1
|
Zhao H, Zhou F, Xing Q, Cao Z, Liu J, Zhu G. The soluble transhydrogenase UdhA affecting the glutamate-dependent acid resistance system of Escherichia coli under acetate stress. Biol Open 2018; 7:7/9/bio031856. [PMID: 30201831 PMCID: PMC6176936 DOI: 10.1242/bio.031856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The soluble transhydrogenase (UdhA) is one of two transhydrogenases that play a role in maintaining the balance between NAD(H) pools and NADP(H) pools in Escherichia coli. Although UdhA has been extensively used in metabolic engineering and biocatalysis for cofactor regeneration, its role in acid resistance has not been reported. Here we used DNA microarray to explore the impact of UdhA on transcript levels. We demonstrated that during growth on acetate, the expression of genes involved in the respiratory chain and Gad acid resistance system was inhibited in the udhA-knockout strain. The deletion of udhA significantly repressed the expression of six genes (gadA, gadB, gadC, gadE, hdeA and hdeB) which are involved in Gad acid resistance and resulted in low survival of the bacterium at a low pH of 4.9. Moreover, UdhA was essential for NADH production which is important for the adaptive growth of E. coli on acetate, while NADH concentration in the udhA-knockout strain was quite low and supplemental NADH significantly increased the expression of acid resistance genes and survival of the udhA-knockout strain. These results demonstrated that UdhA is an important source of NADH of E. coli growth on acetate and affects Gad acid resistance system under acetate stress. Summary: UdhA function stated in this study helps us to understand the physiological roles of UdhA affecting NADH production and Gad acid resistance system in E.coli in acetate environment.
Collapse
Affiliation(s)
- Hanjun Zhao
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Feng Zhou
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Quan Xing
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Zhengyu Cao
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Jie Liu
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| |
Collapse
|
2
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
3
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 3. [PMID: 26443736 DOI: 10.1128/ecosalplus.3.2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli contains a versatile respiratory chain which oxidizes ten different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use even two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. Various respiratory pathways can be established by combining the oxidation of different electron donors and acceptors which are linked by respiratory quinones. The enzymes vary largely with respect to architecture, membrane topology, and mode of energy conservation. Most of the energy-conserving dehydrogenases (e.g., FdnGHI, HyaABC, and HybCOAB) and of the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox loop mechanism. Only two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases (e.g., Ndh, SdhABCD, and GlpD) and of terminal reductases (e.g., FrdABCD and DmsABC) do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known from structural and biochemical studies or can be predicted from sequence information. The H+/2e- ratios of proton translocation for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and of the respiratory chains is described. In contrast to the knowledge on enzyme function are physiological aspects of respiration such as organization and coordination of the electron transport and the use of alternative respiratory enzymes, not well characterized.
Collapse
|
4
|
Kostner D, Luchterhand B, Junker A, Volland S, Daniel R, Büchs J, Liebl W, Ehrenreich A. The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504. Appl Microbiol Biotechnol 2014; 99:375-86. [PMID: 25267158 DOI: 10.1007/s00253-014-6069-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Acetic acid bacteria such as Gluconobacter oxydans are used in several biotechnological processes due to their ability to perform rapid incomplete regio- and stereo-selective oxidations of a great variety of carbohydrates, alcohols, and related compounds by their membrane-bound dehydrogenases. In order to understand the growth physiology of industrial strains such as G. oxydans ATCC 621H that has high substrate oxidation rates but poor growth yields, we compared its genome sequence to the genome sequence of strain DSM 3504 that reaches an almost three times higher optical density. Although the genome sequences are very similar, DSM 3504 has additional copies of genes that are absent from ATCC 621H. Most importantly, strain DSM 3504 contains an additional type II NADH dehydrogenase (ndh) gene and an additional triosephosphate isomerase (tpi) gene. We deleted these additional paralogs from DSM 3504, overexpressed NADH dehydrogenase in ATCC 621H, and monitored biomass and the concentration of the representative cell components as well as O2 and CO2 transfer rates in growth experiments on mannitol. The data revealed a clear competition of membrane-bound dehydrogenases and NADH dehydrogenase for channeling electrons in the electron transport chain of Gluconobacter and an important role of the additional NADH dehydrogenase for increased growth yields. The less active the NADH dehydrogenase is, the more active is the membrane-bound polyol dehydrogenase. These results were confirmed by introducing additional ndh genes via plasmid pAJ78 in strain ATCC 621H, which leads to a marked increase of the growth rate.
Collapse
Affiliation(s)
- D Kostner
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann Str. 4, 85354, Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Villegas JM, Volentini SI, Rintoul MR, Rapisarda VA. Amphipathic C-terminal region of Escherichia coli NADH dehydrogenase-2 mediates membrane localization. Arch Biochem Biophys 2010; 505:155-9. [PMID: 20933494 DOI: 10.1016/j.abb.2010.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/02/2010] [Accepted: 10/04/2010] [Indexed: 01/19/2023]
Abstract
Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a membrane-bound flavoprotein. Bioinformatics approaches suggested the involvement of NDH-2 C-terminal region in membrane anchorage. Here, we demonstrated that NDH-2 is a peripheral membrane protein and that its predicted C-terminal amphipathic Arg390-Ala406 helix is sufficient to bind the protein to lipid membranes. Additionally, a cytosolic NDH-2 protein (Trun-3), lacking the last 43 aminoacids, was purified and characterized. FAD cofactor was absent in purified Trun-3. Upon the addition of FAD, Trun-3 maximum velocity was similar to native NDH-2 rate with ferricyanide and MTT acceptors. However, Trun-3 activity was around 5-fold lower with quinones. No significant difference in K(m) values was observed for both enzymes. For the first time, an active and water soluble NDH-2 was obtained, representing a major improvement for structural/functional characterizations.
Collapse
Affiliation(s)
- Josefina M Villegas
- Departamento Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | | | | |
Collapse
|
6
|
Aerobic fermentation of D-glucose by an evolved cytochrome oxidase-deficient Escherichia coli strain. Appl Environ Microbiol 2008; 74:7561-9. [PMID: 18952873 DOI: 10.1128/aem.00880-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fermentation of glucose to D-lactic acid under aerobic growth conditions by an evolved Escherichia coli mutant deficient in three terminal oxidases is reported in this work. Cytochrome oxidases (cydAB, cyoABCD, and cbdAB) were removed from the E. coli K12 MG1655 genome, resulting in the ECOM3 (E. coli cytochrome oxidase mutant) strain. Removal of cytochrome oxidases reduced the oxygen uptake rate of the knockout strain by nearly 85%. Moreover, the knockout strain was initially incapable of growing on M9 minimal medium. After the ECOM3 strain was subjected to adaptive evolution on glucose M9 medium for 60 days, a growth rate equivalent to that of anaerobic wild-type E. coli was achieved. Our findings demonstrate that three independently adaptively evolved ECOM3 populations acquired different phenotypes: one produced lactate as a sole fermentation product, while the other two strains exhibited a mixed-acid fermentation under oxic growth conditions with lactate remaining as the major product. The homofermenting strain showed a D-lactate yield of 0.8 g/g from glucose. Gene expression and in silico model-based analyses were employed to identify perturbed pathways and explain phenotypic behavior. Significant upregulation of ygiN and sodAB explains the remaining oxygen uptake that was observed in evolved ECOM3 strains. E. coli strains produced in this study showed the ability to produce lactate as a fermentation product from glucose and to undergo mixed-acid fermentation during aerobic growth.
