1
|
Equilibrium Studies on Pd(II)-Amine Complexes with Bio-Relevant Ligands in Reference to Their Antitumor Activity. Int J Mol Sci 2023; 24:ijms24054843. [PMID: 36902279 PMCID: PMC10003265 DOI: 10.3390/ijms24054843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
This review article presents an overview of the equilibrium studies on Pd-amine complexes with bio-relevant ligands in reference to their antitumor activity. Pd(II) complexes with amines of different functional groups, were synthesized and characterized in many studies. The complex formation equilibria of Pd(amine)2+ complexes with amino acids, peptides, dicarboxylic acids and DNA constituents, were extensively investigated. Such systems may be considered as one of the models for the possible reactions occurring with antitumor drugs in biological systems. The stability of the formed complexes depends on the structural parameters of the amines and the bio-relevant ligands. The evaluated speciation curves can help to provide a pictorial presentation of the reactions in solutions of different pH values. The stability data of complexes with sulfur donor ligands compared with those of DNA constituents, can reveal information regarding the deactivation caused by sulfur donors. The formation equilibria of binuclear complexes of Pd(II) with DNA constituents was investigated to support the biological significance of this class of complexes. Most of the Pd(amine)2+ complexes investigated were studied in a low dielectric constant medium, resembling that of a biological medium. Investigations of the thermodynamic parameters reveal that the formation of the Pd(amine)2+ complex species is exothermic.
Collapse
|
2
|
Patra SA, Banerjee A, Sahu G, Mohanty M, Lima S, Mohapatra D, Görls H, Plass W, Dinda R. Evaluation of DNA/BSA interaction and in vitro cell cytotoxicity of μ2-oxido bridged divanadium(V) complexes containing ONO donor ligands. J Inorg Biochem 2022; 233:111852. [DOI: 10.1016/j.jinorgbio.2022.111852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
|
3
|
Understanding the role of flexible alkyl-α,ω-diamine linkers on the substitution behaviour of dinuclear trans-platinum(II) complexes: A kinetic and mechanistic study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Golbedaghi R, Tabanez AM, Esmaeili S, Fausto R. Biological Applications of Macrocyclic Schiff Base Ligands and Their Metal Complexes: A Survey of the Literature (2005–2019). Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reza Golbedaghi
- Chemistry Department Payame Noor University Tehran 19395‐4697 Iran
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Andreia M. Tabanez
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Somayeh Esmaeili
- Internal Medicine Department Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rui Fausto
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| |
Collapse
|
5
|
Serebryanskaya TV, Kinzhalov MA, Bakulev V, Alekseev G, Andreeva A, Gushchin PV, Protas AV, Smirnov AS, Panikorovskii TL, Lippmann P, Ott I, Verbilo CM, Zuraev AV, Bunev AS, Boyarskiy VP, Kasyanenko NA. Water soluble palladium(ii) and platinum(ii) acyclic diaminocarbene complexes: solution behavior, DNA binding, and antiproliferative activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj00060d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Water soluble Pd(ii) and Pt(ii)–ADC species synthesized via the metal-mediated coupling of isocyanides and 1,2-diaminobenzene have demonstrated antitumor potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taras L. Panikorovskii
- Saint Petersburg State University
- St. Petersburg
- Russia
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic
- Kola Science Centre
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- D-38106 Braunschweig
- Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- D-38106 Braunschweig
- Germany
| | - Cyril M. Verbilo
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220006 Minsk
- Belarus
| | - Alexander V. Zuraev
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220006 Minsk
- Belarus
| | - Alexander S. Bunev
- Medicinal Chemistry Center
- Togliatti State University
- 445020 Togliatti
- Russia
| | | | | |
Collapse
|
6
|
In Vitro Cytotoxicity and In Vivo Antitumor Efficacy of Tetrazolato-Bridged Dinuclear Platinum(II) Complexes with a Bulky Substituent at Tetrazole C5. INORGANICS 2019. [DOI: 10.3390/inorganics7010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tetrazolato-bridged dinuclear platinum(II) complexes ([{cis-Pt(NH3)2}2(μ-OH)(μ-5-R-tetrazolato-N2,N3)]2+; tetrazolato-bridged complexes) are a promising source of next-generation platinum-based drugs. β-Cyclodextrin (β-CD) forms inclusion complexes with bulky organic compounds or substituents, changing their polarity and molecular dimensions. Here, we determined by 1H-NMR spectroscopy, the stability constants for inclusion complexes formed between β-CD and tetrazolato-bridged complexes with a bulky, lipophilic substituent at tetrazole C5 (complexes 1–3, phenyl, n-nonyl, and adamantyl substitution, respectively). We then determined the in vitro cytotoxicity and in vivo antitumor efficacy of complexes 1–3 against the Colon-26 colorectal cancer cell line in the absence or presence of equimolar β-CD. Compared with the platinum-based anticancer drug oxaliplatin (1R,2R-diaminocyclohexane)oxalatoplatinum(II)), complex 2 had similar cytotoxicity, complex 3 was moderately cytotoxic, and complex 1 was the least cytotoxic. The cytotoxicity of the complexes decreased in the presence of β-CD. When we examined the in vivo antitumor efficacy of complexes 1–3 (10 mg/kg) against homografted Colon-26 colorectal tumors in male BALB/c mice, they showed a relatively low tumor growth inhibition compared with oxaliplatin. However, in the presence of β-CD, complex 3 had higher in vivo antitumor efficacy than oxaliplatin, suggesting a new direction for future research into tetrazolato-bridged complexes with high in vivo antitumor activity.
