr in houseflies.
Collapse
Affiliation(s)
- J G Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853-0999, USA
| | | |
Collapse
|
40
|
Dong K, Scott JG. Linkage of kdr-type resistance and the para-homologous sodium channel gene in German cockroaches (Blattella germanica). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:647-654. [PMID: 7915170 DOI: 10.1016/0965-1748(94)90051-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pyrethroids are an important class of insecticides for controlling insect pests, including the German cockroach. Unfortunately, many insects have developed resistance to pyrethroids. One of the most important mechanisms of resistance is kdr (knockdown resistance) which is characterized by neural insensitivity to pyrethroids and DDT. To investigate whether the voltage-dependent sodium channel is involved in kdr-type resistance in the German cockroach, we isolated a 120 bp DNA fragment of the para-homologous sodium channel gene from German cockroaches. Using this fragment as a probe, we identified a restriction fragment length polymorphism (RFLP) of the para-homologous sodium channel gene between susceptible and kdr-type resistant German cockroaches. RFLP analysis of F2 and backcross cockroach populations (total of 331 individuals) showed that all homozygous resistant individuals had a 3.7 kb EcoRI fragment, all homozygous susceptible individuals had a 3.0 kb EcoRI fragment, and all heterozygous individuals had both 3.7 and 3.0 kb fragments. No recombination was detected between the kdr-type resistance locus and the para-homologous sodium channel gene. This suggests that the kdr-type resistance locus and para-homologous sodium channel gene are identical or tightly linked (< 0.2 cM) in German cockroaches. Our results provide strong evidence that modification of para-homologous sodium channels is associated with kdr-type resistance.
Collapse
Affiliation(s)
- K Dong
- Department of Entomology, University of Kentucky, Lexington 40546
| | | |
Collapse
|
41
|
Taylor MF, Heckel DG, Brown TM, Kreitman ME, Black B. Linkage of pyrethroid insecticide resistance to a sodium channel locus in the tobacco budworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1993; 23:763-775. [PMID: 8397035 DOI: 10.1016/0965-1748(93)90064-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pyrethroids, with their lack of persistence and low mammalian toxicity, have been important insecticides since the early 1970s. However, heavy use has selected for resistance to pyrethroids in populations of many insects, in particular the tobacco budworm Heliothis virescens, a major cotton pest in the Americas. Several studies have identified the voltage-gated sodium channel as the principal target of pyrethroid action, and the sodium channel has been implicated in pyrethroid resistance in Musca domestica and Drosophila melanogaster. We present molecular genetic evidence that pyrethroid resistance is linked to a sodium channel locus in a strain of H. virescens. This is the first such evidence for any major agricultural pest, and is an important step towards understanding the molecular basis of resistance. This in turn will facilitate assessment, modeling, and control of resistance in pest populations, and increase our understanding of sodium channel function.
Collapse
Affiliation(s)
- M F Taylor
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544
| | | | | | | | | |
Collapse
|
42
|
Williamson MS, Denholm I, Bell CA, Devonshire AL. Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). MOLECULAR & GENERAL GENETICS : MGG 1993; 240:17-22. [PMID: 8101963 DOI: 10.1007/bf00276878] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The voltage-sensitive sodium channel is generally regarded as the primary target site of dichloro-diphenyl-trichloro-ethane (DDT) and pyrethroid insecticides, and has been implicated in the widely reported mechanism of nerve insensitivity to these compounds. This phenomenon is expressed as knockdown resistance (kdr) and has been best characterised in the housefly where several putative alleles, including the more potent super-kdr factor, have been identified. We report the isolation of cDNA clones containing part of a housefly sodium channel gene, designated Msc, which show close homology to the para sodium channel of Drosophila (99% amino acid identity within the region of overlap). Using Southern blots of insect DNA, restriction fragment length polymorphisms (RFLPs) at the Msc locus were identified in susceptible, kdr and super-kdr housefly strains. These RFLPs showed tight linkage to resistance in controlled crosses involving these strains, thus providing clear genetic evidence that kdr, and hence pyrethroid mode of action, is closely associated with the voltage-sensitive sodium channel.