Collapse
|
7
|
Physiologic roles of soluble pyridine nucleotide transhydrogenase inEscherichia coli as determined by homologous recombination. ANN MICROBIOL 2008. [DOI: 10.1007/bf03175329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Geisler DA, Broselid C, Hederstedt L, Rasmusson AG. Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. J Biol Chem 2007; 282:28455-28464. [PMID: 17673460 DOI: 10.1074/jbc.m704674200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type II NAD(P)H:quinone oxidoreductases are single polypeptide proteins widespread in the living world. They bypass the first site of respiratory energy conservation, constituted by the type I NADH dehydrogenases. To investigate substrate specificities and Ca(2+) binding properties of seven predicted type II NAD(P)H dehydrogenases of Arabidopsis thaliana we have produced them as T7-tagged fusion proteins in Escherichia coli. The NDB1 and NDB2 enzymes were found to bind Ca(2+), and a single amino acid substitution in the EF hand motif of NDB1 abolished the Ca(2+) binding. NDB2 and NDB4 functionally complemented an E. coli mutant deficient in endogenous type I and type II NADH dehydrogenases. This demonstrates that these two plant enzymes can substitute for the NADH dehydrogenases in the bacterial respiratory chain. Three NDB-type enzymes displayed distinct catalytic profiles with substrate specificities and Ca(2+) stimulation being considerably affected by changes in pH and substrate concentrations. Under physiologically relevant conditions, the NDB1 fusion protein acted as a Ca(2+)-dependent NADPH dehydrogenase. NDB2 and NDB4 fusion proteins were NADH-specific, and NDB2 was stimulated by Ca(2+). The observed activity profiles of the NDB-type enzymes provide a fundament for understanding the mitochondrial system for direct oxidation of cytosolic NAD(P)H in plants. Our findings also suggest different modes of regulation and metabolic roles for the analyzed A. thaliana enzymes.
Collapse
Affiliation(s)
- Daniela A Geisler
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35B, SE-223 62 Lund, Sweden
| | - Christian Broselid
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35B, SE-223 62 Lund, Sweden
| | - Lars Hederstedt
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35B, SE-223 62 Lund, Sweden
| | - Allan G Rasmusson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35B, SE-223 62 Lund, Sweden.
| |
Collapse
|
9
|
Campbell HD. The Lowry Protein Assay: Linearization of Standard Curve by Double Reciprocal Plot. ANAL LETT 2006. [DOI: 10.1080/00032718308069542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Gyan S, Shiohira Y, Sato I, Takeuchi M, Sato T. Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J Bacteriol 2006; 188:7062-71. [PMID: 17015645 PMCID: PMC1636230 DOI: 10.1128/jb.00601-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADH dehydrogenase is a key component of the respiratory chain. It catalyzes the oxidation of NADH by transferring electrons to ubiquinone and establishes a proton motive force across the cell membrane. The yjlD (renamed ndh) gene of Bacillus subtilis is predicted to encode an enzyme similar to the NADH dehydrogenase II of Escherichia coli, encoded by the ndh gene. We have shown that the yjlC-ndh operon is negatively regulated by YdiH (renamed Rex), a homolog of Rex in Streptomyces coelicolor, and a redox-sensing transcriptional regulator that responds to the NADH/NAD(+) ratio. The ndh gene regulates expression of the yjlC-ndh operon, as indicated by the fact that mutation in ndh causes a higher NADH/NAD(+) ratio. An in vitro study showed that Rex binds to the downstream region of the yjlC-ndh promoter and that NAD(+) enhances the binding of Rex to the putative Rex-binding sites in the yjlC-ndh operon as well as in the cydABCD operon. These results indicated that Rex and Ndh together form a regulatory loop which functions to prevent a large fluctuation in the NADH/NAD(+) ratio in B. subtilis.
Collapse
Affiliation(s)
- Smita Gyan
- International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
11
|
Bârzu O. Measurement of oxygen consumption by the spectrophotometric oxyhemoglobin method. METHODS OF BIOCHEMICAL ANALYSIS 2006; 30:227-67. [PMID: 6330496 DOI: 10.1002/9780470110515.ch5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Bernard L, Desplats C, Mus F, Cuiné S, Cournac L, Peltier G. Agrobacterium tumefaciens type II NADH dehydrogenase. FEBS J 2006; 273:3625-37. [PMID: 16884501 DOI: 10.1111/j.1742-4658.2006.05370.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type II NADH dehydrogenases (NDH-2) are monomeric enzymes that catalyse quinone reduction and allow electrons to enter the respiratory chain in different organisms including higher plant mitochondria, bacteria and yeasts. In this study, an Agrobacterium tumefaciens gene encoding a putative alternative NADH dehydrogenase (AtuNDH-2) was isolated and expressed in Escherichia coli as a (His)6-tagged protein. The purified 46 kDa protein contains FAD as a prosthetic group and oxidizes both NADH and NADPH with similar Vmax values, but with a much higher affinity for NADH than for NADPH. AtuNDH-2 complements the growth (on a minimal medium) of an E. coli mutant strain deficient in both NDH-1 and NDH-2, and is shown to supply electrons to the respiratory chain when incubated with bacterial membranes prepared from this mutant. By measuring photosystem II chlorophyll fluorescence on thylakoid membranes prepared from the green alga Chlamydomonas reinhardtii, we show that AtuNDH-2 is able to stimulate NADH-dependent reduction of the plastoquinone pool. We discuss the possibility of using heterologous expression of NDH-2 enzymes to improve nonphotochemical reduction of plastoquinones and H2 production in C. reinhardtii.
Collapse
Affiliation(s)
- Laetitia Bernard
- CEA Cadarache, Direction des Sciences du Vivant, Département d'Ecophysiologie Végétale et Microbiologie, Laboratoire de Bioénergétique et Biotechnologie [corrected] des Bactéries et Microalgues, UMR 6191 CNRS-CEA, Aix-Marseille II [corrected] France
| | | | | | | | | | | |
Collapse
|
13
|
Yang L, Jiang J, Zhang B, Zhao B, Wang L, Yang SS. A primary sodium pump gene of the moderate halophile Halobacillus dabanensis exhibits secondary antiporter properties. Biochem Biophys Res Commun 2006; 346:612-7. [PMID: 16774742 DOI: 10.1016/j.bbrc.2006.05.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/27/2006] [Indexed: 11/23/2022]
Abstract
The primary sodium pump has been proved to be involved in Na(+) extrusion of bacteria. In our present study, a novel gene encoding a putative primary sodium pump was cloned from chromosomal DNA of moderate halophile Halobacillus dabanensis D-8 by functional complementation, which expression resulted in the growth of antiporter-deficient Escherichia coli strain KNabc in the presence of 0.2 M NaCl. The gene was sequenced and designated nap. The deduced amino acid sequence of Nap has 56% identity to NADH dehydrogenase of Bacillus cereus and 55% to NADH oxidase of Bacillus halodurans C-125. E. coli KNabc carrying nap exhibited resistance to uncoupler CCCP (carbonyl-cyanide m-chlorophenylhydrazone). Everted membrane vesicles prepared from E. coli KNabc carrying nap exhibited secondary Na(+)/H(+) antiporter activity, and nap also supported the growth of respiratory-deficient E. coli ANN0222 lacking NADH dehydrogenase. Based on these results, we proposed that Nap possessed both characteristics of secondary Na(+)/H(+) antiporter and primary sodium pump.
