1
|
Merriman DK, Yuan J, Shi H, Majumdar A, Herschlag D, Al-Hashimi HM. Increasing the length of poly-pyrimidine bulges broadens RNA conformational ensembles with minimal impact on stacking energetics. RNA (NEW YORK, N.Y.) 2018; 24:1363-1376. [PMID: 30012568 PMCID: PMC6140463 DOI: 10.1261/rna.066258.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Helical elements separated by bulges frequently undergo transitions between unstacked and coaxially stacked conformations during the folding and function of noncoding RNAs. Here, we examine the dynamic properties of poly-pyrimidine bulges of varying length (n = 1-4, 7) across a range of Mg2+ concentrations using HIV-1 TAR RNA as a model system and solution NMR spectroscopy. In the absence of Mg2+, helices linked by bulges with n ≥ 3 residues adopt predominantly unstacked conformations (stacked population <15%), whereas one-bulge and two-bulge motifs adopt predominantly stacked conformations (stacked population >74%). In the presence of 3 mM Mg2+, the helices predominantly coaxially stack (stacked population >84%), regardless of bulge length, and the midpoint for the Mg2+-dependent stacking transition is within threefold regardless of bulge length. In the absence of Mg2+, the difference between free energy of interhelical coaxial stacking across the bulge variants is estimated to be ∼2.9 kcal/mol, based on an NMR chemical shift mapping with stacking being more energetically disfavored for the longer bulges. This difference decreases to ∼0.4 kcal/mol in the presence of Mg2+ NMR RDCs and resonance intensity data show increased dynamics in the stacked state with increasing bulge length in the presence of Mg2+ We propose that Mg2+ helps to neutralize the growing electrostatic repulsion in the stacked state with increasing bulge length thereby increasing the number of coaxial conformations that are sampled. Energetically compensated interhelical stacking dynamics may help to maximize the conformational adaptability of RNA and allow a wide range of conformations to be optimally stabilized by proteins and ligands.
Collapse
Affiliation(s)
- Dawn K Merriman
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jiayi Yuan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Ananya Majumdar
- Biomolecular NMR Facility, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
2
|
Graph-based sampling for approximating global helical topologies of RNA. Proc Natl Acad Sci U S A 2014; 111:4079-84. [PMID: 24591615 DOI: 10.1073/pnas.1318893111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A current challenge in RNA structure prediction is the description of global helical arrangements compatible with a given secondary structure. Here we address this problem by developing a hierarchical graph sampling/data mining approach to reduce conformational space and accelerate global sampling of candidate topologies. Starting from a 2D structure, we construct an initial graph from size measures deduced from solved RNAs and junction topologies predicted by our data-mining algorithm RNAJAG trained on known RNAs. We sample these graphs in 3D space guided by knowledge-based statistical potentials derived from bending and torsion measures of internal loops as well as radii of gyration for known RNAs. Graph sampling results for 30 representative RNAs are analyzed and compared with reference graphs from both solved structures and predicted structures by available programs. This comparison indicates promise for our graph-based sampling approach for characterizing global helical arrangements in large RNAs: graph rmsds range from 2.52 to 28.24 Å for RNAs of size 25-158 nucleotides, and more than half of our graph predictions improve upon other programs. The efficiency in graph sampling, however, implies an additional step of translating candidate graphs into atomic models. Such models can be built with the same idea of graph partitioning and build-up procedures we used for RNA design.
Collapse
|
3
|
Patel S, Blose JM, Sokoloski JE, Pollack L, Bevilacqua PC. Specificity of the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR for double-stranded RNA: insights from thermodynamics and small-angle X-ray scattering. Biochemistry 2012; 51:9312-22. [PMID: 23140277 DOI: 10.1021/bi300935p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interferon-inducible, double-stranded (ds) RNA-activated protein kinase (PKR) contains a dsRNA-binding domain (dsRBD) and plays key roles in viral pathogenesis and innate immunity. Activation of PKR is typically mediated by long dsRNA, and regulation of PKR is disfavored by most RNA imperfections, including bulges and internal loops. Herein, we combine isothermal titration calorimetry (ITC), electrophoretic mobility shift assays, and small-angle X-ray scattering (SAXS) to dissect the thermodynamic basis for the specificity of the dsRBD termed "p20" for various RNAs and to detect any RNA conformational changes induced upon protein binding. We monitor binding of p20 to chimeric duplexes containing terminal RNA-DNA hybrid segments and a central dsRNA segment, which was either unbulged ("perfect") or bulged. The ITC data reveal strong binding of p20 to the perfect duplex (K(d) ~ 30 nM) and weaker binding to the bulged duplex (K(d) ~ 2-5 μM). SAXS reconstructions and p(r) distance distribution functions further uncover that p20 induces no significant conformational change in perfect dsRNA but largely straightens bulged dsRNA. Together, these observations support the dsRBD's ability to tightly bind to only A-form RNA and suggest that in a noninfected cell, PKR may be buffered via weak interactions with various bulged and looped RNAs, which it may straighten. This work suggests that PKR-regulating RNAs with complex secondary and tertiary structures likely mimic dsRNA and/or engage portions of PKR outside of the dsRBD.
Collapse
Affiliation(s)
- Sunita Patel
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
4
|
Eschbach SH, St-Pierre P, Penedo JC, Lafontaine DA. Folding of the SAM-I riboswitch: a tale with a twist. RNA Biol 2012; 9:535-41. [PMID: 22336759 DOI: 10.4161/rna.19648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Riboswitches are ligand-dependent RNA genetic regulators that control gene expression by altering their structures. The elucidation of riboswitch conformational changes before and after ligand recognition is crucial to understand how riboswitches can achieve high ligand binding affinity and discrimination against cellular analogs. The detailed characterization of riboswitch folding pathways suggest that they may use their intrinsic conformational dynamics to sample a large array of structures, some of which being nearly identical to ligand-bound molecules. Some of these structural conformers can be "captured" upon ligand binding, which is crucial for the outcome of gene regulation. Recent studies about the SAM-I riboswitch have revealed unexpected and previously unknown RNA folding mechanisms. For instance, the observed helical twist of the P1 stem upon ligand binding to the SAM-I aptamer adds a new element in the repertoire of RNA strategies for recognition of small metabolites. From an RNA folding perspective, these findings also strongly indicate that the SAM-I riboswitch could achieve ligand recognition by using an optimized combination of conformational capture and induced-fit approaches, a feature that may be shared by other RNA regulatory sequences.