Collapse
|
7
|
Tabrizi L, Zouchoune B, Zaiter A. Experimental and theoretical investigation of cyclometallated platinum(ii) complex containing adamantanemethylcyanamide and 1,4-naphthoquinone derivative as ligands: synthesis, characterization, interacting with guanine and cytotoxic activity. RSC Adv 2018; 9:287-300. [PMID: 35521610 PMCID: PMC9059274 DOI: 10.1039/c8ra08739c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
A new cyclometallated platinum(ii) complex with 1-adamantanemethylcyanamide (1-ADpcydH) and 2-[amino(2-phenylpyridine)]-1,4-naphthoquinone (1,4-NQ) ligands with the formula cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) was synthesized and fully characterized. Cellular uptake, DNA platination, and cytotoxicity against human MCF-7 breast, HepG-2 liver hepatocellular carcinoma, and HT-29 colon cancer cell lines were evaluated. The interaction of guanine (G) with cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) was studied by 195Pt NMR and mass spectroscopy. Furthermore, DFT calculations were performed on the complexes cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) 1 and cis-Pt(1,4-NQ)(1-ADpcyd)(G) 2 using the BP86-D and B3LYP functionals, in order to gain deeper insights into the molecular and electronic structures. Decomposition energy analysis gave a clear understanding of the bonding within both complexes, showing that the interactions were governed by two-third ionic and one-third covalent characters, which were stronger between the guanine and the Pt(ii) center than those between water and the Pt(ii). A new cyclometallated platinum(ii) complex was synthesized and its characterization, interaction with guanine, and cytotoxic activity were investigated by experiment and theoretical calculations.![]()
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland Galway University Road Galway Ireland H91 TK33
| | - Bachir Zouchoune
- Laboratoire de Chimie appliquée et Technologie des Matériaux, Université Larbi Ben M'Hidi - Oum El Bouaghi 04000 Oum El Bouaghi Algeria .,Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Constantine (Mentouri) 25000 Constantine Algeria
| | - Abdallah Zaiter
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Constantine (Mentouri) 25000 Constantine Algeria
| |
Collapse
|
8
|
Kasparkova J, Kostrhunova H, Novohradsky V, Pracharova J, Curci A, Margiotta N, Natile G, Brabec V. Anticancer kiteplatin pyrophosphate derivatives show unexpected target selectivity for DNA. Dalton Trans 2018; 46:14139-14148. [PMID: 28972623 DOI: 10.1039/c7dt02633a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the promising new antitumor platinum complexes is a large-ring chelate complex [PtCl2(cis-1,4-DACH)] (DACH = diaminocyclohexane) (kiteplatin). Recently, new platinum(ii) derivatives of kiteplatin with pyrophosphate as a carrier ligand have been synthesized and tested on a panel of human cancer cell lines. These derivatives of kiteplatin were found to be more effective than clinically used anticancer platinum drugs. The design of kiteplatin pyrophosphate derivatives was based on the concept of pyrophosphate coordinated platinum complexes, phosphaplatins. Phosphaplatins have been shown to function without binding to DNA and hence DNA has been excluded as the target of phosphaplatins in contrast to conventional antitumor platinum drugs. Cytotoxicity, major cellular targets and DNA interactions of the new anticancer platinum drug were characterized by standard biochemical methods and methods of molecular and cellular biology. We demonstrate that, in contrast to what has been reported on closely related phosphaplatins, the derivatives of kiteplatin with the pyrophosphate carrier ligand are activated in the cellular environment. This activation, which yields species capable of platination of DNA, very likely comprises the hydrolytic release of the pyrophosphate ligand that could be enzymatically catalyzed. Collectively, these data provide convincing evidence that unexpectedly DNA is an important target for the biological activity of the kiteplatin pyrophosphate derivatives, although the overall mechanism of action might be different from those of conventional platinum drugs.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gorle AK, Katner SJ, Johnson WE, Lee DE, Daniel AG, Ginsburg EP, von Itzstein M, Berners‐Price SJ, Farrell NP. Substitution‐Inert Polynuclear Platinum Complexes as Metalloshielding Agents for Heparan Sulfate. Chemistry 2018; 24:6606-6616. [DOI: 10.1002/chem.201706030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Anil Kumar Gorle
- Institute for Glycomics Griffith University, Gold Coast Campus Southport Queensland 4222 Australia
| | - Samantha J. Katner
- Department of Chemistry and The Massey Cancer Center Virginia Commonwealth University Richmond 23284 Virginia USA
| | - Wyatt E. Johnson
- Department of Chemistry and The Massey Cancer Center Virginia Commonwealth University Richmond 23284 Virginia USA
| | - Daniel E. Lee
- Department of Chemistry and The Massey Cancer Center Virginia Commonwealth University Richmond 23284 Virginia USA
| | - A. Gerard Daniel
- Department of Chemistry and The Massey Cancer Center Virginia Commonwealth University Richmond 23284 Virginia USA
| | - Eric P. Ginsburg
- Department of Chemistry and The Massey Cancer Center Virginia Commonwealth University Richmond 23284 Virginia USA
| | - Mark von Itzstein
- Institute for Glycomics Griffith University, Gold Coast Campus Southport Queensland 4222 Australia
| | - Susan J. Berners‐Price
- Institute for Glycomics Griffith University, Gold Coast Campus Southport Queensland 4222 Australia
| | - Nicholas P. Farrell
- Institute for Glycomics Griffith University, Gold Coast Campus Southport Queensland 4222 Australia
- Department of Chemistry and The Massey Cancer Center Virginia Commonwealth University Richmond 23284 Virginia USA
| |
Collapse
|
10
|
Gabano E, Perin E, Fielden C, Platts JA, Gallina A, Rangone B, Ravera M. How to obtain Pt(iv) complexes suitable for conjugation to nanovectors from the oxidation of [PtCl(terpyridine)] . Dalton Trans 2018; 46:10246-10254. [PMID: 28737785 DOI: 10.1039/c7dt01706e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of [Pt(II)Cl(terpy)]+ (terpy = 2,2':6',2''-terpyridine) has been attempted with several oxidizing agents and under different experimental conditions in order to obtain a Pt(iv) complex suitable for the conjugation to nanovectors to be used in drug delivery targeting for anticancer therapy. The best compromise in terms of yield and purity of the final complex was obtained by microwave-assisted reaction at 70 °C in 50% aqueous H2O2 for 2 h. Under these conditions the quantitative formation of [Pt(IV)Cl(OH)2(terpy)]+ was observed. The subsequent synthetic steps were, (i) functionalization of [Pt(IV)Cl(OH)2(terpy)]+ in the axial position with succinic anhydride to obtain [Pt(IV)Cl(OH)(succinato)(terpy)]+ and (ii) reaction of the latter with nonporous silica nanoparticles (SNPs) with an external shell containing primary amino groups to obtain a nanovector able to transport the Pt(iv) antitumor prodrug in the form of a conjugate Pt-SNP. Finally, the antiproliferative activity and cell accumulation of [Pt(II)Cl(terpy)]+, [Pt(IV)Cl(OH)2(terpy)]+, and the Pt-SNP conjugate were measured on three cancer cell lines. Despite highly effective accumulation of Pt-SNP in cells, a modest increase in activity was observed with respect to the molecular species. Further experiments showed that the Pt-SNP conjugate can release [Pt(II)Cl(terpy)]+ upon reduction, but this metabolite may undergo hydrolysis, and the resulting aquo complex could coordinate once again the free amino groups of the SNPs. In the resulting tetraamine form, the Pt(ii) complex conjugated to the SNPs cannot completely perform its antiproliferative activity.
