1
|
Macromolecular Structure of Linearly Arranged Eukaryotic Chromosomes. Int J Mol Sci 2022; 23:ijms23169503. [PMID: 36012767 PMCID: PMC9409004 DOI: 10.3390/ijms23169503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic chromosomes have not been visualized during the interphase. The fact that chromosomes cannot be seen during the interphase of the cell cycle does not mean that there are no means to make them visible. This work provides visual evidence that reversible permeabilization of the cell membrane followed by the regeneration of cell membranes allows getting a glimpse behind the nuclear curtain. Reversibly permeable eukaryotic cells have been used to synthesize nascent DNA, analyze the 5′-end of RNA primers, view individual replicons and visualize interphase chromosomes. Dextran T-150 in a slightly hypotonic buffer prevented cells from disruption. Upon reversal of permeabilization, the nucleus could be opened at any time during the interphase. A broad spectrum of a flexible chromatin folding pattern was revealed through a series of transient geometric forms of chromosomes. Linear attachment of chromosomes was visualized in several mammalian and lower eukaryotic cells. The linear connection of chromosomes is maintained throughout the cell cycle showing that rather than individual chromosomes, a linear array of chromosomes is the functional giant macromolecule. This study proves that not only the prokaryotic genome but also linearly attached eukaryotic chromosomes form a giant macromolecular unit.
Collapse
|
2
|
Ukale D, Lönnberg T. Organomercury Nucleic Acids: Past, Present and Future. Chembiochem 2021; 22:1733-1739. [PMID: 33410571 PMCID: PMC8247973 DOI: 10.1002/cbic.202000821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Indexed: 11/19/2022]
Abstract
Synthetic efforts towards nucleosides, nucleotides, oligonucleotides and nucleic acids covalently mercurated at one or more of their base moieties are summarized, followed by a discussion of the proposed, realized and abandoned applications of this unique class of compounds. Special emphasis is given to fields in which active research is ongoing, notably the use of HgII -mediated base pairing to improve the hybridization properties of oligonucleotide probes. Finally, this minireview attempts to anticipate potential future applications of organomercury nucleic acids.
Collapse
Affiliation(s)
- Dattatraya Ukale
- Department of ChemistryUniversity of TurkuVatselankatu 220014TurkuFinland
| | - Tuomas Lönnberg
- Department of ChemistryUniversity of TurkuVatselankatu 220014TurkuFinland
| |
Collapse
|
3
|
Synchronization of Bacillus subtilis Cells by Spore Germination and Outgrowth. Methods Mol Biol 2016. [PMID: 27815905 DOI: 10.1007/978-1-4939-6603-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This protocol defines conditions under which the germination of spores can be used to synchronize Bacillus subtilis cells, utilizing the time-ordered sequence of events taking place during the transition from spore to vegetative cells. The transition stages involve: phase change, swelling, emergence, initial division, and elongation. By using this method we have obtained two distinctive synchronized cell cycles, while the synchrony faded away in the third cycle. The advantage of using spore outgrowth and germination is that a highly synchronized population of bacterial cells can be obtained. Non-dividing spores stay synchronized, while synchrony rapidly decays during a few divisions. The limitations of this method are that it can be applied only for sporulating bacteria and synchrony lasts for only a limited period of time exceeding not more than two cycles.
Collapse
|
4
|
Abstract
This protocol defines conditions under which the germination of spores can be used to synchronize Bacillus subtilis cells, utilizing the time-ordered sequence of events taking place during the transition from spore to vegetative cells. The transition stages involve: phase change, swelling, emergence, initial division, and elongation. By using this method we have obtained two distinctive synchronized cell cycles, while the synchrony faded away in the third cycle. The advantage of using spore outgrowth and germination is that a highly synchronized population of bacterial cells can be obtained. The limitations of this method are that it can be applied only for sporulating bacteria and synchrony lasts for only a limited period of time exceeding not more than two cycles.