Collapse
Affiliation(s)
- Lifu Yang
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Key Laboratory of Agro-Microbial Resource and Application of Ministry of Agriculture, Beijing
| | | | | | | | | | | |
Collapse
|
14
|
Nantapong N, Otofuji A, Migita CT, Adachi O, Toyama H, Matsushita K. Electron transfer ability from NADH to menaquinone and from NADPH to oxygen of type II NADH dehydrogenase of Corynebacterium glutamicum. Biosci Biotechnol Biochem 2005; 69:149-59. [PMID: 15665480 DOI: 10.1271/bbb.69.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type II NADH dehydrogenase of Corynebacterium glutamicum (NDH-2) was purified from an ndh overexpressing strain. Purification conferred 6-fold higher specific activity of NADH:ubiquinone-1 oxidoreductase with a 3.5-fold higher recovery than that previously reported (K. Matsushita et al., 2000). UV-visible and fluorescence analyses of the purified enzyme showed that NDH-2 of C. glutamicum contained non-covalently bound FAD but not covalently bound FMN. This enzyme had an ability to catalyze electron transfer from NADH and NADPH to oxygen as well as various artificial quinone analogs at neutral and acidic pHs respectively. The reduction of native quinone of C. glutamicum, menaquinone-2, with this enzyme was observed only with NADH, whereas electron transfer to oxygen was observed more intensively with NADPH. This study provides evidence that C. glutamicum NDH-2 is a source of the reactive oxygen species, superoxide and hydrogen peroxide, concomitant with NADH and NADPH oxidation, but especially with NADPH oxidation. Together with this unique character of NADPH oxidation, phylogenetic analysis of NDH-2 from various organisms suggests that NDH-2 of C. glutamicum is more closely related to yeast or fungal enzymes than to other prokaryotic enzymes.
Collapse
Affiliation(s)
- Nawarat Nantapong
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Swartz TH, Ito M, Hicks DB, Nuqui M, Guffanti AA, Krulwich TA. The Mrp Na+/H+ antiporter increases the activity of the malate:quinone oxidoreductase of an Escherichia coli respiratory mutant. J Bacteriol 2005; 187:388-91. [PMID: 15601724 PMCID: PMC538845 DOI: 10.1128/jb.187.1.388-391.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mrp catalyzes secondary Na+/H+ antiport and was hypothesized to have an additional primary energization mode. Mrp-dependent complementation of nonfermentative growth of an Escherichia coli respiratory mutant supported this hypothesis but is shown here to be related to increased expression of host malate:quinone oxidoreductase, not to catalytic activity of Mrp.
Collapse
Affiliation(s)
- Talia H Swartz
- Box 1603, Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
16
|
Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S, Rasmusson AG. Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. PLANT PHYSIOLOGY 2003; 133:642-52. [PMID: 12972666 PMCID: PMC219040 DOI: 10.1104/pp.103.024208] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Revised: 04/22/2003] [Accepted: 07/01/2003] [Indexed: 05/17/2023]
Abstract
In addition to proton-pumping complex I, plant mitochondria contain several type II NAD(P)H dehydrogenases in the electron transport chain. The extra enzymes allow the nonenergy-conserving electron transfer from cytoplasmic and matrix NAD(P)H to ubiquinone. We have investigated the type II NAD(P)H dehydrogenase gene families in Arabidopsis. This model plant contains two and four genes closely related to potato (Solanum tuberosum) genes nda1 and ndb1, respectively. A novel homolog, termed ndc1, with a lower but significant similarity to potato nda1 and ndb1, is also present. All genes are expressed in several organs of the plant. Among the nda genes, expression of nda1, but not nda2, is dependent on light and circadian regulation, suggesting separate roles in photosynthesis-associated and other respiratory NADH oxidation. Genes from all three gene families encode proteins exclusively targeted to mitochondria, as revealed by expression of green fluorescent fusion proteins and by western blotting of fractionated cells. Phylogenetic analysis indicates that ndc1 affiliates with cyanobacterial type II NADH dehydrogenase genes, suggesting that this gene entered the eukaryotic cell via the chloroplast progenitor. The ndc1 should then have been transferred to the nucleus and acquired a signal for mitochondrial targeting of the protein product. Although they are of different origin, the nda, ndb, and ndc genes carry an identical intron position.
Collapse
Affiliation(s)
- Agnieszka M Michalecka
- Department of Cell and Organism Biology, Biology Building, Lund University, Sölvegatan 35B, SE-223 62 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ito M, Guffanti AA, Krulwich TA. Mrp-dependent Na(+)/H(+) antiporters of Bacillus exhibit characteristics that are unanticipated for completely secondary active transporters. FEBS Lett 2001; 496:117-20. [PMID: 11356194 DOI: 10.1016/s0014-5793(01)02417-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Na(+)/H(+) antiport activity encoded by the seven-gene mrp operons of Bacillus subtilis and alkaliphilic Bacillus pseudofirmus OF4 were cloned into a low copy plasmid, were expressed in several Escherichia coli mutant strains and compared side-by-side with similarly cloned nhaA, a major secondary antiporter from E. coli. All three antiporter systems exhibited electron donor-dependent antiport in a fluorescence-based vesicle assay, with NhaA being the most active. In whole cells of the same antiporter-deficient strain from which the vesicles were made, E. coli KNabc, Mrp-mediated Na(+) exclusion was significantly more protonophore-resistant than that conferred by NhaA. The Mrp systems were also more efficacious than NhaA: in supporting anaerobic Na(+) resistance in wild type and a terminal oxidase mutant strain of E. coli (SBS2115); and in increasing non-fermentative growth of an NADH dehydrogenase-minus E. coli mutant (ANN0222). The results suggest the possibility that the Mrp systems may have both secondary and primary energization capacities.
Collapse
Affiliation(s)
- M Ito
- Faculty of Life Scienes, Toyo University, Gunma, Japan.
| | | | | |
Collapse
|
18
|
Velázquez I, Pardo JP. Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Arch Biochem Biophys 2001; 389:7-14. [PMID: 11370674 DOI: 10.1006/abbi.2001.2293] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saccharomyces cerevisiae mitochondria contain an NADH:Q6 oxidoreductase (internal NADH dehydrogenase) encoded by NDI1 gene in chromosome XIII. This enzyme catalyzes the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. From a structural point of view, the mature enzyme has a single subunit of 53 kDa with FAD as the only prosthetic group. Due to the fact that S. cerevisiae cells lack complex I, the expression of this protein is essential for cell growth under respiratory conditions. The results reported in this work show that the internal NADH dehydrogenase follows a ping-pong mechanism, with a Km for NADH of 9.4 microM and a Km for oxidized 2,6-dichorophenolindophenol (DCPIP) of 6.2 microM. NAD+, one of the products of the reaction, did not inhibit the enzyme while the other product, reduced DCPIP, inhibited the enzyme with a Ki of 11.5 microM. Two dead-end inhibitors, AMP and flavone, were used to further characterize the kinetic mechanism of the enzyme. AMP was a linear competitive inhibitor of NADH (Ki = 5.5 mM) and a linear uncompetitive inhibitor of oxidized DCPIP (Ki = 11.5 mM), in agreement with the ping-pong mechanism. On the other hand, flavone was a partial inhibitor displaying a hyperbolic uncompetitive inhibition regarding NADH, and a hyperbolic noncompetitive inhibition with respect to oxidized DCPIP. The apparent intercept inhibition constant (Kii = 5.4 microM) and the slope inhibition constant (Kis = 7.1 microM) were obtained by non linear regression analysis. The results indicate that the ternary complex F-DCPIPox-flavone catalyzes the reduction of DCPIP, although with lower efficiency. The effect of pH on Vmax was studied. The Vmax profile shows two groups with pKa values of 5.3 and 7.2 involved in the catalytic process.