Collapse
Affiliation(s)
- E Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Kazemi Z, Amiri Rudbari H, Mirkhani V, Sahihi M, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I, Kajani AA, Azimi G. Self-recognition of the racemic ligand in the formation of homochiral dinuclear V(V) complex: In vitro anticancer activity, DNA and HSA interaction. Eur J Med Chem 2017; 135:230-240. [DOI: 10.1016/j.ejmech.2017.04.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 11/30/2022]
|
13
|
Jastrząb R, Łomozik L, Tylkowski B. Complexes of biogenic amines in their role in living systems. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Johnson BW, Murray V, Temple MD. Characterisation of the DNA sequence specificity, cellular toxicity and cross-linking properties of novel bispyridine-based dinuclear platinum complexes. BMC Cancer 2016; 16:333. [PMID: 27225032 PMCID: PMC4880875 DOI: 10.1186/s12885-016-2368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background The anti-tumour activity of cisplatin is thought to be a result of its capacity to form DNA adducts which prevent cellular processes such as DNA replication and transcription. These DNA adducts can effectively induce cancer cell death, however, there are a range of clinical side effects and drug resistance issues associated with its use. In this study, the biological properties of three novel dinuclear platinum-based compounds (that contain alkane bridging linkers of eight, ten and twelve carbon atoms in length) were characterised to assess their potential as anticancer agents. Methods The properties of these compounds were determined using a DNA template containing seven tandem telomeric repeat sequences. A linear amplification reaction was used in combination with capillary electrophoresis to quantify the sequence specificity of DNA adducts formed by these compounds at base pair resolution. The DNA cross-linking ability of these compounds was assessed using denaturing agarose gel electrophoresis and cytotoxicity was determined in HeLa cells using a colorimetric cell viability assay. Results The dinuclear compounds were found to preferentially form DNA adducts at guanine bases and they exhibited different damage intensity profiles at the telomeric repeat sequences compared to that of cisplatin. The dinuclear compounds were found to exhibit a low level of cytotoxicity relative to cisplatin and their cytotoxicity increased as the linker length increased. Conversely, the interstrand cross-linking efficiency of the dinuclear compounds increased as the linker length decreased and the compound with the shortest alkane linker was six-fold more effective than cisplatin. Conclusions Since the bifunctional compounds exhibit variation in sequence specificity of adduct formation and a greater ability to cross-link DNA relative to cisplatin they warrant further investigation towards the goal of developing new cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Ben W Johnson
- School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mark D Temple
- School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
15
|
Marzo T, Pillozzi S, Hrabina O, Kasparkova J, Brabec V, Arcangeli A, Bartoli G, Severi M, Lunghi A, Totti F, Gabbiani C, Quiroga AG, Messori L. cis-Pt I2(NH3)2: a reappraisal. Dalton Trans 2016; 44:14896-905. [PMID: 26226326 DOI: 10.1039/c5dt01196e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of cis-PtI2(NH3)2, the diiodido analogue of cisplatin (cisPtI2 hereafter), has been unjustly overlooked so far mainly because of old claims of pharmacological inactivity. Some recent - but still fragmentary - findings prompted us to reconsider more systematically the chemical and biological profile of cisPtI2 in comparison with cisplatin. Its solution behaviour, interactions with DNA and cytotoxic properties versus selected cancer cell lines were thus extensively analysed through a variety of biophysical and computational methods. Notably, we found that cisPtI2 is highly cytotoxic in vitro toward a few solid tumour cell lines and that its DNA platination pattern closely reproduces that of cisplatin; cisPtI2 is also shown to completely overcome resistance to cisplatin in a platinum resistant cancer cell line. The differences in the biological actions of these two Pt complexes are most likely related to slight but meaningful differences in their solution behaviour and reactivity. Overall, a very encouraging and unexpected pharmacological profile emerges for cisPtI2 with relevant implications both in terms of mechanistic knowledge and of prospective clinical application. An ab initio DFT study is also included to support the interpretation of the solution behaviour of cisPtI2 under physiological and slightly acidic pH conditions.