Collapse
|
5
|
Sasvari-Szekely M, Banfalvi G, Bott KF, Sarkar N. Origin of replication of the Bacillus subtilis chromosome: in vitro approach to the isolation of early replicating segments. DNA Cell Biol 1995; 14:1049-55. [PMID: 8534371 DOI: 10.1089/dna.1995.14.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have developed a permeable cell system for the study of the molecular mechanisms involved in the control and initiation of DNA replication at the origin of the Bacillus subtilis chromosome. Our system take advantage of the synchronous initiation of DNA replication that occurs in outgrowing B. subtilis spores and the curtailment of DNA elongation by novobiocin. Early replicating DNA sequences were identified by the use of 5-mercury-dCTP as substrate, which allows the isolation of nascent DNA chains by affinity chromatography on thiol agarose. The average size of the isolated nascent DNA was 1,000 bp, and more than 80% of the nascent DNA chains had RNA primers at their 5' end. The study of the temporal order of chromosome replication near the origin using this experimental system showed that a segment containing recF and gyrB replicated earlier than a segment containing gyrA and part of the rRNA operon (rrnO). This observation is in agreement with previous in vivo data on the replication of origin region and supports the conclusion that the major activity in our in vitro system was the faithful replication of the ori region.
Collapse
|
6
|
Banfalvi G, Sarkar N. Effect of mercury substitution of DNA on its susceptibility to cleavage by restriction endonucleases. DNA Cell Biol 1995; 14:445-50. [PMID: 7748494 DOI: 10.1089/dna.1995.14.445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mercurated DNA was synthesized in vitro by substituting Hg-dCTP or Hg-dUMP for dCTP in one strand of M13mp8DNA in a DNA polymerase I reaction. Restriction enzymes, including Sma I, Pst I, Bam HI, Hind III, and Hinc II, were completely inactive when their recognition sites were fully substituted with Hg-dCMP, while Hg-dUMP containing DNA was hydroxlyzed to some extent. Under conditions favoring star activities, or when DNA was substituted with a low level of mercury-nucleotide, DNA was cleaved by restriction enzymes. Susceptibility to degrading and synthesizing enzymes and insensitivity to restriction endonucleases of fully mercurated DNA makes mercuration an attractive molecular "tag" for in vitro manipulation and selective isolation of Hg-DNA.
Collapse
Affiliation(s)
- G Banfalvi
- Department I, Semmelweis University Medical School, Budapest, Hungary
| | | |
Collapse
|
7
|
Sagesaka T, Boubnov N, Okuyama T, Paulus H, Sarkar N. Deoxyribonucleic acid replication in fetal cells. Am J Obstet Gynecol 1994; 170:468-73. [PMID: 8116699 DOI: 10.1016/s0002-9378(94)70213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Our purpose was to develop a sensitive method for assessing the replication time of specific human genes in cultured fetal cells and for detecting potential replication defects. STUDY DESIGN Synchronous progression of diploid human fetal lung cells through S phase was achieved by releasing from serum restriction with minimum essential medium alpha modification plus 10% fetal bovine serum, followed by hydroxyurea blockage at the G1/S boundary. Deoxyribonucleic acid replication was studied in permeabilized cells using mercurated nucleotides to label nascent deoxyribonucleic acid. RESULTS A high degree of synchrony in traversal of S phase was indicated by flow cytometry and a well-defined 7-hour period of deoxyribonucleic acid synthesis. The replication of the topoisomerase II gene occurred in a narrow time span 3 hours after entry into S phase. CONCLUSIONS Fetal cells have been highly synchronized at the beginning of S phase, and the replication time of a specific gene can be defined within a narrow time window.