Collapse
Affiliation(s)
- I Velázquez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, DF, México
| | | |
Collapse
|
19
|
Kerscher SJ. Diversity and origin of alternative NADH:ubiquinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:274-83. [PMID: 11004440 DOI: 10.1016/s0005-2728(00)00162-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria from various organisms, especially plants, fungi and many bacteria contain so-called alternative NADH:ubiquinone oxidoreductases that catalyse the same redox reaction as respiratory chain complex I, but do not contribute to the generation of transmembrane proton gradients. In eucaryotes, these enzymes are associated with the mitochondrial inner membrane, with their NADH reaction site facing either the mitochondrial matrix (internal alternative NADH:ubiquinone oxidoreductases) or the cytoplasm (external alternative NADH:ubiquinone oxidoreductases). Some of these enzymes also accept NADPH as substrate, some require calcium for activity. In the past few years, the characterisation of several alternative NADH:ubiquinone oxidoreductases on the DNA and on the protein level, of substrate specificities, mitochondrial import and targeting to the mitochondrial inner membrane has greatly improved our understanding of these enzymes. The present review will, with an emphasis on yeast model systems, illuminate various aspects of the biochemistry of alternative NADH:ubiquinone oxidoreductases, address recent developments and discuss some of the questions still open in the field.
Collapse
Affiliation(s)
- S J Kerscher
- Universitätsklinkum Frankfurt, Institut für Biochemie I, ZBC, Theodor-Stern-Kai 7, Haus 25B, D-60590, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Björklöf K, Zickermann V, Finel M. Purification of the 45 kDa, membrane bound NADH dehydrogenase of Escherichia coli (NDH-2) and analysis of its interaction with ubiquinone analogues. FEBS Lett 2000; 467:105-10. [PMID: 10664466 DOI: 10.1016/s0014-5793(00)01130-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NADH:ubiquinone reductase (NDH-2) of Escherichia coli was expressed as a His-tagged protein, extracted from the membrane fraction using detergent and purified by chromatography. The His-tagged NDH-2 was highly active and catalyzed NADH oxidation by ubiquinone-1 at rates over two orders of magnitude higher than previously reported. The purified, His-tagged NDH-2, like native NDH-2, did not oxidize deamino-NADH. Steady-state kinetics were used to analyze the enzyme's activity in the presence of different electron acceptors. High V(max) and low K(m) values were only found for hydrophobic ubiquinone analogues, particularly ubiquinone-2. These findings strongly support the notion that NDH-2 is a membrane bound enzyme, despite the absence of predicted transmembrane segments in its primary structure. The latter observation is in agreement with possible evolutionary relation between NDH-2 and water-soluble enzymes such as dihydrolipoamide dehydrogenase. There is currently no clear indication of how NDH-2 binds to biological membranes.
Collapse
Affiliation(s)
- K Björklöf
- Helsinki Bioenergetics Group, Department of Medical Chemistry, University of Helsinki, P.O. Box 8, Siltavuorenpenger 10, FIN-00014, Helsinki, Finland
| | | | | |
Collapse
|
21
|
Rapisarda VA, Montelongo LR, Farías RN, Massa EM. Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Arch Biochem Biophys 1999; 370:143-50. [PMID: 10510271 DOI: 10.1006/abbi.1999.1398] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous results from our laboratory have shown that NADH-supported electron flow through the Escherichia coli respiratory chain promotes the reduction of cupric ions to Cu(I), which mediates damage of the respiratory system by hydroperoxides. The aim of this work was to characterize the NADH-linked cupric reductase activity from the E. coli respiratory chain. We have used E. coli strains that either overexpress or are deficient in the NADH dehydrogenase-2 (NDH-2) to demonstrate that this membrane-bound protein catalyzes the electron transfer from NADH to Cu(II), but not to Fe(III). We also show that purified NDH-2 exhibits NADH-supported Cu(II) reductase activity in the presence of either FAD or quinone, but is unable to reduce Fe(III). The K(m) values for free Cu(II) were 32 +/- 5 pM in the presence of saturating duroquinone and 22 +/- 2 pM in the presence of saturating FAD. The K(m) values for NADH were 6.9 +/- 1.5 microM and 6.1 +/- 0.7 microM in the presence of duroquinone and FAD, respectively. The quinone-dependent Cu(II) reduction occurred through both O(*-)(2)-mediated and O(*-)(2)-independent pathways, as evidenced by the partial inhibitory effect (30-50%) of superoxide dismutase, by the reaction stoichiometry, and by the enzyme turnover numbers for NADH and Cu(II). The cupric reductase activity of NDH-2 was dependent on thiol groups which were accessible to p-chloromercuribenzoate at low, but not at high, ionic strength of the medium, a fact apparently connected to a conformational change of the protein. To our knowledge, this is the first protein with cupric reductase activity to be isolated and characterized in its biochemical properties.
Collapse
Affiliation(s)
- V A Rapisarda
- Departamento Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Tecnológicas-Universidad Nacional de Tucumán), San Miguel de Turcumán, Argentina
| | | | | | | |
Collapse
|
22
|
Dekkers LC, van der Bij AJ, Mulders IH, Phoelich CC, Wentwoord RA, Glandorf DC, Wijffelman CA, Lugtenberg BJ. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:763-771. [PMID: 9675892 DOI: 10.1094/mpmi.1998.11.8.763] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Colonization-defective, transposon-induced mutants of the efficient root colonizer Pseudomonas fluorescens WCS365 were identified with a gnotobiotic system. Most mutants were impaired in known colonization traits, i.e., prototrophy for amino acids, motility, and synthesis of the O-antigen of LPS (lipopolysaccharide). Mutants lacking the O-antigen of LPS were impaired in both colonization and competitive growth whereas one mutant (PCL1205) with a shorter O-antigen chain was defective only in colonization ability, suggesting a role for the intact O-antigen of LPS in colonization. Eight competitive colonization mutants that were not defective in the above-mentioned traits colonized the tomato root tip well when inoculated alone, but were defective in competitive root colonization of tomato, radish, and wheat, indicating they contained mutations affecting host range. One of these eight mutants (PCL1201) was further characterized and contains a mutation in a gene that shows homology to the Escherichia coli nuo4 gene, which encodes a subunit of one of two known NADH:ubiquinone oxidoreductases. Competition experiments in an oxygen-poor medium between mutant PCL1201 and its parental strain showed a decreased growth rate of mutant PCL1201. The requirement of the nuo4 gene homolog for optimal growth under conditions of oxygen limitation suggests that the root-tip environment is micro-aerobic. A mutant characterized by a slow growth rate (PCL1216) was analyzed further and contained a mutation in a gene with similarity to the E. coli HtrB protein, a lauroyl transferase that functions in lipid A biosynthesis.