Collapse
Affiliation(s)
- Tiziano Marzo
- MetMed, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kadu R, Roy H, Singh VK. Diphenyltin(IV) dithiocarbamate macrocyclic scaffolds as potent apoptosis inducers for human cancer HEP 3B and IMR 32 cells: synthesis, spectral characterization, density functional theory study andin vitrocytotoxicity. Appl Organomet Chem 2015. [DOI: 10.1002/aoc.3362] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rahul Kadu
- Department of Chemistry, Faculty of Science; MS University of Baroda; Vadodara 390 002 India
| | - Hetal Roy
- Department of Zoology, Faculty of Science; MS University of Baroda; Vadodara 390 002 India
| | - Vinay K. Singh
- Department of Chemistry, Faculty of Science; MS University of Baroda; Vadodara 390 002 India
| |
Collapse
|
17
|
Shoukry MM, Ezzat SM. Speciation studies of mono- and binuclear Pd(II) complexes involving mixed nitrogen–sulfur donor ligand and 4,4′-bipiperidine as a linker. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1043909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohamed M. Shoukry
- Faculty of Science, Department of Chemistry, University of Cairo, Cairo, Egypt
| | - Sameya M.T. Ezzat
- Faculty of Science, Department of Chemistry, University of Cairo, Cairo, Egypt
| |
Collapse
|
18
|
Štarha P, Trávníček Z, Dvořák Z, Radošová-Muchová T, Prachařová J, Vančo J, Kašpárková J. Potentiating effect of UVA irradiation on anticancer activity of Carboplatin derivatives involving 7-azaindoles. PLoS One 2015; 10:e0123595. [PMID: 25875850 PMCID: PMC4398499 DOI: 10.1371/journal.pone.0123595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
The moderate-to-high in vitro cytotoxicity against ovarian A2780 (IC50 = 4.7–14.4 μM), prostate LNCaP (IC50 = 18.7–30.8 μM) and prostate PC-3 (IC50 = 17.6–42.3 μM) human cancer cell lines of the platinum(II) cyclobutane-1,1'-dicarboxylato complexes [Pt(cbdc)(naza)2] (1–6; cbdc = cyclobutane-1,1'-dicarboxylate(2-); naza = halogeno-substituted 7-azaindoles), derived from the anticancer metallodrug carboplatin, are reported. The complexes containing the chloro- and bromo-substituted 7-azaindoles (1, 2, and 4–6) showed a significantly higher (p < 0.05) cytotoxicity against A2780 cell line as compared to cisplatin used as a reference drug. Addition of the non-toxic concentration (5.0 μM) of L-buthionine sulfoximine (L-BSO, an effective inhibitor of γ-glutamylcysteine synthase) markedly increases the in vitro cytotoxicity of the selected complex 3 against A2780 cancer cell line by a factor of about 4.4. The cytotoxicity against A2780 and LNCaP cells, as well as the DNA platination, were effectively enhanced by UVA light irradiation (λmax = 365 nm) of the complexes, with the highest phototoxicity determined for compound 3, resulting in a 4-fold decline in the A2780 cells viability from 25.1% to 6.1%. The 1H NMR and ESI-MS experiments suggested that the complexes did not interact with glutathione as well as their ability to interact with guanosine monophosphate. The studies also confirmed UVA light induced the formation of the cis [Pt(H2O)2(cbdc`)(naza)] intermediate, where cbdc` represents monodentate-coordinated cbdc ligand, which is thought to be responsible for the enhanced cytotoxicity. This is further supported by the results of transcription mapping experiments showing that the studied complexes preferentially form the bifunctional adducts with DNA under UVA irradiation, in contrast to the formation of the less effective monofunctional adducts in dark.
Collapse
Affiliation(s)
- Pavel Štarha
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Regional Centre of Advanced Technologies and Materials & Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Tereza Radošová-Muchová
- Centre of the Region Haná for Biotechnological and Agricultural Research & Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jitka Prachařová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jana Kašpárková
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
19
|
Selimović E, Bogojeski J. The Substitution Reactions of the Small Biomolecules and Dinuclear Pt(II) Complexes with Alkanediamine Linker. INT J CHEM KINET 2015. [DOI: 10.1002/kin.20911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Enisa Selimović
- Department of Chemical-Technological Sciences; State University of Novi Pazar; Vuka Karadžića bb; 36300 Novi Pazar Serbia
| | - Jovana Bogojeski
- Department of Chemistry; Faculty of Science; University of Kragujevac; R. Domanovića 12, P. O. Box 60 34000 Kragujevac Serbia
| |
Collapse
|
20
|
Brabec V, Pracharova J, Novakova O, Gibson D, Kasparkova J. The induction of lysis in lysogenic strains of Escherichia coli by a new antitumor transplatin derivative and its DNA interactions. Dalton Trans 2015; 44:3573-82. [DOI: 10.1039/c4dt02603a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA is the cellular target for antitumor derivatives of transplatin including those containing small aliphatic amino ligands.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- CZ-61265 Brno
- Czech Republic
| | - Jitka Pracharova
- Department of Biophysics
- Centre of the Region Hana for Biotechnological and Agricultural Research
- Palacky University
- 783 41 Olomouc
- Czech Republic
| | - Olga Novakova
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- CZ-61265 Brno
- Czech Republic
| | - Dan Gibson
- Institute for Drug Research
- School of Pharmacy
- The Hebrew University
- Jerusalem 91120
- Israel
| | - Jana Kasparkova
- Department of Biophysics
- Faculty of Science
- Palacky University
- CZ-77146 Olomouc
- Czech Republic
| |
Collapse
|
21
|
Palladium(II) Complexes Containing Mixed Nitrogen-Sulphur Donor Ligands: Interaction of [Pd(Methionine Methyl Ester)(H2O)2](2+) with Biorelevant Ligands. Bioinorg Chem Appl 2014; 2014:382646. [PMID: 25214826 PMCID: PMC4158289 DOI: 10.1155/2014/382646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/21/2014] [Indexed: 11/17/2022] Open
Abstract
Pd(MME)Cl2 complex (MME = methionine methyl ester) was synthesised and characterized by physicochemical measurements. The reaction of [Pd(MME)(H2O)2]2+ with amino acids, peptides, or dicarboxylic acids was investigated at 25°C and 0.1 M ionic strength. Amino acids and dicarboxylic acids form 1 : 1 complexes. Peptides form both 1 : 1 complexes and the corresponding deprotonated amide species. The stability of the complexes formed was determined and the binding centres of the ligands were assigned. Effect of solvent on the stability constant of Pd(MME)-CBDCA complex, taken as a representative example, shows that the complex is more favoured in a medium of low dielectric constant. The concentration distribution diagrams of the complexes were evaluated.
Collapse
|
22
|
Chipangura M, Mambanda A, Jaganyi D. The role of diaminocyclohexane and diaminobenzene linking bridges on the aqua substitution of chelated dinuclear Pt(II) complexes by nitrogen donor heterocycles. A kinetic and mechanistic study. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.930138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Deogratius Jaganyi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
23
|
Gorle AK, Ammit AJ, Wallace L, Keene FR, Collins JG. Multinuclear ruthenium(ii) complexes as anticancer agents. NEW J CHEM 2014. [DOI: 10.1039/c4nj00545g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The dinuclear ruthenium complex with X = H is four-times more cytotoxic than cisplatin against breast cancer cell lines; however, when X = NO2 the ruthenium complex is less active than cisplatin.