Collapse
Affiliation(s)
- Sébastien H Eschbach
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
5
|
Mustoe AM, Bailor MH, Teixeira RM, Brooks CL, Al-Hashimi HM. New insights into the fundamental role of topological constraints as a determinant of two-way junction conformation. Nucleic Acids Res 2011; 40:892-904. [PMID: 21937512 PMCID: PMC3258142 DOI: 10.1093/nar/gkr751] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies have shown that topological constraints encoded at the RNA secondary structure level involving basic steric and stereochemical forces can significantly restrict the orientations sampled by helices across two-way RNA junctions. Here, we formulate these topological constraints in greater quantitative detail and use this topological framework to rationalize long-standing but poorly understood observations regarding the basic behavior of RNA two-way junctions. Notably, we show that the asymmetric nature of the A-form helix and the finite length of a bulge provide a physical basis for the experimentally observed directionality and bulge-length amplitude dependence of bulge induced inter-helical bends. We also find that the topologically allowed space can be modulated by variations in sequence, particularly with the addition of non-canonical GU base pairs at the junction, and, surprisingly, by the length of the 5′ and 3′ helices. A survey of two-way RNA junctions in the protein data bank confirms that junction residues have a strong preference to adopt looped-in, non-canonically base-paired conformations, providing a route for extending our bulge-directed framework to internal loop motifs and implying a simplified link between secondary and tertiary structure. Finally, our results uncover a new simple mechanism for coupling junction-induced topological constraints with tertiary interactions.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Departments of Chemistry & Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
6
|
Heinicke LA, Nallagatla SR, Hull CM, Bevilacqua PC. RNA helical imperfections regulate activation of the protein kinase PKR: effects of bulge position, size, and geometry. RNA (NEW YORK, N.Y.) 2011; 17:957-966. [PMID: 21460237 PMCID: PMC3078744 DOI: 10.1261/rna.2636911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/24/2011] [Indexed: 05/30/2023]
Abstract
The protein kinase, PKR, is activated by long stretches of double-stranded (ds) RNA. Viruses often make long dsRNA elements with imperfections that still activate PKR. However, due to the complexity of the RNA structure, prediction of whether a given RNA is an activator of PKR is difficult. Herein, we systematically investigated how various RNA secondary structure defects contained within model dsRNA affect PKR activation. We find that bulges increasingly disfavor activation as they are moved toward the center of a duplex and as they are increased in size. Model RNAs designed to conform to cis, trans, or bent global geometries through strategic positioning of one or more bulges decreased activation of PKR relative to perfect dsRNA, although cis-bulged RNAs activated PKR much more potently than trans-bulged RNAs. Activation studies on bulge-containing chimeric duplexes support a model wherein PKR monomers interact adjacently, rather than through-space, for activation on bulged substrates. Last, unusually low ionic strength induced substantial increases in PKR activation in the presence of bulged RNAs suggesting that discrimination against bulges is higher under biological ionic strength conditions. Overall, this study provides a set of rules for understanding how secondary structural defects affect PKR activity.
Collapse
Affiliation(s)
- Laurie A Heinicke
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Comparative gel electrophoresis provides information on the relative angles subtended between helical arms at a branchpoint in RNA. It is based upon the comparison of electrophoretic mobility in polyacrylamide gels of species containing two long arms, with the remaining one(s) being significantly shorter. Although the method currently lacks a really well-established basis of physical theory, it is very powerful, yet simple to apply. It has had a number of significant successes in RNA, DNA and DNA-protein complexes, and in all cases to date the results have stood the test of time and eventual comparison with crystallographic analysis.
Collapse
|
8
|
Keene FR, Smith JA, Collins JG. Metal complexes as structure-selective binding agents for nucleic acids. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Abstract
Electrophoresis in polyacrylamide gels provides a simple yet powerful means of analyzing the relative disposition of helical arms in branched nucleic acids. The electrophoretic mobility of DNA or RNA with a central discontinuity is determined by the angle subtended between the arms radiating from the branchpoint. In a multi-helical branchpoint, comparative gel electrophoresis can provide a relative measure of all the inter-helical angles and thus the shape and symmetry of the molecule. Using the long-short arm approach, the electrophoretic mobility of all the species with two helical arms that are longer than all others is compared. This can be done as a function of conditions, allowing the analysis of ion-dependent folding of branched DNA and RNA species. Notable successes for the technique include the four-way (Holliday) junction in DNA and helical junctions in functionally significant RNA species such as ribozymes. Many of these structures have subsequently been proved correct by crystallography or other methods, up to 10 years later in the case of the Holliday junction. Just as important, the technique has not failed to date. Comparative gel electrophoresis can provide a window on both fast and slow conformational equilibria such as conformer exchange in four-way DNA junctions. But perhaps the biggest test of the approach has been to deduce the structures of complexes of four-way DNA junctions with proteins. Two recent crystallographic structures show that the global structures were correctly deduced by electrophoresis, proving the worth of the method even in these rather complex systems. Comparative gel electrophoresis is a robust method for the analysis of branched nucleic acids and their complexes.
Collapse
|
10
|
Bailor MH, Musselman C, Hansen AL, Gulati K, Patel DJ, Al-Hashimi HM. Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat Protoc 2007; 2:1536-46. [PMID: 17571061 PMCID: PMC4707013 DOI: 10.1038/nprot.2007.221] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a protocol for determining the relative orientation and dynamics of A-form helices in 13C/15N isotopically enriched RNA samples using NMR residual dipolar couplings (RDCs). Non-terminal Watson-Crick base pairs in helical stems are experimentally identified using NOE and trans-hydrogen bond connectivity and modeled using the idealized A-form helix geometry. RDCs measured in the partially aligned RNA are used to compute order tensors describing average alignment of each helix relative to the applied magnetic field. The order tensors are translated into Euler angles defining the average relative orientation of helices and order parameters describing the amplitude and asymmetry of interhelix motions. The protocol does not require complete resonance assignments and therefore can be implemented rapidly to RNAs much larger than those for which complete high-resolution NMR structure determination is feasible. The protocol is particularly valuable for exploring adaptive changes in RNA conformation that occur in response to biologically relevant signals. Following resonance assignments, the procedure is expected to take no more than 2 weeks of acquisition and data analysis time.
Collapse
Affiliation(s)
- Maximillian H Bailor
- Department of Chemistry & Biophysics Research Division, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
11
|
Blouin S, Lafontaine DA. A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA (NEW YORK, N.Y.) 2007; 13:1256-67. [PMID: 17585050 PMCID: PMC1924893 DOI: 10.1261/rna.560307] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The lysine riboswitch is associated to the lysC gene in Bacillus subtilis, and the binding of lysine modulates the RNA structure to allow the formation of an intrinsic terminator presumably involved in transcription attenuation. The complex secondary structure of the lysine riboswitch aptamer is organized around a five-way junction that undergoes structural changes upon ligand binding. Using single-round transcription assays, we show that a loop-loop interaction is important for lysine-induced termination of transcription. Moreover, upon close inspection of the secondary structure, we find that an unconventional kink-turn motif is present in one of the stems participating in the loop-loop interaction. We show that the K-turn adopts a pronounced kink and that it binds the K-turn-binding protein L7Ae of Archaeoglobus fulgidus in the low nanomolar range. The functional importance of this K-turn motif is revealed from single-round transcription assays, which show its importance for efficient transcription termination. This motif is essential for the loop-loop interaction, and consequently, for lysine binding. Taken together, our results depict for the first time the importance of a K-turn-dependent loop-loop interaction for the transcription regulation of a lysine riboswitch.
Collapse
Affiliation(s)
- Simon Blouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
12
|
Abstract
DNA electrophoresis has been a dominant technique in molecular biology for 30 years. The foundation for this common technique is based on a few simple electrochemical principles. Electrophoretic DNA separation borrowed from existing protein and RNA techniques developed in the 1950s and 1960s. For 30 years, common DNA electrophoretic conductive media remained largely unchanged, with Tris as the primary cation. DNA electrophoresis relies simply upon the negative charge of the phosphate backbone and the ability to distribute a voltage gradient in a sieving matrix. Nevertheless, the conductive properties in DNA electrophoresis are complicated by choices involving voltage, electric current, conductivity, temperature, and the concentration and identity of the ionic species present. Differences among the extant chemical recipes for common conductive media affect central properties. Tris-based buffers, even in optimal form, create a runaway positive feedback loop between heat generation and retention, temperature, conductivity, and current. This is undesirable, leading to limitations on the permissible electric field and to impaired resolution. Recently, we developed low-molarity conductive media to mitigate this positive feedback loop. Such media allow for application of a higher electric field. Applications of DNA electrophoresis can now be reengineered for lower ionic strength, higher field strengths, and lower requirements for heat dissipation.