Collapse
Affiliation(s)
- L C Dekkers
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Friedrich T. The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:134-46. [PMID: 9593861 DOI: 10.1016/s0005-2728(98)00024-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T Friedrich
- Institut für Biochemie, Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Finel M. Genetic inactivation of the H(+)-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans is facilitated by insertion of the ndh gene from Escherichia coli. FEBS Lett 1996; 393:81-5. [PMID: 8804429 DOI: 10.1016/0014-5793(96)00831-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The H(+)-translocating NADH:ubiquinone oxidoreductase (NDH1) is probably an obligatory enzyme in Paracoccus denitrificans and disruption of its genes may be lethal to this organism. In order to overcome this problem and delete the nqo8 and nqo9 genes of NDH1, it was necessary to render the enzyme non-essential. This was achieved by constructing a deletion plasmid in which most of the coding regions of nqo8 and nqo9 were replaced by the ndh gene of Escherichia coli that encodes an alternative NADH:ubiquinone oxidoreductase (NDH2), and a kanamycin resistance gene. Subsequent homologous recombination gave rise to a mutant the membranes of which catalyzed rotenone-insensitive NADH oxidation, but which did not oxidize deamino-NADH. Hence, this mutant expressed active and membrane-bound NDH2, and lacked NDH1 activity.
Collapse
Affiliation(s)
- M Finel
- Department of Medical Chemistry, University of Helsinki, Finland.
| |
Collapse
|
25
|
Yano T, Yagi T, Sled VD, Ohnishi T. Expression and characterization of the 66-kilodalton (NQO3) iron-sulfur subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. J Biol Chem 1995; 270:18264-70. [PMID: 7629145 DOI: 10.1074/jbc.270.31.18264] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of at least 14 dissimilar subunits which are designated NQO1-14 and contains one noncovalently bound FMN and at least five EPR-visible iron-sulfur clusters (N1a, N1b, N2, N3, and N4) as prosthetic groups. Comparison of the deduced primary structures of the subunits with consensus sequences for the cofactor binding sites has predicted that NQO1, NQO2, NQO3, NQO9, and probably NQO6 subunits are cofactor binding subunits. Previously, we have reported that the NQO2 (25 kDa) subunit was overexpressed as a water-soluble protein in Escherichia coli and was found to ligate a single [2Fe-2S] cluster with rhombic symmetry (gx,y,z = 1.92, 1.95, and 2.00) (Yano, T., Sled', V.D., Ohnishi, T., and Yagi, T. (1994) Biochemistry 33, 494-499). In the present study, the NQO3 (66 kDa) subunit, which is equivalent to the 75-kDa subunit of bovine heart Complex I, was overexpressed in E. coli. The expressed NQO3 subunit was found predominantly in the cytoplasmic phase and was purified by ammonium sulfate fractionation and anion-exchange chromatography. The chemical analyses and UV-visible and EPR spectroscopic studies showed that the expressed NQO3 subunit contains at least two distinct iron-sulfur clusters: a [2Fe-2S] cluster with axial EPR signals (g perpendicular, parallel = 1.934 and 2.026, and L perpendicular parallel = 1.8 and 3.0 millitesla) and a [4Fe-4S] cluster with rhombic symmetry (gx,y,z = 1.892, 1.928, and 2.063, and Lx,y,z = 2.40, 1.55, and 1.75 millitesla). The midpoint redox potentials of [2Fe-2S] and [4Fe-4S] clusters at pH 8.6 are -472 and -391 mV, respectively. The tetranuclear cluster in the isolated NQO3 subunit is sensitive toward oxidants and converts into [3Fe-4S] form. The assignment of these iron-sulfur clusters to those identified in the P. denitrificans NDH-1 enzyme complex and the possible functional role of the NQO3 subunit is discussed.
Collapse
Affiliation(s)
- T Yano
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
26
|
Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T. Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:538-48. [PMID: 7607227 DOI: 10.1111/j.1432-1033.1995.tb20594.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The proton-translocating NADH:ubiquinone oxidoreductase (complex I) was isolated from Escherichia coli by chromatographic steps performed in the presence of an alkylglucoside detergent at pH 6.0. The complex is obtained in a monodisperse state with a molecular mass of approximately 550,000 Da and is composed of 14 subunits. The subunits were assigned to the 14 genes of the nuo operon, partly based on their N-terminal sequences and partly on their apparent molecular masses. The preparation contains one noncovalently bound FMN/molecule. At least two binuclear (N1b and N1c) and three tetranuclear (N2, N3 and N4) iron-sulfur clusters were detected by EPR in the preparation when reduced with NADH. Their EPR characteristics remained mostly unaltered during the isolation process. After reconstitution in phospholipid membranes, the preparation catalyses piericidin-A-sensitive electron transfer from NADH to ubiquinone-2 with Km values similar to those of complex I in cytoplasmic membranes but with only 10% of the Vmax value. The isolated complex I was cleaved into three fragments when the pH was raised from 6.0 to 7.5 and the detergent exchanged to Triton X-100. One of these fragments is a water-soluble NADH dehydrogenase fragment which is composed of three subunits bearing at least four iron-sulfur clusters (N1b, N1c, N3 and N4) that can be reduced with NADH, one of them bearing FMN. The second, amphipathic, fragment, which is presumed to connect the NADH dehydrogenase fragment with the membrane, contains four subunits and at least one EPR-detectable iron-sulfur cluster whose spectral properties are reminiscent of the eucaryotic cluster N2. The third membrane fragment is composed of seven homologues of the mitochondrially encoded subunits of the eucaryotic complex I. This subunit arrangement coincidences to some extent with the order of the genes on the nuo operon. A topological model of the E. coli complex I is proposed.
Collapse
Affiliation(s)
- H Leif
- Institut für Biochemie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
Kunow J, Linder D, Stetter KO, Thauer RK. F420H2: quinone oxidoreductase from Archaeoglobus fulgidus. Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:503-11. [PMID: 8055920 DOI: 10.1111/j.1432-1033.1994.tb19019.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Archaeoglobus fulgidus, a hyperthermophilic sulfate-reducing archaeon, was found to contain a membrane-bound F420H2: quinone oxidoreductase complex presumed to be involved in energy conservation during growth on lactate plus sulfate. After solubilization with dodecyl-beta-D-maltoside the complex was purified 32-fold with a yield of 24%. Using both gel filtration and native PAGE, an apparent molecular mass of approximately 270 kDa was determined. SDS/PAGE revealed the presence of at least seven polypeptides with apparent molecular masses 56, 45, 41, 39, 37, 33, and 32 kDa. The purified complex contained 1.6 mol FAD, 9 mol non-heme iron and 7 mol acid-labile sulfur/mol complex. It did not contain cytochromes, which were, however, present in the membrane fraction of A. fulgidus (3 nmol/mg membrane protein). The purified F420H2: quinone oxidoreductase complex catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone (apparent Km 190 microM) with reduced coenzyme F420 (apparent Km 50 microM) exhibiting a specific activity of 500 U/mg (apparent Vmax) at pH 8.0 (pH optimum) and 65 degrees C (temperature optimum). 2-Methyl-1,4-naphthoquinone (menadione), 2-hydroxy-1,4-naphthoquinone, 1,4-naphthoquinone, 2,3-dimethoxy-5-methyl-1,4- benzoquinone, and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (decyl-ubiquinone) were also reduced with F420H2, albeit with lower rates. The physiological electron acceptor of the F420H2: quinone oxidoreductase complex is most likely the menaquinone found in the membrane fraction of A. fulgidus.