Collapse
Affiliation(s)
- Anil K. Gorle
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Australian Defence Force Academy
- Canberra, Australia
| | - Alaina J. Ammit
- Faculty of Pharmacy
- The University of Sydney
- Sydney, Australia
| | - Lynne Wallace
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Australian Defence Force Academy
- Canberra, Australia
| | - F. Richard Keene
- Centre for Biodiscovery and Molecular Development of Therapeutics
- James Cook University
- Townsville, Australia
- School of Pharmacy and Molecular Sciences
- James Cook University
| | - J. Grant Collins
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Australian Defence Force Academy
- Canberra, Australia
| |
Collapse
|
24
|
Frybortova M, Novakova O, Stepankova J, Novohradsky V, Gibson D, Kasparkova J, Brabec V. Activation of trans geometry in bifunctional mononuclear platinum complexes by a non-bulky methylamine ligand. J Inorg Biochem 2013; 126:46-54. [PMID: 23770803 DOI: 10.1016/j.jinorgbio.2013.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
In order to shed light on the mechanism that underlies activity of bifunctional mononuclear Pt(II) analogs of transplatin we examined in the present work a DNA binding mode of the analog of transplatin, namely trans-[Pt(CH3NH2)2Cl2], in which NH3 groups were replaced only by a small, non-bulky methylamine ligand. This choice was made because we were interested to reveal the role of the bulkiness of the amines used to substitute NH3 in transplatin to produce antitumor-active Pt(II) drug. The results indicate that trans-[Pt(CH3NH2)2Cl2] forms a markedly higher amount of more distorting intrastrand cross-links than transplatin which forms in DNA preferentially less distorting and persisting monofunctional adducts. Also importantly, the accumulation of trans-[Pt(CH3NH2)2Cl2] in tumor cells was considerably greater than that of transplatin and cisplatin. In addition, the results of the present work demonstrate that the replacement of ammine groups by the non-bulky methylamine ligand in the molecule of ineffective transplatin results in a radical enhancement of its activity in tumor cell lines including cisplatin-resistant tumor cells. Thus, activation of the trans geometry in bifunctional mononuclear Pt(II) complexes can be also accomplished by replacement of ammine groups in transplatin by non-bulky methylamine ligands so that it is not limited only to the replacement by relatively bulky and stereochemically more demanding amino ligands.
Collapse
Affiliation(s)
- Michaela Frybortova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
25
|
Muchova T, Pracharova J, Starha P, Olivova R, Vrana O, Benesova B, Kasparkova J, Travnicek Z, Brabec V. Insight into the toxic effects of cis-dichloridoplatinum(II) complexes containing 7-azaindole halogeno derivatives in tumor cells. J Biol Inorg Chem 2013; 18:579-89. [DOI: 10.1007/s00775-013-1003-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
|
26
|
Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/287353] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the introduction of cisplatin to oncology in 1978, Pt(II) and Pd(II) compounds have been intensively studied with a view to develop the improved anticancer agents. Polynuclear polyamine complexes, in particular, have attracted special attention, since they were found to yield DNA adducts not available to conventional drugs (through long-distance intra- and interstrand cross-links) and to often circumvent acquired cisplatin resistance. Moreover, the cytotoxic potency of these polyamine-bridged chelates is strictly regulated by their structural characteristics, which renders this series of compounds worth investigating and their synthesis being carefully tailored in order to develop third-generation drugs coupling an increased spectrum of activity to a lower toxicity. The present paper addresses the latest developments in the design of novel antitumor agents based on platinum and palladium, particularly polynuclear chelates with variable length aliphatic polyamines as bridging ligands, highlighting the close relationship between their structural preferences and cytotoxic ability. In particular, studies by vibrational spectroscopy techniques are emphasised, allowing to elucidate the structure-activity relationships (SARs) ruling anticancer activity.
Collapse
|
27
|
Toxicity in tumor cells, DNA binding mode, and resistance to decomposition by sulfur nucleophiles of new dinuclear bifunctional trans-PtII complexes containing long alkane linkers. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-12-07-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In an effort to design dinuclear PtII compounds that maintain the target (DNA) binding profile of the trans-oriented dinuclear bifunctional PtII complexes containing aliphatic linker chains but are less susceptible to metabolic decomposition, the new, long-chain dinuclear PtII complexes—[{trans-PtCl(dien)}2-μ-(CH2)n]2+ (n = 7,10,12, dien = diethylenetriamine)—were synthesized. The toxicity of these metallodrugs was examined in ovarian tumor cell lines. The results showed that the activity of these complexes increased with growing length of the linker; the activity of complex containing the longest linker (n = 12) was comparable with that of cis-diamminedichloridoplatinum(II) (cisplatin). This observation correlated with the results of DNA binding studies performed in cell-free media. The results of these studies demonstrated that the growing length of the aliphatic bridge promoted more distorting conformational alterations induced in DNA. Attention was also paid to the reactivity of {[Pt(dien)Cl]2-alkane} compounds with glutathione (GSH). The results of these experiments support the thesis that the dinuclear structure of {[Pt(dien)Cl]2-alkane} complexes remains stable in the presence of S-containing compounds without undergoing chemical degradation as previously observed for some di/trinuclear bifunctional PtII complexes. This enhanced stability represents a favorable property which may contribute to reduce side effects and increase therapeutic efficacy of the dinuclear {[Pt(dien)Cl]2-alkane} compounds.