Collapse
Affiliation(s)
- M S Williamson
- Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Hertfordshire, UK
| | | | | | | |
Collapse
|
43
|
Church C, Abd-Elghafar S, Knowles C. Influence of formamidines on batrachotoxin in a 20α-benzoate binding to neural membranes from pyrethroid susceptible and resistant tobacco budworm moths Heliothis virescens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART C: COMPARATIVE PHARMACOLOGY 1993; 105:443-449. [DOI: 10.1016/0742-8413(93)90084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
44
|
Amichot M, Castella C, Bergé JB, Pauron D. Transcription analysis of the para gene by in situ hybridization and immunological characterization of its expression product in wild-type and mutant strains of Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1993; 23:381-390. [PMID: 8387373 DOI: 10.1016/0965-1748(93)90022-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In Drosophila, the para gene has been shown to encode a functional voltage-dependent sodium channel. We used a cDNA clone to study the distribution of its transcripts by in situ mRNA hybridization on adult fly sections. These transcripts are found in cortical regions of the central nervous system and in the eyes. On immunoblots, antibodies raised against expression products of part of the gene recognize a polypeptide of M(r) approximately 270,000 in head membranes. Immunolocalization experiments indicate that anti-para antibodies bind to cortical regions of the brain and give heavy signals in the eyes. Immunohistochemistry was also performed on napts and seits1, two mutant Drosophila strains known to be defective in sodium channel activity. Only napts flies displayed a decrease in the expression of the para protein.
Collapse
Affiliation(s)
- M Amichot
- Laboratoire de Biologie des Invertébrés, INRA, Antibes, France
| | | | | | | |
Collapse
|
45
|
Church C, Knowles C. Relationship between pyrethroid enhanced batrachotoxinin A 20-α-benzoate binding and pyrethroid toxicity to susceptible and resistant tobacco budworm moths Heliothis virescens. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0742-8413(93)90036-k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Church CJ, Knowles CO. Saxitoxin binding to neural membranes from pyrethroid susceptible and resistant tobacco budworm moths Heliothis virescens. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0742-8413(92)90171-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Fournier D, Bride J, Hoffmann F, Karch F. Acetylcholinesterase. Two types of modifications confer resistance to insecticide. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49708-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Abstract
The mechanisms of action of neuroactive insecticides on the nervous system has been studied for many years. It is now well established that severe neurological symptoms of poisoning with pyrethroids and DDT in mammals and insects are the result of modification of Na+ channel activity. Toshio Narahashi discusses the history, approaches and results of the studies leading to this conclusion. Advanced electrophysiological experiments using voltage clamp and patch clamp, together with ligand-binding and ionic flux experiments, have unveiled unique actions of pyrethroids and DDT of keeping the Na+ channel in the open state for an extremely long period, sometimes as long as several seconds. This modification of Na+ channel properties leads to hyperactivity of the nervous system. These insecticides have also been shown to suppress GABA and glutamate receptor-channel complexes and voltage-activated Ca2+ channels, but the toxicological significance of these actions remains to be seen. The results of these studies provide clues for developing newer insecticides with higher selectivity between mammals and insects and for coping with the problem of insecticide resistance.
Collapse
Affiliation(s)
- T Narahashi
- Department of Pharmacology, Northwestern University Medical School, Chicago, IL 60611
| |
Collapse
|
49
|
Doyle KE, Knipple DC. PCR-based phylogenetic walking: Isolation of para-homologous sodium channel gene sequences from seven insect species and an arachnid. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0020-1790(91)90039-h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Soderlund DM, Grubs RE, Adams PM. Binding of [3H]batrachotoxinin A-20-alpha-benzoate to a high affinity site associated with house fly head membranes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1989; 94:255-60. [PMID: 2576735 DOI: 10.1016/0742-8413(89)90175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. [3H]Batrachotoxinin A-20-alpha-benzoate (BTX-B), a radioligand that labels the alkaloid activator recognition site of the voltage-sensitive sodium channel, was bound specifically to high affinity, saturable sites in a subcellular preparation from house fly (Musca domestica L.) heads that was shown previously to contain binding sites for other sodium channel-directed ligands. 2. Specific binding of [3H]BTX-B was observed in the presence of 140 mM sodium or potassium and was inhibited by choline ion. 3. Saturating concentrations of scorpion (Leiurus quinquestriatus) venom stimulated the specific binding of [3H]BTX-B four-fold, increasing the proportion of specific binding of 10 nM [3H]BTX-B from less than 15% to 40%. Equilibrium dissociation studies in the presence of scorpion venom gave an equilibrium dissociation constant (KD) for [3H]BTX-B of 80 nM and a maximal binding capacity (Bmax) of 1.5 pmol/mg protein. 4. Parallel experiments in the absence of venom gave a KD value of 140 nM and a Bmax of 1.3 pmol/mg protein, indicating that scorpion venom stimulated [3H]BTX-B binding by increasing the affinity of this site approximately two-fold. 5. The specific binding of [3H]BTX-B was inhibited by the sodium channel activators aconitine and batrachotoxin and, to a lesser extent, by the anticonvulsant diphenylhydantoin. However, several other sodium channel-directed neurotoxins known to exert allosteric effects on the binding of [3H]BTX-B to mammalian brain preparations did not affect the binding of [3H]BTX-B to house fly head membranes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D M Soderlund
- Department of Entomology, Cornell University, Geneva, NY 14456
| | | | | |
Collapse
|