Collapse
Affiliation(s)
- J Kunow
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
The growth yield of microbial cultures can be used to estimate the efficiency of energy generation during a fermentation or respiration. In the past, the assessment of this efficiency in organisms carrying out a respiration has been the subject of many heated debates. This has partly been caused by the complexity of microbial respiratory chains. Strains of Escherichia coli specifically modified in their respiratory chain have been used recently to re-evaluate the energetic efficiency of the bacterial respiration using chemostat cultures. The different strains indeed show different growth efficiencies. The physiological significance of energetically less-efficient branches of the respiratory chain is discussed.
Collapse
Affiliation(s)
- O M Neijssel
- Department of Microbiology, E. C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Friedrich T, van Heek P, Leif H, Ohnishi T, Forche E, Kunze B, Jansen R, Trowitzsch-Kienast W, Höfle G, Reichenbach H. Two binding sites of inhibitors in NADH: ubiquinone oxidoreductase (complex I). Relationship of one site with the ubiquinone-binding site of bacterial glucose:ubiquinone oxidoreductase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:691-8. [PMID: 8307034 DOI: 10.1111/j.1432-1033.1994.tb19985.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of ten naturally occurring and two synthetic inhibitors of NADH:ubiquinone oxidoreductase (complex I) of bovine heart, Neurospora crassa and Escherichia coli and glucose:ubiquinone oxidoreductase (glucose dehydrogenase) of Gluconobacter oxidans was investigated. These inhibitors could be divided into two classes with regard to their specificity and mode of action. Class I inhibitors, including the naturally occurring piericidin A, annonin VI, phenalamid A2, aurachins A and B, thiangazole and the synthetic fenpyroximate, inhibit complex I from all three species in a partially competitive manner and glucose dehydrogenase in a competitive manner, both with regard to ubiquinone. Class II inhibitors including the naturally occurring rotenone, phenoxan, aureothin and the synthetic benzimidazole inhibit complex I from all species in an non-competitive manner, but have no effect on the glucose dehydrogenase. Myxalamid PI could not be classified as above because it inhibits only the mitochondrial complex I and in a competitive manner. All inhibitors affect the electron-transfer step from the high-potential iron-sulphur cluster to ubiquinone. Class I inhibitors appear to act directly at the ubiquinone-catalytic site which is related in complex I and glucose dehydrogenase.
Collapse
Affiliation(s)
- T Friedrich
- Institut für Biochemie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Archer CD, Wang X, Elliott T. Mutants defective in the energy-conserving NADH dehydrogenase of Salmonella typhimurium identified by a decrease in energy-dependent proteolysis after carbon starvation. Proc Natl Acad Sci U S A 1993; 90:9877-81. [PMID: 8234329 PMCID: PMC47675 DOI: 10.1073/pnas.90.21.9877] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
NADH dehydrogenase is the first component of the respiratory chain. It transfers electrons from NADH to ubiquinone and concomitantly establishes a proton motive force across the membrane. Salmonella typhimurium mutants defective in this enzyme were isolated in a screen for strains with increased expression of beta-galactosidase from a hemA-lacZ protein fusion. This unexpected phenotype results from stabilization of the hybrid protein during carbon starvation and is apparently due to an energy requirement for proteolytic attack. Sequence analysis of DNA fragments cloned from an insertion mutant indicates that S. typhimurium has a large cluster of genes encoding the energy-conserving NADH dehydrogenase, similar to one recently described in Paracoccus denitrificans. These findings establish the potential for genetic analysis of a complex enzyme whose function, especially in proton efflux, is poorly understood.
Collapse
Affiliation(s)
- C D Archer
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | |
Collapse
|
31
|
Calhoun MW, Oden KL, Gennis RB, de Mattos MJ, Neijssel OM. Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J Bacteriol 1993; 175:3020-5. [PMID: 8491720 PMCID: PMC204621 DOI: 10.1128/jb.175.10.3020-3025.1993] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aerobic respiratory chain of Escherichia coli can function with either of two different membrane-bound NADH dehydrogenases (NDH-1 and NDH-2) and with either of two ubiquinol oxidases (bd-type and bo-type). The amounts of each of these enzymes present in the E. coli membrane depend on growth conditions in general and particularly on the dissolved oxygen concentration. Previous in vitro studies have established that NDH-1 and NDH-2 differ in the extent to which they are coupled to the generation of an energy-conserving proton motive force. The same is true for the two ubiquinol oxidases. Hence, the bioenergetic efficiency of the aerobic respiratory chain must depend on the electron flux through each of the specific enzyme components which are being utilized. In this work, the specific rates of oxygen consumption for cells growing under glucose-limited conditions are reported for a series of isogenic strains in which one or more respiratory components are genetically eliminated. The results are compatible with the proton translocation values of the various components reported from in vitro measurements. The data show that (i) the bd-type oxidase is less efficient than is the bo-type oxidase, but the former is still a coupling site in the respiratory chain; and (ii) under the conditions employed, the wild-type strain uses both the NDH-1 and NDH-2 NADH dehydrogenases to a significant degree, but most of the electron flux is directed through the bo-type oxidase.
Collapse
Affiliation(s)
- M W Calhoun
- School of Chemical Sciences, University of Illinois, Urbana
| | | | | | | | | |
Collapse
|
32
|
Calhoun MW, Gennis RB. Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli. J Bacteriol 1993; 175:3013-9. [PMID: 8387992 PMCID: PMC204620 DOI: 10.1128/jb.175.10.3013-3019.1993] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The nature of the Escherichia coli membrane-bound NADH dehydrogenases and their role in the generation of the proton motive force has been controversial. One E. coli NADH:ubiquinone oxidoreductase has previously been purified to homogeneity, and its corresponding gene (ndh) has been isolated. However, two biochemically distinct E. coli NADH:ubiquinone oxidoreductase activities have been identified by others (K. Matsushita, T. Ohnishi, and H. R. Kaback, Biochemistry 26:7732-7737, 1987). An insertional mutation in the ndh gene has been introduced into the E. coli chromosome, and the resulting strain maintains membrane-bound NADH dehydrogenase activity, demonstrating that a second genetically distinct NADH dehydrogenase must be present. By standard genetic mapping techniques, the map position of a second locus (nuo) involved in the oxidation of NADH has been determined. The enzyme encoded by this locus probably translocates protons across the inner membrane, contributing to the proton motive force.
Collapse
Affiliation(s)
- M W Calhoun
- School of Chemical Sciences, University of Illinois, Urbana 61801
| | | |
Collapse
|
33
|
Unemoto T, Miyoshi T, Hayashi M. Characteristic differences in the mode of quinone reduction and stability between energy-coupled and -uncoupled NADH-quinone reductases from bacterial respiratory chain. FEBS Lett 1992; 306:51-3. [PMID: 1628743 DOI: 10.1016/0014-5793(92)80835-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacterial respiratory chain has two types of NADH-quinone reductase (NQR): one is energy-coupled (type-1) and the other had no energy-transducing capacity, that is, energy-uncoupled (type-2). Each of the NADH-reacting flavoprotein subunits of NQR-1 from Escherichia coli and the marine Vibrio alginolyticus reduced quinone to semiquinone radicals by the one-electron transfer pathway and was very sensitive to preincubation with NADH. On the other hand, the NQR-2 from these bacteria reduced quinone to quinol by the two-electron transfer pathway and was insensitive to preincubation with NADH. Since the NQR-1 from E. coli functions as a proton pump, whereas that from the marine V. alginolyticus functions as a sodium pump, the formation of semiquinone radicals as an intermediate is likely to be a common mechanism to functioning as either proton or sodium pump.