Collapse
Affiliation(s)
- Jonathan R Brody
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
13
|
Goody TA, Melcher SE, Norman DG, Lilley DMJ. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA (NEW YORK, N.Y.) 2004; 10:254-64. [PMID: 14730024 PMCID: PMC1370537 DOI: 10.1261/rna.5176604] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 10/03/2003] [Indexed: 05/19/2023]
Abstract
The kink-turn (K-turn) is a new motif in RNA structure that was identified by examination of the crystal structures of the ribosome. We examined the structural and dynamic properties of this element in free solution. The K-turn RNA exists in a dynamic equilibrium between a tightly kinked conformation and a more open structure similar to a simple bulge bend. The highly kinked form is stabilized by the noncooperative binding of metal ions, but a significant population of the less-kinked form is present even in the presence of relatively high concentrations of divalent metal ions. The conformation of the tightly kinked population is in excellent agreement with that of the K-turn structures observed in the ribosome by crystallography. The end-to-end FRET efficiency of this species agrees closely with that of the ribosomal K-turn, and the direction of the bend measured by comparative gel electrophoresis also corresponds very well. These results show that the tightly kinked conformation of the K-turn requires stabilization by other factors, possibly by protein binding, for example. The K-turn is therefore unlikely to be of itself a primary organizing feature in RNA.
Collapse
Affiliation(s)
- Terry A Goody
- Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
14
|
|
15
|
Lafontaine DA, Wilson TJ, Norman DG, Lilley DM. The A730 loop is an important component of the active site of the VS ribozyme. J Mol Biol 2001; 312:663-74. [PMID: 11575922 DOI: 10.1006/jmbi.2001.4996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The core of the VS ribozyme comprises five helices, that act either in cis or in trans on a stem-loop substrate to catalyse site-specific cleavage. The structure of the 2-3-6 helical junction indicates that a cleft is formed between helices II and VI that is likely to serve as a receptor for the substrate. Detailed analysis of sequence variants suggests that the base bulges of helices II and VI play an architectural role. By contrast, the identity of the nucleotides in the A730 loop is very important for ribozyme activity. The base of A756 is particularly vital, and substitution by any other nucleotide or ablation of the base leads to a major reduction in cleavage rate. However, variants of A756 bind substrate efficiently, and are not defective in global folding. These results suggest that the A730 loop is an important component of the active site of the ribozyme, and that A756 could play a key role in catalysis.
Collapse
Affiliation(s)
- D A Lafontaine
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
16
|
Feig M, Zacharias M, Pettitt BM. Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations. Biophys J 2001; 81:352-70. [PMID: 11423420 PMCID: PMC1301517 DOI: 10.1016/s0006-3495(01)75705-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Molecular dynamics simulations have been applied to the DNA octamer d(GCGCA-GAAC). d(GTTCGCGC), which has an adenine bulge at the center to determine the pathway for interconversion between the stacked and extended forms. These forms are known to be important in the molecular recognition of bulges. From a total of ~35 ns of simulation time with the most recent CHARMM27 force field a variety of distinct conformations and subconformations are found. Stacked and fully looped-out forms are in excellent agreement with experimental data from NMR and x-ray crystallography. Furthermore, in a number of conformations the bulge base associates with the minor groove to varying degrees. Transitions between many of the conformations are observed in the simulations and used to propose a complete transition pathway between the stacked and fully extended conformations. The effect on the surrounding DNA sequence is investigated and biological implications of the accessible conformational space and the suggested transition pathway are discussed, in particular for the interaction of the MS2 replicase operator RNA with its coat protein.
Collapse
Affiliation(s)
- M Feig
- Department of Chemistry and Institute for Molecular Design, University of Houston, Houston, Texas 77204-5641, USA
| | | | | |
Collapse
|
17
|
Yoo JS, Cheong HK, Lee BJ, Kim YB, Cheong C. Solution structure of the SL1 RNA of the M1 double-stranded RNA virus of Saccharomyces cerevisiae. Biophys J 2001; 80:1957-66. [PMID: 11259308 PMCID: PMC1301384 DOI: 10.1016/s0006-3495(01)76165-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The 20-nucleotide SL1 VBS RNA, 5'-GGAGACGC[GAUUC]GCGCUCC (bulged A underlined and loop bases in brackets), plays a crucial role in viral particle binding to the plus strand and packaging of the RNA. Its structure was determined by NMR spectroscopy. Structure calculations gave a precisely defined structure, with an average pairwise root mean square deviation (RMSD) of 1.28 A for the entire molecule, 0.57 A for the loop region (C8-G14), and 0.46 A for the bulge region (G4-G7, C15-C17). Base stacking continues for three nucleotides on the 5' side of the loop. The final structure contains a single hydrogen bond involving the guanine imino proton and the carbonyl O(2) of the cytosine between the nucleotides on the 5' and 3' ends of the loop, although they do not form a Watson-Crick base pair. All three pyrimidine bases in the loop point toward the major groove, which implies that Cap-Pol protein may recognize the major groove of the SL1 loop region. The bulged A5 residue is stacked in the stem, but nuclear Overhauser enhancements (NOEs) suggest that A5 spends part of the time in the bulged-out conformation. The rigid conformation of the upper stem and loop regions may allow the SL1 VBS RNA to interact with Cap-Pol protein without drastically changing its own conformation.
Collapse
Affiliation(s)
- J S Yoo
- Magnetic Resonance Team, Korea Basic Science Institute, Taejon 305-333, Korea
| | | | | | | | | |
Collapse
|
18
|
Abstract
The global structures of branched RNA species are important to their function. Branched RNA species are defined as molecules in which double-helical segments are interrupted by abrupt discontinuities. These include helical junctions of different orders, and base bulges and loops. Common helical junctions are three- and four-way junctions, often interrupted by mispairs or additional nucleotides. There are many interesting examples of functional RNA junctions, including the hammerhead and hairpin ribozymes, and junctions that serve as binding sites for proteins. The junctions display some common structural properties. These include a tendency to undergo pairwise helical stacking and ion-induced conformational transitions. Helical branchpoints can act as key architectural components and as important sites for interactions with proteins. Copyright 1999 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David M. J. Lilley
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
19
|
Zheng X, Bevilacqua PC. Efficient construction of long DNA duplexes with internal non-Watson-Crick motifs and modifications. Nucleic Acids Res 2001; 29:E6. [PMID: 11139636 PMCID: PMC29687 DOI: 10.1093/nar/29.2.e6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a semi-synthetic approach for preparing long stretches of DNA (>100 bp) containing internal chemical modifications and/or non-Watson-Crick structural motifs which relies on splint-free, cell-free DNA ligations and recycling of side-products by non-PCR thermal cycling. A double-stranded DNA PCR fragment containing a polylinker in its middle is digested with two restriction enzymes and a small insert ( approximately 20 bp) containing the modification or non-Watson-Crick motif of interest is introduced into the middle. Incorrect products are recycled to starting materials by digestion with appropriate restriction enzymes, while the correct product is resistant to digestion since it does not contain these restriction sites. This semi-synthetic approach offers several advantages over DNA splint-mediated ligations, including fewer steps, substantially higher yields ( approximately 60% overall yield) and ease of use. This method has numerous potential applications, including the introduction of modifications such as fluorophores and cross-linking agents into DNA, controlling the shape of DNA on a large scale and the study of non-sequence-specific nucleic acid-protein interactions.