Collapse
|
28
|
Olivova R, Stepankova J, Muchova T, Novohradsky V, Novakova O, Vrana O, Kasparkova J, Brabec V. Mechanistic insights into toxic effects of a benzotriazolate-bridged dinuclear platinum(II) compound in tumor cells. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Mlcouskova J, Kasparkova J, Suchankova T, Komeda S, Brabec V. DNA conformation and repair of polymeric natural DNA damaged by antitumor azolato-bridged dinuclear PtII complex. J Inorg Biochem 2012; 114:15-23. [DOI: 10.1016/j.jinorgbio.2012.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/17/2022]
|
30
|
Chang CL, Lando DY, Fridman AS, Hu CK. Thermal stability of DNA with interstrand crosslinks. Biopolymers 2012; 97:807-17. [DOI: 10.1002/bip.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Antitumor carboplatin is more toxic in tumor cells when photoactivated: enhanced DNA binding. J Biol Inorg Chem 2012; 17:891-8. [DOI: 10.1007/s00775-012-0906-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/13/2012] [Indexed: 11/27/2022]
|
32
|
Shehata MR, Shoukry MM, ali S. Mono- and binuclear complexes involving [Pd(N,N-dimethylethylenediamine)(H2O)2]2+, 4,4′-bipiperidine and DNA constituents. J COORD CHEM 2012. [DOI: 10.1080/00958972.2012.671937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mohamed R. Shehata
- a Department of Chemistry , Faculty of Science, University of Cairo , Cairo , Egypt
| | - Mohamed M. Shoukry
- a Department of Chemistry , Faculty of Science, University of Cairo , Cairo , Egypt
| | - Sara ali
- a Department of Chemistry , Faculty of Science, University of Cairo , Cairo , Egypt
| |
Collapse
|
33
|
Liskova B, Zerzankova L, Novakova O, Kostrhunova H, Travnicek Z, Brabec V. Cellular Response to Antitumor cis-Dichlorido Platinum(II) Complexes of CDK Inhibitor Bohemine and Its Analogues. Chem Res Toxicol 2012; 25:500-9. [DOI: 10.1021/tx200525n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barbora Liskova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Lenka Zerzankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Zdenek Travnicek
- Regional Centre of Advanced
Technologies and Materials, Department of Inorganic Chemistry, Faculty
of Science, Palacky University, 17. listopadu
12, CZ-77146 Olomouc, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
34
|
Bugarčić ŽD, Bogojeski J, Petrović B, Hochreuther S, van Eldik R. Mechanistic studies on the reactions of platinum(ii) complexes with nitrogen- and sulfur-donor biomolecules. Dalton Trans 2012; 41:12329-45. [DOI: 10.1039/c2dt31045g] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Hochreuther S, Nandibewoor ST, Puchta R, van Eldik R. Thermodynamic and kinetic behaviour of [Pt(2-methylthiomethylpyridine)(OH2)2]2+. Dalton Trans 2012; 41:512-22. [DOI: 10.1039/c1dt11453k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Olivova R, Kasparkova J, Vrana O, Vojtiskova M, Suchankova T, Novakova O, He W, Guo Z, Brabec V. Unique DNA Binding Mode of Antitumor Trinuclear Tridentate Platinum(II) Compound. Mol Pharm 2011; 8:2368-78. [DOI: 10.1021/mp200298g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Radana Olivova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc,
Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Oldrich Vrana
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Marie Vojtiskova
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Tereza Suchankova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc,
Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Olga Novakova
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Weijiang He
- State Key Laboratory of Coordination
Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Zijian Guo
- State Key Laboratory of Coordination
Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Viktor Brabec
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
37
|
Hochreuther S, Puchta R, van Eldik R. Thermodynamic and Kinetic Studies on Novel Dinuclear Platinum(II) Complexes Containing Bidentate N,N-donor ligands. Inorg Chem 2011; 50:8984-96. [DOI: 10.1021/ic201151h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie Hochreuther
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Ralph Puchta
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
- Computer Chemistry Center, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Rudi van Eldik
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
38
|
Westendorf AF, Zerzankova L, Salassa L, Sadler PJ, Brabec V, Bednarski PJ. Influence of pyridine versus piperidine ligands on the chemical, DNA binding and cytotoxic properties of light activated trans,trans,trans-[Pt(N3)2(OH)2(NH3)(L)]. J Inorg Biochem 2011; 105:652-62. [DOI: 10.1016/j.jinorgbio.2011.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/03/2011] [Accepted: 01/07/2011] [Indexed: 12/21/2022]
|
39
|
Francisco C, Gama S, Mendes F, Marques F, dos Santos IC, Paulo A, Santos I, Coimbra J, Gabano E, Ravera M. Pt(II) complexes with bidentate and tridentate pyrazolyl-containing chelators: synthesis, structural characterization and biological studies. Dalton Trans 2011; 40:5781-92. [PMID: 21512700 DOI: 10.1039/c0dt01785j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of four Pt(II) complexes anchored by bidentate or tridentate pyrazolyl-alkylamine chelators bearing different substituents at the azolyl rings has been prepared with the aim to assess their interest in the design of novel anticancer drugs. All complexes have been fully characterized by classical analytical methods and three of them were characterized also by X-ray diffraction analysis. Their solution behavior, together with lipophilicity measurements, cell uptake, antiproliferative properties, DNA interaction have been evaluated. Albeit all the complexes were less active than cisplatin on ovarian carcinoma A2780 cell line, greatly retained their activity in the cisplatin-resistant A2780cisR cell line and presented a lower resistance factor compared to cisplatin. Moreover, the Pt(II) complexes under investigation were less prone to undergo deactivation by glutathione, believed to be the major cellular target of cisplatin that inactivates the drug by binding to it irreversibly.
Collapse
Affiliation(s)
- Carla Francisco
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953, Sacavém Codex, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kostrhunova H, Vrana O, Suchankova T, Gibson D, Kasparkova J, Brabec V. Different Features of the DNA Binding Mode of Antitumor cis-Amminedichlorido(cyclohexylamine)platinum(II) (JM118) and Cisplatin in Vitro. Chem Res Toxicol 2010; 23:1833-42. [DOI: 10.1021/tx1002904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Oldrich Vrana
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tereza Suchankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dan Gibson
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
41
|
Komeda S, Moulaei T, Chikuma M, Odani A, Kipping R, Farrell NP, Williams LD. The phosphate clamp: a small and independent motif for nucleic acid backbone recognition. Nucleic Acids Res 2010; 39:325-36. [PMID: 20736180 PMCID: PMC3017591 DOI: 10.1093/nar/gkq723] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The 1.7 Å X-ray crystal structure of the B-DNA dodecamer, [d(CGCGAATTCGCG)]2 (DDD)-bound non-covalently to a platinum(II) complex, [{Pt(NH3)3}2-µ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](NO3)6 (1, TriplatinNC-A,) shows the trinuclear cation extended along the phosphate backbone and bridging the minor groove. The square planar tetra-am(m)ine Pt(II) units form bidentate N-O-N complexes with OP atoms, in a Phosphate Clamp motif. The geometry is conserved and the interaction prefers O2P over O1P atoms (frequency of interaction is O2P > O1P, base and sugar oxygens > N). The binding mode is very similar to that reported for the DDD and [{trans-Pt(NH3)2(NH2(CH2)6(NH3+)}2-µ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](NO3)8 (3, TriplatinNC), which exhibits in vivo anti-tumour activity. In the present case, only three sets of Phosphate Clamps were found because one of the three Pt(II) coordination spheres was not clearly observed and was characterized as a bare Pt2+ ion. Based on the electron density, the relative occupancy of DDD and the sum of three Pt(II) atoms in the DDD-1 complex was 1:1.69, whereas the ratio for DDD-2 was 1:2.85, almost the mixing ratio in the crystallization drop. The high repetition and geometric regularity of the motif suggests that it can be developed as a modular nucleic acid binding device with general utility.