Collapse
Affiliation(s)
- T Unemoto
- Laboratory of Membrane Biochemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | |
Collapse
|
34
|
De Vries S, Van Witzenburg R, Grivell LA, Marres CA. Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 203:587-92. [PMID: 1735444 DOI: 10.1111/j.1432-1033.1992.tb16587.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gene encoding the yeast mitochondrial rotenone-insensitive internal NADH: ubiquinone-6 oxidoreductase has been sequenced. The DNA sequence indicates the presence of an open reading frame of 1539 bp predicted to encode a protein of 513 amino acid residues (57.2 kDa). The NADH dehydrogenase is synthesized as a precursor protein containing a signal sequence of 26 residues. In vitro import experiments show that the precursor NADH dehydrogenase is cleaved to the mature size by the matrix processing peptidase. Both cleavage and translocation across the mitochondrial membrane(s) are dependent on the membrane potential component of the proton-motive force. Comparison of the protein sequence of the yeast NADH dehydrogenase with the data bank indicates that the enzyme from yeast is homologous to the NADH dehydrogenase of Escherichia coli (22.2% identical residues). Both NADH dehydrogenases contain in the central part of the protein a sequence predicted to fold into a beta alpha beta structure involved in the binding of NADH or FAD(H2). Various aspects of the protein structure are discussed.
Collapse
Affiliation(s)
- S De Vries
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
35
|
Activity of the nicotinamide mononucleotide transport system is regulated in Salmonella typhimurium. J Bacteriol 1991; 173:1311-20. [PMID: 1991724 PMCID: PMC207256 DOI: 10.1128/jb.173.3.1311-1320.1991] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transport of nicotinamide mononucleotide (NMN) requires two functions, NadI(T) and PnuC. The PnuC protein is membrane associated, as judged by isolation of active TnphoA gene fusions and demonstration that the fusion protein is membrane associated. The PnuC function appears to be the major component of the transport system, since mutant alleles of the pnuC gene permit NMN transport in the absence of NadI(T) function. We present evidence that the activity of the NMN transport system varies in response to internal pyridine levels (presumably NAD). This control mechanism requires NadI(T) function, which is provided by a bifunctional protein encoded by the nadI gene (called nadR by Foster and co-workers [J. W. Foster, Y. K. Park, T. Fenger, and M. P. Spector, J. Bacteriol. 172:4187-4196]). The nadI protein regulates transcription of the nadA and nadB biosynthetic genes and modulates activity of the NMN permease; both regulatory activities respond to the internal pyridine nucleotide level.
Collapse
|
36
|
Studies on the NADH-menaquinone oxidoreductase segment of the respiratory chain in Thermus thermophilus HB-8. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40022-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Hayashi M, Miyoshi T, Takashina S, Unemoto T. Purification of NADH-ferricyanide dehydrogenase and NADH-quinone reductase from Escherichia coli membranes and their roles in the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 977:62-9. [PMID: 2679883 DOI: 10.1016/s0005-2728(89)80009-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The respiratory chain-linked NADH-quinone reductase (NQR) and NADH-ferricyanide dehydrogenase (NFD) were extracted from membranes of Escherichia coli by n-dodecyl octaethyleneglycol monoether detergent and purified by DEAE-Sephacel, DEAE-5PW and Bio-Gel HTP column chromatography. The purified NQR contained FAD as a cofactor, catalyzed the reduction of ubiquinone-1 (Q1) and reacted with NADH, but not with deamino-NADH (d-NADH), with an apparent Km of 48 microM. On the other hand, the purified NFD contained FMN as a cofactor, reacted with both NADH and d-NADH, and catalyzed the reduction of ferricyanide but not Q1. NFD showed a high affinity for both NADH and d-NADH with a Km of 7-9 microM. NFD was inactivated, whereas NQR was rather activated, by preincubation with an electron donor in the absence of electron acceptor. These properties were compared with those of activities observed with inverted membrane vesicles with special reference to the generation of inside-positive membrane potential (delta psi). It was found that d-NADH-reactive FMN-containing NFD is a dehydrogenase part of energy-generating NADH-quinone reductase complex. The FAD-containing NQR was very similar to that purified by Jaworowski et al. (Biochemistry (1981) 20, 2041-2047), and reduced Q1 without generating delta psi.
Collapse
Affiliation(s)
- M Hayashi
- Laboratory of Membrane Biochemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | |
Collapse
|
38
|
Steinmüller K, Ley AC, Steinmetz AA, Sayre RT, Bogorad L. Characterization of the ndhC-psbG-ORF157/159 operon of maize plastid DNA and of the cyanobacterium Synechocystis sp. PCC6803. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:60-9. [PMID: 2499764 DOI: 10.1007/bf00332231] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ndhC and ORF159 genes of the maize plastid DNA (ptDNA) were sequenced and maize ORF159 was used to screen a library of genomic DNA of the blue-green alga Synechocystis sp. PCC 6803. The cyanobacterial gene homologous to ORF159 (ORF157) was isolated and sequenced. In sequencing the region upstream of ORF157, reading frames with homology to the ndhC and psbG genes of maize ptDNA were identified. The ndhC and psbG genes overlap in the ptDNAs of maize, tobacco and Marchantia polymorpha, but are separated by a noncoding spacer in Synechocystis. Northern blot analysis showed that the ndhC, psbG and ORF157/159 genes are cotranscribed in maize and Synechocystis. The three genes occur in the same order in ptDNA of maize, tobacco, and M. polymorpha as in Synechocystis 6803. The amino acid sequences of the NDH-C, PSII-G and the ORF157/159 proteins deduced from the maize genes are 65%, 52% and 53% homologous to those of Synechocystis. However, the cyanobacterial and higher plant NDH-C protein sequences are only 23% homologous to the mitochondrial NDH-3 protein. Protein products of in vitro transcription/translation of the Synechocystis transcription unit had apparent molecular masses of 6 kDa (NDH-C), 25 kDa (PSII-G) and 22 kDa (ORF157) on lithium dodecyl sulfate (LDS) polyacrylamide gel electrophoresis. If these are components of an NADH dehydrogenase, cyanobacteria appear to resemble mitochondria more than they do Escherichia coli and Rhodopseudomonas capsulata with regard to this enzyme complex.
Collapse
Affiliation(s)
- K Steinmüller
- Biological Laboratories, Harvard University, Cambridge, MA 02138
| | | | | | | | | |
Collapse
|
39
|
|
40
|
The active form of the cytochrome d terminal oxidase complex of Escherichia coli is a heterodimer containing one copy of each of the two subunits. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)60705-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Thiagalingam S, Yang T. NADH dehydrogenase and NADH oxidation inBacillus megaterium. Curr Microbiol 1986. [DOI: 10.1007/bf01568521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Campbell HD, Rogers BL, Young IG. Synthesis and biological activity of derivatives of ubiquinone: photoaffinity analogues containing the 4-azido-2-nitroanilino group. Biochemistry 1986; 25:172-7. [PMID: 3082354 DOI: 10.1021/bi00349a025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The photoaffinity analogues of ubiquinone 2,3-dimethoxy-5-methyl-6-[2-[1-oxo-3-(4-azido-2-nitroanilino) propoxy]-3-methylbutyl]-1,4-benzoquinone (2'-ANAP-Q-1) and 2,3-dimethoxy-5-methyl-6-[3-[1-oxo-3-(4-azido-2-nitroanilino) propoxy]-3-methylbutyl]-1,4-benzoquinone (3'-ANAP-Q-1) have been synthesized. The required intermediate alcohols 2,3-dimethoxy-5-methyl-6-(2-hydroxy-3-methylbutyl)-1,4-benzoquinone and 2,3-dimethoxy-5-methyl-6-(3-hydroxy-3-methylbutyl)-1,4-benzoquinone were prepared in good yield from ubiquinone 1 by hydration of the side-chain double bond via hydroboration or acid catalysis, respectively. These alcohols were then coupled with 3-(4-azido-2-nitroanilino)propanoic acid, with p-toluenesulfonyl chloride in dry pyridine, to give 2'- and 3'-ANAP-Q-1. The synthetic methods presented should be of general utility in the preparation of derivatives of ubiquinone in which a reactive or reporter group is relatively close to the ubiquinone ring. By use of membrane vesicles prepared from a ubi-men-strain of Escherichia coli described previously [Wallace, B., & Young, I. G. (1977) Biochim. Biophys. Acta 461, 84-100], it has been shown that 2'- and 3'-ANAP-Q-1 substitute for ubiquinone 8 in the NADH, succinate, and D-lactate oxidase systems. Thus, these compounds may be of value in labeling respiratory chain proteins that interact with ubiquinone.