Collapse
Affiliation(s)
- X Zheng
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
20
|
Zheng X, Bevilacqua PC. Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR. Proc Natl Acad Sci U S A 2000; 97:14162-7. [PMID: 11114159 PMCID: PMC18888 DOI: 10.1073/pnas.011355798] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human interferon-induced protein kinase, PKR, is an antiviral agent that is activated by long stretches of double-stranded (ds)RNA. PKR has an N-terminal dsRNA-binding domain that contains two tandem copies of the dsRNA-binding motif and interacts with dsRNA in a nonsequence-specific fashion. Surprisingly, PKR can be regulated by certain viral and cellular RNAs containing non-Watson-Crick features. We found that RNAs containing bulges in the middle of a helix can bind to p20, a C-terminal truncated PKR containing the dsRNA-binding domain. Bulges are known to change the global geometry of RNA by bending the helical axis; therefore, we investigated the conformational changes of bulged RNA caused by PKR binding. A 66-mer DNA-RNA(+/- A(3) bulge)-DNA chimera was constructed and annealed to a complementary RNA strand. This duplex forces the protein to bind in the middle. A 66-mer duplex with a top strand composed of DNA-DNA(+/-A(3) bulge)-RNA was used as a control. Gel mobility-shift changes among the RNA-protein complexes are consistent with straightening of bulged RNA on protein binding. In addition, a van't Hoff analysis of p20 binding to bulged RNA reveals a favorable DeltaDeltaH degrees and an unfavorable DeltaDeltaS degrees relative to binding to straight dsRNA. These thermodynamic parameters are in good agreement with predictions from a nearest-neighbor analysis for RNA straightening and support a model in which the helical junction flanking the bulge stacks on protein binding. The ability of dsRNA-binding motif proteins to recognize and straighten bent RNA has implications for modulating the topology of RNAs in vivo.
Collapse
Affiliation(s)
- X Zheng
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
21
|
Stühmeier F, Hillisch A, Clegg RM, Diekman S. Fluorescence energy transfer analysis of DNA structures containing several bulges and their interaction with CAP. J Mol Biol 2000; 302:1081-100. [PMID: 11183776 DOI: 10.1006/jmbi.2000.4089] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA molecules with three bulges separated by double-stranded helical sections of B-DNA were constructed to be used as substrates for DNA-protein binding assays. Fluorescence resonance energy transfer (FRET) between dye molecules attached to the 5'-ends of the DNA molecules is used to monitor the protein binding. The A5 bulge, which consists of five unpaired adenine nucleotides, alters the direction of the helical axis by approximately 80 to 90 at every bulge site. Computer molecular modeling facilitated a pre-selection of suitable helix lengths that bring the labeled ends of the three-bulge DNA molecules (60 to 70 base-pairs long) into close proximity. The FRET experiments verified that the labeled ends of the helices of these long molecules were indeed close. A series of FRET experiments was carried out with two A5 and two A7 bulge molecules. The relative positions of the bulges were varied along the central helical DNA sequence (between the bulges) in order to determine the relative angular juxtapositions of the outlying helical arms flanking the central helical region. The global structural features of the DNA molecules are manifested in the FRET data. The FRET experiments, especially those of the two-bulge series, could be interpreted remarkably well with molecular models based on the NMR structure of the A5 bulge. These models assume that the DNA molecules do not undergo large torsional conformational fluctuations at the bulge sites. The magnitude of the FRET efficiency attests to a relatively rigid structure for many of the long 5'-end-labeled molecules. The changes in the FRET efficiency of three-bulge structures containing the specific binding sequence of the catabolite activator protein (CAP) demonstrated significant deformation of the DNA upon binding of CAP. No direct interaction of CAP with the dyes was observed.
Collapse
|
22
|
Grainger RJ, Norman DG, Lilley DM. Binding of U1A protein to the 3' untranslated region of its pre-mRNA. J Mol Biol 1999; 288:585-94. [PMID: 10329165 DOI: 10.1006/jmbi.1999.2717] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the global structure of the U1A 3' untranslated region (UTR) element using fluorescence resonance energy transfer. Comparison of a single UTR-box with a series of oligoadenine bulges indicates that the UTR-box introduces a significant kink into the axis of the RNA, and quantification of the results suggests an included bend angle of approximately 100 degrees (i.e. 80 degrees from linear). The complete 3'-UTR element is also severely kinked by the two UTR-boxes. We can observe binding of U1A protein to the 3'-UTR element by a change in the fluorescence anisotropy of Cy3 attached to one of the helical ends. In parallel with the binding, we observe a marked increase in fluoresence resonance energy transfer efficiency between fluorophores attached at the two 5' termini, indicating a significant change in global conformation induced by the binding of the protein.
Collapse
Affiliation(s)
- R J Grainger
- Department of Biochemistry, The University of Dundee, Dundee, DD1 4HN, UK
| | | | | |
Collapse
|
23
|
Seeman NC. DNA nanotechnology: novel DNA constructions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:225-48. [PMID: 9646868 DOI: 10.1146/annurev.biophys.27.1.225] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA nanotechnology entails the construction of specific geometrical and topological targets from DNA. The goals include the use of DNA molecules to scaffold the assembly of other molecules, particularly in periodic arrays, with the objects of both crystal facilitation and memory-device construction. Many of these products are based on branched DNA motifs. DNA molecules with the connectivities of a cube and a truncated octahedron have been prepared. A solid-support methodology has been developed to construct DNA targets. DNA trefoil and figure-8 knots have been made, predicated on the relationship between a topological crossing and a half-turn of B-DNA or Z-DNA. The same basis has been used to construct Borromean rings from DNA. An RNA knot has been used to demonstrate an RNA topoisomerase activity. The desire to construct periodic matter held together by DNA sticky ends has resulted in a search for stiff components; DNA double crossover molecules appear to be the best candidates. It appears that novel DNA motifs may be of use in the new field of DNA-based computing.
Collapse
Affiliation(s)
- N C Seeman
- Department of Chemistry, New York University, New York 10003, USA.
| |
Collapse
|
24
|
Friederich MW, Vacano E, Hagerman PJ. Global flexibility of tertiary structure in RNA: yeast tRNAPhe as a model system. Proc Natl Acad Sci U S A 1998; 95:3572-7. [PMID: 9520407 PMCID: PMC19877 DOI: 10.1073/pnas.95.7.3572] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study of RNA structure using x-ray crystallography or NMR has yielded a wealth of detailed structural information; however, such approaches do not generally yield quantitative information regarding long-range flexibility in solution. To address this issue, we describe a solution-based method that is capable of characterizing the global flexibilities of nonhelix elements in RNA, provided that such elements are flanked by helix (e.g., bulges, internal loops, or branches). The "phased tau ratio" method is based on the principle that, for RNA molecules possessing two variably phased bends, the relative birefringence decay times depend on the flexibility of each bend, not simply the mean bend angles. The method is used to examine the overall flexibility of the yeast tRNAPhe core (as unmodified transcript). In the presence of magnesium ions, the tRNA core is not significantly more flexible than an equivalent length of RNA helix. In the absence of divalent ions, the tRNA core gains flexibility under conditions where its secondary structure is likely to be largely preserved. The phased tau ratio approach should be broadly applicable to nonhelix elements in both RNA and DNA and to protein-nucleic acid interactions.