Collapse
Affiliation(s)
- T Sagesaka
- Department of Metabolic Regulation, Boston Biomedical Research Institute, Massachusetts
| | | | | | | | | |
Collapse
|
8
|
Abstract
To investigate the molecular basis of the regulatory mechanisms responsible for the orderly replication of the mammalian genome, we have developed an experimental system by which the replication order of various genes can be defined with relative ease and precision. Exponentially growing CHO-K1 cells were separated into populations representing various stages of the cell cycle by centrifugal elutriation and analyzed for cell cycle status flow cytometry. The replication of specific genes in each elutriated fraction was measured by labeling with 5-mercuri-dCTP and [3H]dTPP under conditions of optimal DNA synthesis after cell permeabilization with lysolecithin. Newly synthesized mercurated DNA from each elutriated fraction was purified by affinity chromatography on thiol-agarose and replicated with the large fragment of Escherichia coli DNA polymerase I by using [alpha-32P]dATP and random primers. The 32P-labeled DNA representative of various stages of the cell cycle was then hybridized with dot blots of plasmid DNA containing specific cloned genes. From these results, it was possible to deduce the nuclear DNA content at the time each specific gene replicated during S phase (C value). The C values of 29 genes, which included single-copy genes, multifamily genes, oncogenes, and repetitive sequences, were determined and found to be distributed over the entire S phase. Of the 28 genes studied, 19 had been examined by others using in vivo labeling techniques, with results which agreed with the replication pattern observed in this study. The replication times of nine other genes are described here for the first time. Our method of analysis is sensitive enough to determine the replication time of single-copy genes. The replication times of various genes and their levels of expression in exponentially growing CHO cells were compared. Although there was a general correlation between transcriptional activity and replication in the first half of S phase, examination of specific genes revealed a number of exceptions. Approximately 25% of total poly(A) RNA was transcribed from the late-replicating DNA.
Collapse
|
9
|
Taljanidisz J, Popowski J, Sarkar N. Temporal order of gene replication in Chinese hamster ovary cells. Mol Cell Biol 1989; 9:2881-9. [PMID: 2476659 PMCID: PMC362754 DOI: 10.1128/mcb.9.7.2881-2889.1989] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate the molecular basis of the regulatory mechanisms responsible for the orderly replication of the mammalian genome, we have developed an experimental system by which the replication order of various genes can be defined with relative ease and precision. Exponentially growing CHO-K1 cells were separated into populations representing various stages of the cell cycle by centrifugal elutriation and analyzed for cell cycle status flow cytometry. The replication of specific genes in each elutriated fraction was measured by labeling with 5-mercuri-dCTP and [3H]dTPP under conditions of optimal DNA synthesis after cell permeabilization with lysolecithin. Newly synthesized mercurated DNA from each elutriated fraction was purified by affinity chromatography on thiol-agarose and replicated with the large fragment of Escherichia coli DNA polymerase I by using [alpha-32P]dATP and random primers. The 32P-labeled DNA representative of various stages of the cell cycle was then hybridized with dot blots of plasmid DNA containing specific cloned genes. From these results, it was possible to deduce the nuclear DNA content at the time each specific gene replicated during S phase (C value). The C values of 29 genes, which included single-copy genes, multifamily genes, oncogenes, and repetitive sequences, were determined and found to be distributed over the entire S phase. Of the 28 genes studied, 19 had been examined by others using in vivo labeling techniques, with results which agreed with the replication pattern observed in this study. The replication times of nine other genes are described here for the first time. Our method of analysis is sensitive enough to determine the replication time of single-copy genes. The replication times of various genes and their levels of expression in exponentially growing CHO cells were compared. Although there was a general correlation between transcriptional activity and replication in the first half of S phase, examination of specific genes revealed a number of exceptions. Approximately 25% of total poly(A) RNA was transcribed from the late-replicating DNA.
Collapse
Affiliation(s)
- J Taljanidisz
- Department of Metabolic Regulation, Boston Biomedical Research Institute, Massachusetts 02114
| | | | | |
Collapse
|
10
|
Taljanidisz J, Decker RS, Guo ZS, DePamphilis ML, Sarkar N. Initiation of simian virus 40 DNA replication in vitro: identification of RNA-primed nascent DNA chains. Nucleic Acids Res 1987; 15:7877-88. [PMID: 2444924 PMCID: PMC306314 DOI: 10.1093/nar/15.19.7877] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell-free extracts of simian virus 40 (SV40)-infected CV-1 cells can initiate large tumor antigen dependent bidirectional replication in circular DNA molecules containing a functional SV40 origin of replication (ori). To determine whether or not DNA replication under these conditions involves RNA-primed DNA synthesis, replication was carried out in the presence of 5-mercuri-deoxycytidine triphosphate to label nascent DNA chains. Newly synthesized mercurated DNA was isolated by its affinity for thiol-agarose, and the 5'-ends of the isolated chains were radiolabeled to allow identification of RNA primers. At least 50% of the isolated chains contained 4 to 7 ribonucleotides covalently linked to their 5'-end; 80% of the oligoribonucleotides began with adenosine and 19% began with guanosine. About 60% of the nascent DNA chains annealed to the SV40 ori region, and about 80% of these chains were synthesized in the same direction as early mRNA. These results are consistent with the properties of SV40 DNA replication in vivo and support a model for initiation of SV40 DNA replication in which DNA primase initiates DNA synthesis on that strand of ori that encodes early mRNA.