Collapse
Affiliation(s)
- Seiji Komeda
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Mechanistic insights into antitumor effects of new dinuclear cis PtII complexes containing aromatic linkers. Biochem Pharmacol 2010; 80:344-51. [DOI: 10.1016/j.bcp.2010.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022]
|
43
|
Zerzankova L, Suchankova T, Vrana O, Farrell NP, Brabec V, Kasparkova J. Conformation and recognition of DNA modified by a new antitumor dinuclear PtII complex resistant to decomposition by sulfur nucleophiles. Biochem Pharmacol 2009; 79:112-21. [PMID: 19682435 DOI: 10.1016/j.bcp.2009.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 08/02/2009] [Accepted: 08/05/2009] [Indexed: 11/17/2022]
Abstract
Reported herein is a detailed biochemical and molecular biophysics study of the molecular mechanism of action of antitumor dinuclear Pt(II) complex [{PtCl(DACH)}(2)-mu-Y](4+) [DACH=1,2-diaminocyclohexane, Y=H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2)] (complex 1). This new, long-chain bifunctional dinuclear Pt(II) complex is resistant to metabolic decomposition by sulfur-containing nucleophiles. The results show that DNA adducts of 1 can largely escape repair and yet inhibit very effectively transcription so that they should persist longer than those of conventional cisplatin. Hence, they could trigger a number of downstream cellular effects different from those triggered in cancer cells by DNA adducts of cisplatin. This might lead to the therapeutic effects that could radically improve chemotherapy by platinum complexes. In addition, the findings of the present work make new insights into mechanisms associated with antitumor effects of dinuclear/trinuclear Pt(II) complexes possible.
Collapse
Affiliation(s)
- Lenka Zerzankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
44
|
Nováková O, Nazarov AA, Hartinger CG, Keppler BK, Brabec V. DNA interactions of dinuclear RuII arene antitumor complexes in cell-free media. Biochem Pharmacol 2008; 77:364-74. [PMID: 19014908 DOI: 10.1016/j.bcp.2008.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/19/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
We recently synthesized and characterized water-soluble dinuclear Ru(II) arene complexes, in which two {(eta(6)-p-isopropyltoluene)RuCl[3-(oxo-kappaO)-2-methyl-4-pyridinonato-kappaO(4)]} units were linked by flexible chains of different length [(CH(2))(n) (n=4, 6, 8, 12)]. These new dinuclear ruthenium drugs were found to exert promising cytotoxic effects in human cancer cells. In the present work DNA modifications by these new dinuclear Ru(II) arene compounds, which differed in the length of the linker between the two Ru(II) centers, were examined by biochemical and biophysical methods. The complexes bind DNA forming intrastrand and interstrand cross-links in one DNA molecule in the absence of proteins. An intriguing aspect of the DNA-binding mode of these dinuclear Ru(II) compounds is that they can cross-link two DNA duplexes and also proteins to DNA--a feature not observed for other antitumor ruthenium complexes. Thus, the concept for the design of interhelical and DNA-protein cross-linking agents based on dinuclear Ru(II) arene complexes with sufficiently long linkers between two Ru centers may result in new compounds which exhibit a variety of biological effects and can be also useful in nucleic acids research.
Collapse
Affiliation(s)
- Olga Nováková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
45
|
Halámiková A, Heringová P, Kašpárková J, Intini FP, Natile G, Nemirovski A, Gibson D, Brabec V. Cytotoxicity, mutagenicity, cellular uptake, DNA and glutathione interactions of lipophilic trans-platinum complexes tethered to 1-adamantylamine. J Inorg Biochem 2008; 102:1077-89. [DOI: 10.1016/j.jinorgbio.2007.12.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 12/07/2007] [Accepted: 12/14/2007] [Indexed: 11/26/2022]
|
46
|
de Mier-Vinué J, Gay M, Montaña ÁM, Sáez RI, Moreno V, Kasparkova J, Vrana O, Heringova P, Brabec V, Boccarelli A, Coluccia M, Natile G. Synthesis, Biophysical Studies, and Antiproliferative Activity of Platinum(II) Complexes Having 1,2-Bis(aminomethyl)carbobicyclic Ligands. J Med Chem 2008; 51:424-31. [DOI: 10.1021/jm070844u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordi de Mier-Vinué
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Marina Gay
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Ángel M. Montaña
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Rosa-Isabel Sáez
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Virtudes Moreno
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Jana Kasparkova
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Oldrich Vrana
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Pavla Heringova
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Viktor Brabec
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Angela Boccarelli
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Mauro Coluccia
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| | - Giovanni Natile
- Department of Organic Chemistry and Department of Inorganic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, and Dipartimento Farmaco Chimico and Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá degli Studi di Bari, Bari, Italy
| |
Collapse
|
47
|
Maisonial A, Serafin P, Traïkia M, Debiton E, Théry V, Aitken DJ, Lemoine P, Viossat B, Gautier A. Click Chelators for Platinum-Based Anticancer Drugs. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200700849] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Melchart M, Habtemariam A, Novakova O, Moggach SA, Fabbiani FPA, Parsons S, Brabec V, Sadler PJ. Bifunctional Amine-Tethered Ruthenium(II) Arene Complexes Form Monofunctional Adducts on DNA. Inorg Chem 2007; 46:8950-62. [PMID: 17850143 DOI: 10.1021/ic700799w] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tethered RuII half-sandwich complexes [eta(6):eta(1)-C(6)H(5)(CH(2))(n)NH(2))RuCl(2)] 1 (n = 3) and 2 (n = 2) have been synthesized as potential bifunctional anticancer complexes, and their X-ray crystal structures have been determined. They hydrolyze rapidly in aqueous solution to give predominantly mono-aqua mono-chlorido species. Mono-9EtG adducts, where 9EtG = 9-ethylguanine, form rapidly, but the second 9EtG binds more slowly and more weakly. In the X-ray crystal structure of the di-9EtG adduct [(eta(6):eta(1)-C(6)H(5)(CH(2))(3)NH(2))Ru(9EtG)2](CF(3)SO(3))(2).H(2)O (8.H(2)O), one of the Ru-N7 bonds is significantly longer than the other (2.1588(18) vs 2.101(2) A). The bound guanine bases adopt a head-to-head configuration, stabilized by tether NH2 hydrogen bonding to C6O of 9EtG. The X-ray crystal structure of the dinitrato complex [(eta(6):eta(1)-C(6)H(5)(CH(2))(3)NH(2))Ru(NO(3))(2)] (3) showed both nitrates to be bound to ruthenium. This complex readily rutheniated calf thymus DNA but failed to produce stop sites on pSP73KB plasmid DNA during DNA transcription by an RNA polymerase. This suggested that only monofunctional DNA adducts formed, as did interstrand cross-linking assays. Also, the unwinding angle induced in negatively supercoiled DNA (9 +/- 1 degrees) was less than that induced by cisplatin (13 degrees). These findings may explain why complexes such as 1 and 2 exhibited low cytotoxicities (IC(50) values >100 microM) toward A2780 human ovarian cancer cells.