Collapse
Affiliation(s)
- M W Friederich
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
25
|
Grainger RJ, Murchie AI, Norman DG, Lilley DM. Severe axial bending of RNA induced by the U1A binding element present in the 3' untranslated region of the U1A mRNA. J Mol Biol 1997; 273:84-92. [PMID: 9367748 DOI: 10.1006/jmbi.1997.1289] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 3' untranslated region of the U1A mRNA contains a binding site for the U1A protein that consists of two asymmetric internal bulges. The bulges each comprise a loop of seven unpaired bases opposing a single base (termed a U1A box). The seven-base loops are located on opposite strands, distributed in a symmetrical manner about the intervening four-base duplex. We have investigated the global conformation of this binding element. Comparison of electrophoretic mobilities of RNA duplexes interrupted by a single U1A box with a series of duplexes of the same length containing oligoadenine bulges indicates that the individual boxes cause a substantial kinking of the helix axis, estimated to be 90 (+/- 10) degrees. A series of RNA duplexes were constructed containing a U1A box separated from an A5 bulge by a duplex section of length between 3 and 21 bp. It was found that the electrophoretic mobilities of these species varied sinusoidally, indicating that the U1A box introduces a defined kink into the RNA helix, rather than a point of flexibility. Electrophoretic experiments with the complete U1A binding element suggest that the axial trajectories of the two U1A boxes combine to give an approximately in-line, 180 degrees change in duplex direction.
Collapse
Affiliation(s)
- R J Grainger
- Department of Biochemistry, University Dundee, UK
| | | | | | | |
Collapse
|
26
|
Abstract
One of the fundamental properties of the RNA helix is its intrinsic resistance to bend- or twist-deformations. Results of a variety of physical measurements point to a persistence length of 700-800 A for double-stranded RNA in the presence of magnesium cations, approximately 1.5-2.0-fold larger than the corresponding value for DNA. Although helix flexibility represents an important, quantifiable measure of the forces of interaction within the helix, it must also be considered in describing conformational variation of nonhelix elements (e.g. internal loops, branches), since the latter always reflect the properties of the flanking helices; that is, such elements are never completely rigid. For one important element of tertiary structure, namely, the core of yeast tRNAPhe, the above consideration has led to the conclusion that the core is not substantially more flexible than an equivalent length of pure helix.
Collapse
Affiliation(s)
- P J Hagerman
- Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| |
Collapse
|
27
|
Graveley BR, Fleming ES, Gilmartin GM. RNA structure is a critical determinant of poly(A) site recognition by cleavage and polyadenylation specificity factor. Mol Cell Biol 1996; 16:4942-51. [PMID: 8756653 PMCID: PMC231496 DOI: 10.1128/mcb.16.9.4942] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sequence conservation among mammalian poly(A) sites is limited to the sequence AAUAAA, coupled with an amorphous downstream U- or GU-rich region. Since these sequences may also occur within the coding region of mRNAs, additional information must be required to define authentic poly(A) sites. Several poly(A) sites have been shown to contain sequences outside the core elements that enhance the efficiency of 3' processing in vivo and in vitro. The human immunodeficiency virus type 1, equine infectious anemia virus, and adenovirus L1 3' processing enhancers have been shown to promote the binding of cleavage and polyadenylation specificity factor (CPSF), the factor responsible for recognition of AAUAAA, to the pre-mRNA, thereby facilitating the assembly of a stable 3' processing complex. We have used in vitro selection to examine the mechanism by which the human immunodeficiency virus type 1 3' processing enhancer promotes the interaction of CPSF with the AAUAAA hexamer. Surprisingly, RNAs selected for efficient polyadenylation were related by structure rather than sequence. Therefore, in the absence of extensive sequence conservation, our results strongly suggest that RNA structure is a critical determinant of poly(A) site recognition by CPSF and may play a key role in poly(A) site definition.
Collapse
Affiliation(s)
- B R Graveley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
28
|
Portmann S, Grimm S, Workman C, Usman N, Egli M. Crystal structures of an A-form duplex with single-adenosine bulges and a conformational basis for site-specific RNA self-cleavage. CHEMISTRY & BIOLOGY 1996; 3:173-84. [PMID: 8807843 DOI: 10.1016/s1074-5521(96)90260-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Bulged nucleotides are common secondary structural motifs in RNA molecules and are often involved in RNA-RNA and RNA-protein interactions. RNA is selectively cleaved at bulge sites (when compared to other sites within stems) in the presence of divalent metal cations. The effects of bulge nucleotides on duplex stability and topology have been extensively investigated, but no detailed X-ray structures of bulge-containing RNA fragments have been available. RESULTS We have crystallized a self-complementary RNA-DNA chimeric 11-nucleotide sequence containing single-adenosine bulges under two different conditions, giving two distinct crystal forms. In both lattices the adenosines are looped out, leaving the stacking interactions in the duplex virtually unaffected. The bulges cause the duplex to kink in both cases. In one of the structures, the conformation of the bulged nucleotide places its modeled 2'-oxygen in line with the adjacent phosphate on the 3' side, where it is poised for nucleophilic attack. CONCLUSIONS Single adenosine bulges cause a marked opening of the normally narrow RNA major groove in both crystal structures, rendering the bases more accessible to interacting molecules compared with an intact stem. The geometries around the looped-out adenosines are different in the two crystal forms, indicating that bulges can confer considerable local plasticity on the usually rigid RNA double helix. The results provide a conformational basis for the preferential, metal-assisted self-cleavage of RNA at bulged sites.
Collapse
Affiliation(s)
- S Portmann
- Department of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The chemical introduction of the blue-fluorescent 2-aminopurine riboside into oligoribonucleotides synthesized using the 2'-O-t-butyl-dimethylsilyl protection is reported. The proposed purification procedure led to the synthetic RNAs of high purity required for spectrofluorimetry studies. Thermodynamic parameters for the RNA bulge loops of type (A)n labelled with the 2-aminopurine (2AP) have been determined by optical melting. Results indicate that a bulge (B) in the RNA duplexes GUCG(B)GCUG + CAGCCGAC destabilize a regular helix structure and the destabilization increases monotonically as bulge length increases in the following order of (B) = A-2AP-A > 2AP-A; A-2AP > 2AP. The analysis of the free energy increments for bulged loops, delta G(o)37(bulge), allows to conclude that the structural properties of 2-aminopurine in RNA bulge loops are very similar to those of isomeric adenine. The fluorescent 2-aminopurine could therefore be used as non-invasive conformational probe.
Collapse
Affiliation(s)
- I Zagórowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
30
|
Affiliation(s)
- D M Lilley
- Department of Biochemistry, The University, Dundee, United Kingdom
| |
Collapse
|
31
|
Marino JP, Gregorian RS, Csankovszki G, Crothers DM. Bent helix formation between RNA hairpins with complementary loops. Science 1995; 268:1448-54. [PMID: 7539549 DOI: 10.1126/science.7539549] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The initial interaction between the ColE1 plasmid specific transcripts RNA I and RNA II, which function as antisense regulators of plasmid replication, comprises a transient complex between complementary loops found within the RNA secondary structures. Multidimensional heteronuclear magnetic resonance spectroscopy was used to characterize complexes formed between model RNA hairpins having seven nucleotide complementary loops. Seven base pairs are formed in the loop-loop helix, with continuous helical stacking of the loop residues on the 3' side of their helical stems. A sharp bend in the loop-loop helix, documented by gel electrophoresis, narrows the major groove and allows bridging of the phosphodiester backbones across the major groove in order to close the hairpin loops at their 5'-ends. The bend is further enhanced by the binding of Rom, a ColE1 encoded protein that regulates replication.