Collapse
Affiliation(s)
- J Taljanidisz
- Department of Metabolic Regulation, Boston Biomedical Research Institute, MA 02114
| | | | | | | | | |
Collapse
|
11
|
Hopman AH, Wiegant J, van Duijn P. Mercurated nucleic acid probes, a new principle for non-radioactive in situ hybridization. Exp Cell Res 1987; 169:357-68. [PMID: 3549334 DOI: 10.1016/0014-4827(87)90196-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This report describes the localization of specific nucleic acid sequences in interphase nuclei and metaphase chromosomes by a new hybridocytochemical method based on the use of mercurated nucleic acid probes. After the hybridization a sulfhydryl-hapten compound is reacted with the hybrids formed. A number of such ligands were synthesized and tested. A fluorescyl ligand could be used for the direct visualization of highly repetitive sequences. For indirect immunocytochemical visualization trinitrophenyl ligands were found to be more sensitive than biotinyl analogues. These ligands were applied for the detection of target sequences in metaphase chromosomes and interphase nuclei of somatic cell hybrids, human lymphoid cell lines and blood cell cultures. The sequences were in the range of high to low copy numbers. The lower limit of sensitivity is indicated by the visualization of two human unique DNA fragments (40 and 15.6 kb) in human metaphases. The method is rapid, gives consistent results and can be used for both RNA and DNA probes. Other potentials of the new principle are discussed.
Collapse
|
12
|
Banfalvi G, Slezarikova V, Sedliakova M, Antoni F. DNA synthesis in vivo and in vitro in Escherichia coli irradiated with ultraviolet light. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 162:305-9. [PMID: 3542533 DOI: 10.1111/j.1432-1033.1987.tb10601.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA synthesis was followed in vivo and in permeable Escherichia coli after ultraviolet light irradiation, irradiation and incubation in a growth medium containing chloramphenicol and in unirradiated cells. In vitro, replicative type DNA synthesis was partially restored after incubation of cells in medium containing chloramphenicol, but not in vivo. The DNA was pulse-labeled in permeable cells in the presence of deoxyribonucleoside triphosphates and ribonucleoside triphosphates. dCTP was replaced by 5-Hg-dCTP as a substrate for DNA synthesis. Hg-DNA was separated from cellular nucleic acids on thiol-agarose affinity columns. The 5' termini of newly synthesized DNA were analyzed after treatment with alkaline phosphatase and rephosphorylation with polynucleotide kinase and [gamma-32P]ATP. DNA synthesis in unirradiated permeable E. coli represents a replicative process dependent on ATP and inhibited by novobiocin. About 70% of the nascent DNA carried terminally labeled RNA moiety at its 5' end. In vitro DNA synthesis in irradiated cells was suppressed and hardly influenced by the presence of ATP or novobiocin. The 5'-RNA content of this cell population was less than 5%.