Collapse
Affiliation(s)
- Michael Melchart
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, U.K
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Brabec V, Christofis P, Slámová M, Kostrhunová H, Nováková O, Najajreh Y, Gibson D, Kaspárková J. DNA interactions of new cytotoxic tetrafunctional dinuclear platinum complex trans,trans-[{PtCl2(NH3)}2(piperazine)]. Biochem Pharmacol 2007; 73:1887-900. [PMID: 17400194 DOI: 10.1016/j.bcp.2007.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/09/2007] [Accepted: 03/02/2007] [Indexed: 11/28/2022]
Abstract
A new tetrafunctional dinuclear platinum complex trans,trans-[{PtCl2(NH3)}2(piperazine)] with sterically rigid linking group was designed, synthesized and characterized. In this novel molecule, the DNA-binding features of two classes of the platinum compounds with proven antitumor activity are combined, namely trans oriented bifunctional mononuclear platinum complexes with a heterocyclic ligand and polynuclear platinum complexes. DNA-binding mode of this new complex was analyzed by various methods of molecular biology and biophysics. The complex coordinates DNA in a unique way and interstrand and intrastrand cross-links are the predominant lesions formed in DNA in cell-free media and in absence of proteins. An intriguing aspect of trans,trans-[{PtCl2(NH3)}2(piperazine)] is that, using a semi-rigid linker, interstrand cross-linking is diminished relative to other dinuclear platinum complexes with flexible linking groups and lesions that span several base pairs, such as tri- and tetrafunctional adducts, become unlikely. In addition, in contrast to the inability of trans,trans-[{PtCl2(NH3)}2(piperazine)] to cross-link two DNA duplexes, the results of the present work convincingly demonstrate that this dinuclear platinum complex forms specific DNA lesions which can efficiently cross-link proteins to DNA. The results substantiate the view that trans,trans-[{PtCl2(NH3)}2(piperazine)] or its analogues could be used as a tool for studies of DNA properties and their interactions or as a potential antitumor agent. The latter view is also corroborated by the observation that trans,trans-[{PtCl2(NH3)}2(piperazine)] is a more effective cytotoxic agent than cisplatin against human tumor ovarian cell lines.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Magennis SW, Habtemariam A, Novakova O, Henry JB, Meier S, Parsons S, Oswald IDH, Brabec V, Sadler PJ. Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex. Inorg Chem 2007; 46:5059-68. [PMID: 17497848 DOI: 10.1021/ic062111q] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The dinuclear RuII arene complexes [{(eta6-arene)RuCl}2(mu-2,3-dpp)](PF6)2, arene=indan (1), benzene (2), p-cymene (3), or hexamethylbenzene (4) and 2,3-dpp=2,3-bis(2-pyridyl)pyrazine, have been synthesized and characterized. Upon irradiation with UVA light, complexes 1 and 2 readily underwent arene loss, while complexes 3 and 4 did not. The photochemistry of 1 was studied in detail. In the X-ray structure of [{(eta6-indan)RuCl}2(mu-2,3-dpp)](PF6)2 (1), 2,3-dpp bridges two RuII centers 6.8529(6) A apart. In water, aquation of 1 in the dark occurs with replacement of chloride with biexponential kinetics and decay constants of 100+/-1 min-1 and 580+/-11 min-1. This aquation was suppressed by 0.1 M NaCl. UV or visible irradiation of 1 in aqueous or methanolic solution led to arene loss. The fluorescence of the unbound arene is approximately 40 times greater than when it is complexed. Irradiation of 1 also had a significant effect on its interactions with DNA. The DNA binding of 1 is increased after irradiation. The non-irradiated form of 1 preferentially formed DNA adducts that only weakly blocked RNA polymerase, while irradiation of 1 transformed the adducts into stronger blocks for RNA polymerase. The efficiency of irradiated 1 to form DNA interstrand cross-links was slightly greater than that of cisplatin in both 10 mM NaClO4 and 0.1 M NaCl. In contrast, the interstrand cross-linking efficiency of non-irradiated 1 in 10 mM NaClO4 was relatively low. An intermediate amount of cross-linking was observed when the sample of DNA already modified by non-irradiated 1 was irradiated. DNA unwinding measurements supported the conclusion that both mono- and bifunctional adducts with DNA can form. These results show that photoactivation of dinuclear RuII arene complexes can simultaneously produce a highly reactive ruthenium species that can bind to DNA and a fluorescent marker (the free arene). Importantly, the mechanism of photoreactivity is also independent of oxygen. These complexes, therefore, have the potential to combine both photoinduced cell death and fluorescence imaging of the location and efficiency of the photoactivation process.
Collapse
Affiliation(s)
- Steven W Magennis
- School of Physics and the Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre (COSMIC), The University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|