Collapse
Affiliation(s)
- J P Marino
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
32
|
Friederich MW, Gast FU, Vacano E, Hagerman PJ. Determination of the angle between the anticodon and aminoacyl acceptor stems of yeast phenylalanyl tRNA in solution. Proc Natl Acad Sci U S A 1995; 92:4803-7. [PMID: 7761403 PMCID: PMC41795 DOI: 10.1073/pnas.92.11.4803] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A principal feature of the crystal structures of tRNAs is an L-shaped tertiary conformation in which the aminoacyl acceptor stem and the anticodon stem are approximately perpendicular. However, the anticodon-acceptor interstem angle has not been precisely quantified in solution for any tRNA. Such a determination would represent an important test of the predicted global conformation of tRNAs in solution. To this end, we have constructed a yeast tRNA(Phe) heteroduplex RNA molecule in which the anticodon and acceptor stems of the tRNA have each been extended by approximately 70 base pairs. A comparison of the rotational decay times of the heteroduplex molecule and a linear control yields an interstem angle of 89 +/- 4 degrees in 4 mM magnesium chloride/100 microM spermine hydrochloride, essentially identical to the corresponding angle observed in the crystal under similar buffer and temperature conditions. The current approach is applicable to the study of a wide variety of RNA molecules that possess elements of nonhelical structure.
Collapse
Affiliation(s)
- M W Friederich
- Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
33
|
Gast FU, Sänger HL. Gel dependence of electrophoretic mobilities of double-stranded and viroid RNA and estimation of the contour length of a viroid by gel electrophoresis. Electrophoresis 1994; 15:1493-8. [PMID: 7720685 DOI: 10.1002/elps.11501501213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Double-stranded (ds) RNA normally exhibits a lower electrophoretic mobility than dsDNA having the same number of base pairs. This has been attributed to its net charge density that is lower than that of B-form DNA. But we show here that dsRNA runs faster than corresponding DNA in gels containing either > or = 2.5% agarose or > or = 8% acrylamide with high crosslinking (19:1 acrylamide:N,N'-methylenebisacrylamide). However, the relative mobility of dsRNA as compared with DNA, extrapolated to 0% gel (0%T), remains constant (0.90 +/- 0.03) in all systems, in support of the charge density hypothesis. In comparison to dsRNA standards, the potato spindle tuber viroid, a small approximately 70% base-paired rod-like pathogenic RNA, is strongly retarded, presumably because of greater flexibility and/or stable curvature. Depending on the gel system, nonlinear extrapolation to 0% T leads to an apparent contour length of 140-230 bp, whereas 130 +/- 20 bp can be determined from electron micrographs and 123-126 bp from secondary structure modeling. We attribute the variation of the electrophoretic behavior of both dsRNA and viroid RNA to interactions with the gel matrix. Nevertheless, extrapolation of the apparent contour length (in bp dsRNA) determined from low-crosslinked polyacrylamide gels (2.6%C) is comparable to the determination by alternative methods.
Collapse
Affiliation(s)
- F U Gast
- Abteilung Viroidforschung, Max-Planck-Institut für Biochemie, Planegg-Martinsried, Germany
| | | |
Collapse
|
34
|
Gohlke C, Murchie AI, Lilley DM, Clegg RM. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 1994; 91:11660-4. [PMID: 7526401 PMCID: PMC45291 DOI: 10.1073/pnas.91.24.11660] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Fluorescence resonance energy transfer (FRET) has been used to demonstrate the bending of DNA and RNA helices for three series of double-stranded molecules containing bulge loops of unopposed adenosine nucleotides (An, n = 0-9). Fluorescein and rhodamine were covalently attached to the 5' termini of the two component strands. Three different methods were applied to measure the FRET efficiencies. The extent of energy transfer within each series increases as the number of bulged nucleotides varies from 1 to 7, indicating a shortening of the end-to-end distance. This is consistent with a bending of DNA and RNA helices that is greater for larger bulges. The FRET efficiency for DNA molecules with A9 bulges is lower than the efficiency for the corresponding A7 bulged molecules, although the A9 molecules exhibit increased electrophoretic retardation. Ranges of bending angles can be estimated from the FRET results.
Collapse
Affiliation(s)
- C Gohlke
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttengen, Federal Republic of Germany
| | | | | | | |
Collapse
|
35
|
Murphy FL, Wang YH, Griffith JD, Cech TR. Coaxially stacked RNA helices in the catalytic center of the Tetrahymena ribozyme. Science 1994; 265:1709-12. [PMID: 8085157 DOI: 10.1126/science.8085157] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Coaxial stacking of helical elements is a determinant of three-dimensional structure in RNA. In the catalytic center of the Tetrahymena group I intron, helices P4 and P6 are part of a tertiary structural domain that folds independently of the remainder of the intron. When P4 and P6 were fused with a phosphodiester linkage, the resulting RNA retained the detailed tertiary interactions characteristic of the native P4-P6 domain and even required lower magnesium ion concentrations for folding. These results indicate that P4 and P6 are coaxial in the P4-P6 domain and, therefore, in the native ribozyme. Helix fusion could provide a general method for identifying pairs of coaxially stacked helices in biological RNA molecules.
Collapse
Affiliation(s)
- F L Murphy
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309
| | | | | | | |
Collapse
|
36
|
Tang RS, Draper DE. Bend and helical twist associated with a symmetric internal loop from 5S ribosomal RNA. Biochemistry 1994; 33:10089-93. [PMID: 8060977 DOI: 10.1021/bi00199a036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have used gel electrophoretic mobility measurements to investigate the conformation of the symmetric eubacterial loop E sequence of 5S rRNA (seven nucleotides in each strand). The loop strongly retarded the gel mobility of duplex RNAs containing it. In contrast, only asymmetric A5.An or U5.Un internal loops (n not equal to 5) strongly affected duplex RNA gel mobility. A phasing experiment, in which an A2 bulge and loop E were placed in the same duplex RNA and the number of base pairs between them varied, showed that loop E has a permanent bend and is torsionally stiff. A second phasing experiment substituting loop E for duplex sequences between two A2 bulges measured the helical twist associated with loop E; it is about 30 degrees (+/- 15 degrees) overwound compared to a duplex RNA of the same number of bases. Ribosomal protein L25 specifically recognizes loop E but had little or no effect on the twist of the loop. These results suggest that loop E adopts a specific, roughly helical structure.