Collapse
|
43
|
Rule GS, Pratt EA, Chin CC, Wold F, Ho C. Overproduction and nucleotide sequence of the respiratory D-lactate dehydrogenase of Escherichia coli. J Bacteriol 1985; 161:1059-68. [PMID: 3882663 PMCID: PMC215007 DOI: 10.1128/jb.161.3.1059-1068.1985] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recombinant DNA plasmids containing the gene for the membrane-bound D-lactate dehydrogenase (D-LDH) of Escherichia coli linked to the promoter PL from lambda were constructed. After induction, the levels of D-LDH were elevated 300-fold over that of the wild type and amounted to 35% of the total cellular protein. The nucleotide sequence of the D-LDH gene was determined and shown to agree with the amino acid composition and the amino-terminal sequence of the purified enzyme. Removal of the amino-terminal formyl-Met from D-LDH was not inhibited in cells which contained these high levels of D-LDH.
Collapse
|
44
|
Hayashi M, Unemoto T. Characterization of the Na+-dependent respiratory chain NADH:quinone oxidoreductase of the marine bacterium, Vibrio alginolyticus, in relation to the primary Na+ pump. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90045-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Campbell HD, Rogers BL, Young IG. Nucleotide sequence of the respiratory D-lactate dehydrogenase gene of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 144:367-73. [PMID: 6386470 DOI: 10.1111/j.1432-1033.1984.tb08473.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The structural gene for the respiratory D-lactate dehydrogenase of Escherichia coli, a membrane-bound flavoenzyme, has been subcloned from a 7 X 10(3)-base-pair chromosomal HindIII fragment containing the gene [Young, I. G., Jaworowski, A., and Poulis, M. (1982) Biochemistry 21, 2092-2095]. The complete nucleotide sequence of the 2340-base-pair PstI-SmaI subclone has been determined on both strands by the dideoxy chain termination method. A single large open reading frame is present in the nucleotide sequence. The reading frame is preceded by a good ribosome binding site and numerous possible promoter sequences, and is followed by a typical rho-independent termination sequence. The reading frame predicts that the D-lactate dehydrogenase polypeptide consists of 571 amino acids (including the initiating methionine residue) with Mr = 64613. The protein does not have a low overall polarity, nor does it contain unusually hydrophobic stretches. It appears to contain a short repeat which is homologous with the well characterized L-lactate dehydrogenases in the vicinity of the 'essential' cysteine residue. Apart from this, homology with other proteins of known sequence has not been detected.
Collapse
|
46
|
|
47
|
Hisae N, Aizawa K, Koyama N, Sekiguchi T, Nosoh Y. Purification and properties of NADH dehydrogenase from an alkalophilic bacillus. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0167-4838(83)90219-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Purification and properties of the membrane-bound NADH dehydrogenase from hydrocarbon-grown Acinetobacter calcoaceticus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90161-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Bergsma J, Van Dongen MB, Konings WN. Purification and characterization of NADH dehydrogenase from Bacillus subtilis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 128:151-7. [PMID: 6816592 DOI: 10.1111/j.1432-1033.1982.tb06945.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
NADH dehydrogenase from Bacillus subtilis W23 has been isolated from membrane vesicles solubilized with 0.1% Triton X-100 by hydrophobic interaction chromatography on an octyl-Sepharose CL-4B column. A 70-fold purification is achieved. No other components could be detected with sodium dodecyl sulphate polyacrylamide gel electrophoresis. Ferguson plots of the purified protein indicated no anomalous binding of sodium dodecyl sulphate and an accurate molecular weight of 63 000 could be determined. From the amino acid composition a polarity of 43.8% was calculated indicating that the protein is not very hydrophobic. Optical absorption spectra and acid extraction of the enzyme chromophore followed by thin-layer chromatography showed that the enzyme contains 1 molecule FAD/molecule. The enzyme was found to be specific for NADH. NADPH is oxidized at a rate which is less than 6% of the rate of NADH oxidation. The activity of the enzyme as determined by NADH:3-(4'-5'-dimethyl-thiazol-2-yl)2,4-diphenyltetrazolium bromide oxidoreduction is optimal at 37 C and pH 7.5-8.0. The purified enzyme has a Kapp for NADH of 60 microM and a V of 23.5 mumol NADH/min X mg protein. These parameters are not influenced by phospholipids. The enzyme activity is hardly or not at all affected by NADH-related compounds such as ATP, ADP, AMP, adenosine, deoxyadenosine, adenine and nicotinic amide indicating the high binding specificity of the enzyme for NADH.
Collapse
|
50
|
Olsiewski PJ, Kaczorowski GJ, Walsh CT, Kaback HR. Reconstitution of Escherichia coli membrane vesicles with D-amino acid dehydrogenase. Biochemistry 1981; 20:6272-9. [PMID: 6118175 DOI: 10.1021/bi00524a056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
When purified D-amino acid dehydrogenase [Olsiewski, P. J., Kaczorowski, G. J., & Walsh, C. T. (1980) J. Biol. Chem. 255, 4487] is incubated with right-side-out membrane vesicles from Escherichia coli, the enzyme binds to the membrane in a time- and concentration-dependent manner. As a result, the vesicles acquire the ability to oxidize D-alanine and catalyze D-alanine-dependent active transport. Similarly, incubation of D-amino acid dehydrogenase with inside-out vesicles results in binding of enzyme and D-alanine oxidase activity. Antibody inhibition studies indicate that the enzyme is bound exclusively to the inner cytoplasmic surface of the membrane in native vesicles (i.e., membrane vesicles prepared from cells induced for D-amino acid dehydrogenase). In contrast, similar studies with reconstituted vesicles demonstrate that enzyme binds to the surface exposed to the medium regardless of the orientation of the membrane. Thus, enzyme bound to right-side-out vesicles is located on the opposite side of the membrane from where it is normally found. Remarkably, in the presence of D-alanine, reconstituted right-side-out and inside-out vesicles generate electrochemical proton gradients of similar magnitude but opposite polarity, indicating that enzyme bound to either surface of the membrane is physiologically functional. The results suggest that vectorial proton translocation via the respiratory chain occurs at a point distal to the site where electrons enter the respiratory chain from the primary dehydrogenase, a conclusion that is inconsistent with the notion that the dehydrogenase forms part of a proton-translocating loop.
Collapse
|