Collapse
Affiliation(s)
- R S Tang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
37
|
Malhotra A, Tan RK, Harvey SC. Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys J 1994; 66:1777-95. [PMID: 7521223 PMCID: PMC1275904 DOI: 10.1016/s0006-3495(94)80972-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There is a growing body of low-resolution structural data that can be utilized to devise structural models for large RNAs and ribonucleoproteins. These models are routinely built manually. We introduce an automated refinement protocol to utilize such data for building low-resolution three-dimensional models using the tools of molecular mechanics. In addition to specifying the positions of each nucleotide, the protocol provides quantitative estimates of the uncertainties in those positions, i.e., the resolution of the model. In typical applications, the resolution of the models is about 10-20 A. Our method uses reduced representations and allows us to refine three-dimensional structures of systems as big as the 16S and 23S ribosomal RNAs, which are about one to two orders of magnitude larger than nucleic acids that can be examined by traditional all-atom modeling methods. Nonatomic resolution structural data--secondary structure, chemical cross-links, chemical and enzymatic footprinting patterns, protein positions, solvent accessibility, and so on--are combined with known motifs in RNA structure to predict low-resolution models of large RNAs. These structural constraints are imposed on the RNA chain using molecular mechanics-type potential functions with parameters based on the quality of experimental data. Surface potential functions are used to incorporate shape and positional data from electron microscopy image reconstruction experiments into our models. The structures are optimized using techniques of energy refinement to get RNA folding patterns. In addition to providing a consensus model, the method finds the range of models consistent with the data, which allows quantitative evaluation of the resolution of the model. The method also identifies conflicts in the experimental data. Although our protocol is aimed at much larger RNAs, we illustrate these techniques using the tRNA structure as an example and test-bed.
Collapse
Affiliation(s)
- A Malhotra
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 35294
| | | | | |
Collapse
|
38
|
Witherell GW, Wimmer E. Encephalomyocarditis virus internal ribosomal entry site RNA-protein interactions. J Virol 1994; 68:3183-92. [PMID: 8151781 PMCID: PMC236809 DOI: 10.1128/jvi.68.5.3183-3192.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Translational initiation of encephalomyocarditis virus (EMCV) mRNA occurs by ribosomal entry into the 5' nontranslated region of the EMCV mRNA, rather than by ribosomal scanning. Internal ribosomal binding requires a cis-acting element termed the internal ribosomal entry site (IRES). IRES elements have been proposed to be involved in the translation of picornavirus mRNAs and some cellular mRNAs. Internal ribosome binding likely requires the interaction of trans-acting factors that recognize both the mRNA and the ribosomal complex. Five cellular proteins (p52, p57, p70, p72, and p100) cross-link the EMCV IRES or fragments of the IRES. For one of these proteins, p57, binding to the IRES correlates with translation. Recently, p57 was identified to be very similar, if not identical, to polypyrimidine tract-binding protein. On the basis of cross-linking results with 21 different EMCV IRES fragments and cytoplasmic HeLa extract or rabbit reticulocyte lysate as the source of polypeptides, consensus binding sites for p52, p57, p70, and p100 are proposed. It is suggested that each of these proteins recognizes primarily a structural feature of the RNA rather than a specific sequence.
Collapse
Affiliation(s)
- G W Witherell
- Department of Microbiology, State University of New York at Stony Brook 11794
| | | |
Collapse
|
39
|
Tang RS, Draper DE. On the use of phasing experiments to measure helical repeat and bulge loop-associated twist in RNA. Nucleic Acids Res 1994; 22:835-41. [PMID: 7511222 PMCID: PMC307890 DOI: 10.1093/nar/22.5.835] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In a phasing experiment, two bends are introduced into a long duplex RNA or DNA and the number of base pairs between them varied. When electrophoresed in a gel, the set of molecules may show a periodic variation in mobility that contains information about the twist associated with the bends and the intervening helix. We show how a set of three phasing experiments can be used to extract this information, and apply it to an RNA helix bend at the bulge sequence A2. The bulge introduces a negative (left-handed) twist of approximately 30 degrees; at low temperatures, it is mostly confined to the 5' side of the bulge. The apparent helical repeat of random sequence RNA measured in these experiments was 10.2 +/- 0.1 base pairs, an unexpectedly low value. It is likely that moderate curvative of the RNA helix axis (30-40 degrees over 80 bp) has affected the measurement.
Collapse
Affiliation(s)
- R S Tang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
40
|
Abstract
We have studied a series of three-way DNA junctions containing unpaired bases on one strand at the branch-point of the junctions. The global conformation of the arms of the junctions has been analysed by means of polyacrylamide gel electrophoresis, as a function of conditions. We find that in the absence of added metal ions, all the results for all the junctions can be accounted for by extended structures, with the largest angle being that between the arms defined by the strand containing the extra bases. Upon addition of magnesium (II) or hexamine cobalt (III) ions, the electrophoretic patterns change markedly, indicative of ion-dependent folding transitions for some of the junctions. For the junction lacking the unpaired bases, the three inter-arm angles appear to be quite similar, suggesting an extended structure. However, the addition of unpaired bases permits the three-way junction to adopt a significantly different structure, in which one angle becomes smaller than the other two. These species also exhibit marked protection against osmium addition to thymine bases at the point of strand exchange. These results are consistent with a model in which two of the helical arms undergo coaxial stacking in the presence of magnesium ions, with the third arm defining an angle that depends upon the number of unpaired bases.
Collapse
Affiliation(s)
- J B Welch
- Department of Biochemistry, The University, Dundee, UK
| | | | | |
Collapse
|
41
|
|
42
|
Abstract
Branched DNA molecules provide a challenging set of structural problems. Operationally we define branched DNA species as molecules in which double helical segments are interrupted by abrupt discontinuities, and we draw together a number of different kinds of structure in the class, including helical junctions of different orders, and base bulges (Fig. 1).
Collapse
Affiliation(s)
- D M Lilley
- Department of Biochemistry, the University, Dundee, U.K
| | | |
Collapse
|
43
|
Duckett DR, Murchie AI, Bhattacharyya A, Clegg RM, Diekmann S, von Kitzing E, Lilley DM. The structure of DNA junctions and their interaction with enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:285-95. [PMID: 8425539 DOI: 10.1111/j.1432-1033.1992.tb17049.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D R Duckett
- Department of Biochemistry, The University, Dundee, U.K
| | | | | | | | | | | | | |
Collapse
|
44
|
Niederweis M, Lederer T, Hillen W. An accurate method for determining the helical repeat of DNA in solution reveals differences to the crystal structures of two B-DNA decamers. J Mol Biol 1992; 228:322-6. [PMID: 1453442 DOI: 10.1016/0022-2836(92)90820-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many DNA sequences have been studied by X-ray crystallography with the goal of deciphering a sequence-structure code. We have determined the helical repeats of two B-type DNA decamers in solution employing an electrophoretic method based on phasing of bent segments. The decamers contain recognition sites for the dcm methyltransferase and for the restriction nuclease NarI with a mutational hotspot. Their helical repeats are 10.59(+/- 0.05) bp and 10.52(+/- 0.03) bp, respectively, whereas crystallographic analysis yielded 10.0 bp in the solid state. This difference is greater than that for the transition between B- and A-type DNA in solution. Thus, reliable information about the polymorphism of DNA in solution must be based on both X-ray and solution data. We describe a generally applicable approach to accurately determine helical repeats of small DNA duplexes in solution.
Collapse
Affiliation(s)
- M Niederweis
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
45
|
Bettany A, Eisenstein R, Munro H. Mutagenesis of the iron-regulatory element further defines a role for RNA secondary structure in the regulation of ferritin and transferrin receptor expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42035-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Riordan FA, Bhattacharyya A, McAteer S, Lilley DM. Kinking of RNA helices by bulged bases, and the structure of the human immunodeficiency virus transactivator response element. J Mol Biol 1992; 226:305-10. [PMID: 1640450 DOI: 10.1016/0022-2836(92)90947-i] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have used gel electrophoresis to show that the pyrimidine bulge of the HIV-1 TAR sequence causes a local bending of the helical axis. The TAR bulge caused a retardation in electrophoretic mobility in polyacrylamide gels. When this was placed adjacent to an additional bulged sequence in a linear RNA fragment, the mobility of the molecule varied sinusoidally with the spacing between the two bulges. Electrophoretic mobilities suggested that the TAR sequence context of the pyrimidine bulge causes a greater degree of axial kinking than in an equivalent randomly chosen sequence. Experiments in which an A5 bulge was progressively opposed by adenine bases inserted in the opposite strand showed that even a single opposed adenine markedly reduced electrophoretic mobility, i.e. axial bending, and two adenine bases reduced the mobility virtually to that of a normal duplex. We suggest that the pronounced kinking resulting from an unopposed bulge provides a particularly recognizable feature in RNA, and that this is the basis of the interaction between the HIV Tat protein and the TAR sequence.
Collapse
Affiliation(s)
- F A Riordan
- Department of Biochemistry, The University Dundee, U.K
| | | | | | | |
Collapse
|
47
|
|
48
|
Rosen MA, Shapiro L, Patel DJ. Solution structure of a trinucleotide A-T-A bulge loop within a DNA duplex. Biochemistry 1992; 31:4015-26. [PMID: 1314655 DOI: 10.1021/bi00131a017] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have synthesized an oligodeoxynucleotide duplex, d(G-C-A-T-C-G-A-T-A-G-C-T-A-C-G).d(C-G-T-A-G-C-C-G-A-T-C-G), with a three-base bulge loop (A-T-A) at a central site in the first strand. Nuclear Overhauser experiments (NOESY) in H2O indicate that the GC base pairs flanking the bulge loop are intact between 0 and 25 degrees C. Nuclear Overhauser effects in both H2O and D2O indicate that all bases within the bulge loop are stacked into the helix. These unpaired bases retain an anti conformation about their glycosidic bonds as they stack within the duplex. The absence of normal sequential connectivities between the two cytosine residues flanking the bulge site on the opposite strand indicates a disruption in the geometry of this base step upon insertion of the bulged bases into the helix. This conformational perturbation is more akin to a shearing apart of the bases, which laterally separates the two halves of the molecule, rather than the "wedge" model often invoked for single-base bulges. Using molecular dynamics calculations, with both NOE-derived proton-proton distances and relaxation matrix-calculated NOESY cross peak volumes as restraints, we have determined the solution structure of an A-T-A bulge loop within a DNA duplex. The bulged bases are stacked among themselves and with the guanine bases on either side of the loop. All three of the bulged bases are displaced by 2-3 A into the major groove, increasing the solvent accessibility of these residues. The ATA-bulge duplex is significantly kinked at the site of the lesion, in agreement with previously reported electron microscopy and gel retardation studies on bulge-containing duplexes [Hsieh, C.-H., & Griffith, J. D. (1989) Proc. Natl. Acad. Sci. U.S.A 86, 4833-4837; Bhattacharyya, A., & Lilley, D. M. J. (1989) Nucleic Acids Res. 17, 6821-6840]. Bending occurs in a direction away from the bulge-containing strand, and we find a significant twist difference of 84 degrees between the two base pairs flanking the bulge loop site. This value represents 58% of the twist difference for base pairs four steps apart in B-DNA. These results suggest a structural mechanism for the bending of DNA induced by unpaired bases, as well as accounting for the effect bulge loops may have on the secondary and tertiary structures of nucleic acids.
Collapse
Affiliation(s)
- M A Rosen
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
49
|
Rosen MA, Live D, Patel DJ. Comparative NMR study of A(n)-bulge loops in DNA duplexes: intrahelical stacking of A, A-A, and A-A-A bulge loops. Biochemistry 1992; 31:4004-14. [PMID: 1314654 DOI: 10.1021/bi00131a016] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have prepared a series of deoxyoligonucleotide duplexes of the sequence d(G-C-A-T-C-G-X-G-C-T-A-C-G).d(C-G-T-A-G-C-C-G-A-T-G-C), in which X represents either one (A), two (A-A), or three (A-A-A) unpaired adenine basis. Using two-dimensional proton and phosphorus NMR spectroscopy, we have characterized conformational features of these bulge-loop duplexes in solution. We find that Watson-Crick hydrogen bonding is intact for all 12 base pairs, including the GC bases that flank the bulge loop. Observation of NOE connectivities in both H2O and D2O allows us to unambiguously localize all of the bulged adenine residues to intrahelical positions within the duplex. This is in contrast to an earlier model for multiple-base bulge loops in DNA [Bhattacharyya, A., & Lilley, D. M. J. (1989) Nucleic Acids Res. 17, 6821-6840], in which all but the most 5' bulged base are looped out into solution. We find that insertion of two or three bases into the duplex results in the disruption of specific sequential NOEs for the base step across from the bulge loop site on the opposite strand. This disruption is characterized by a partial shearing apart of these bases, such that certain sequential NOEs for this base step are preserved. We observe a downfield-shifted phosphorus resonance, which we assign in the A-A-A bulge duplex to the 3' side of the last bulged adenine residue. Proton and phosphorus chemical shift trends within the An-bulge duplex series indicate that there is an additive effect on the structural perturbations caused by additional unpaired bases within the bulge loop. This finding parallels previous observations [Bhattacharyya, A., & Lilley, D. M. J. (1989) Nucleic Acids Res. 17, 6821-6840; Hsieh, C.-H., & Griffith, J. D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4833-4837] on the magnitude of the induced bending of DNA duplexes by multiple-base bulge loops.
Collapse
Affiliation(s)
- M A Rosen
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
50
|
Sumner-Smith M, Roy S, Barnett R, Reid LS, Kuperman R, Delling U, Sonenberg N. Critical chemical features in trans-acting-responsive RNA are required for interaction with human immunodeficiency virus type 1 Tat protein. J Virol 1991; 65:5196-202. [PMID: 1895380 PMCID: PMC248997 DOI: 10.1128/jvi.65.10.5196-5202.1991] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human immunodeficiency virus type 1 Tat protein binds to an RNA stem-loop structure called TAR which is present at the 5' end of all human immunodeficiency virus type 1 transcripts. This binding is centered on a bulge within the stem of TAR and is an essential step in the trans-activation process which results in a dramatic increase in viral gene expression. By analysis of a series of TAR derivatives produced by transcription or direct chemical synthesis, we determined the structural and chemical requirements for Tat binding. Tat binds well to structures which have a bulge of two to at least five unpaired bases bounded on both sides by a double-stranded RNA stem. This apparent flexibility in bulge size is in contrast to an absolute requirement for an unpaired uridine (U) in the 5'-most position of the bulge (+23). Substitution of the U with either natural bases or chemical analogs demonstrated that the imido group at the N-3 position and, possibly, the carbonyl group at the C-4 position of U are critical for Tat binding. Cytosine (C), which differs from U at only these positions, is not an acceptable substitute. Furthermore, methylation at N-3 abolishes binding. While methylation of U at the C-5 position has little effect on binding, fluorination reduces it, possibly because of its effects on relative tautomer stability at the N-3 and C-4 positions. Thus, we have identified key moieties in the U residue that are of importance for the binding of Tat to TAR RNA. We hypothesize that the invariant U is involved in hydrogen bond interactions with either another part of TAR or the TAR-binding domain in Tat.
Collapse
Affiliation(s)
- M Sumner-Smith
- Allelix Biopharmaceuticals Inc., Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|