Collapse
|
13
|
Pl�nzig J, Auling G. Manganese deficiency impairs ribonucleotide reduction but not DNA replication in Arthrobacter species. Arch Microbiol 1987. [DOI: 10.1007/bf00410942] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Banfalvi G, Sarkar N. Origin and degradation of the RNA primers at the 5' termini of nascent DNA chains in Bacillus subtilis. J Mol Biol 1985; 186:275-82. [PMID: 2418206 DOI: 10.1016/0022-2836(85)90104-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We had earlier characterized the nascent DNA synthesized in permeable cells of Bacillus subtilis in the presence of 5-mercurideoxycytidine triphosphate and 2',3'-dideoxyATP as being substituted at its 5' end with a ribonucleotide moiety of the sequence pApG(pC)1-2 DNA. In this paper, we examine the origin and turnover of the DNA-linked ribonucleotide and its relationship to DNA replication. At least 50% of the RNA-linked nascent DNA chains served as guanylate acceptors when incubated with GTP and the eukaryotic capping enzyme, indicating the presence of 5'-terminal di- or triphosphate groups and suggesting that the RNA moiety is synthesized de novo and is not a degradation product. In nascent DNA produced without limitation of chain growth by dideoxyATP, the degree of terminal ribonucleotide substitution was reduced by 50%, consistent with a linkage between RNA primer removal and DNA chain growth. Such a relationship was demonstrated directly by examining the RNA primer content of nascent DNA synthesized in the absence of dideoxyATP as a function of DNA chain length. As the DNA size increased from 40 to 200 nucleotide residues, the extent of RNA substitution declined from 80% to nearly 0%. Endgroup analysis showed that the loss of RNA was accompanied by a gradual shift from predominantly adenylate residues to 5'-terminal guanylate, consistent with a stepwise removal of ribonucleotides from the 5' end. Evidence that the nascent mercurated DNA synthesized under our experimental conditions was indeed a replicative intermediate came from the study of the time course of DNA chain growth and pulse-chase experiments. In the presence of the DNA ligase inhibitor NMN, mercurated DNA accumulated in two size classes with average length of approximately 750 and 8000 nucleotide residues, presumably representing the mature size of intermediates in discontinuous DNA synthesis. Comparison with the DNA size range at which the loss of the 5'-terminal RNA moiety occurred (40 to 200 residues) indicated that the processing of RNA primers occurred at an early stage during DNA chain elongation, and that moderate size intermediates in discontinuous DNA replication (greater than 200 nucleotides) have already lost their RNA primers.
Collapse
|
15
|
Banfalvi G, Bhattacharya S, Sarkar N. Selective isolation of mercurated DNA by affinity chromatography on thiol matrices. Anal Biochem 1985; 146:64-70. [PMID: 2581475 DOI: 10.1016/0003-2697(85)90396-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A method for isolating picomole quantities of nascent mercurated DNA from a mixture of cellular nucleic acids using affinity chromatography on thiol-agarose is described. Analysis of mercurated DNA (HgDNA) isolated in the presence of in vivo-labeled cellular RNA or in vitro-synthesized RNA showed a low level of RNA contamination, about 0.04-0.16%, in the HgDNA. Comparative binding studies on different thiol matrices showed that the efficiency of binding of HgDNA was related to the nature but not to the SH content of the matrix used. Another important parameter for binding was the structure of HgDNA. The recovery was 98% with large nascent HgDNA sedimenting at about 30 S, whereas for short pulse-labeled single-stranded HgDNA (20-50 nucleotides long), the maximum recovery was 60%. The effect of the structure of HgDNA on the binding to the thiol matrix was probed using a variety of well-defined mercurated structures obtained from phage DNA and their restriction fragments. For DNA containing one 5-mercuricytidine 5'-triphosphate (HgdCMP) residue at each 3'-end, short fragments (size range, 230-510 bp) were bound quantitatively. With larger fragments (size range, 490-1100 bp), the binding decreased progressively with increasing size. DNA fragments larger than 1060 bp did not bind to the matrix. Single-stranded DNA containing only one HgdCMP at one end did not bind to the matrix even in the size range 200-1100 nucleotides. In contrast, continuous stretches of HgdCMP residues in one strand or short stretches of HgdCMP residues at random in both strands permit quantitative binding irrespective of size.
Collapse
|
16
|
Banfalvi G, Sooki-Toth A, Sarkar N, Csuzi S, Antoni F. Nascent DNA chains synthesized in reversibly permeable cells of mouse thymocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 139:553-9. [PMID: 6199204 DOI: 10.1111/j.1432-1033.1984.tb08041.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Freshly prepared thymocytes continue to synthesize DNA under hypotonic conditions in the presence of 4.5% dextran T-150, the four deoxyribonucleoside triphosphates and ATP. Permeable cells could seal the membrane in a serum-enriched medium within a few hours. 2'-Deoxycytidine 5'-triphosphate is effectively substituted by 5-mercuri-2'-deoxycytidine 5'-triphosphate as a substrate. The newly synthesized mercurated DNA can be separated from cellular DNA and RNA on a thiol-agarose affinity matrix. The rate of incorporation of [3H]thymidine triphosphate into permeable cells is the same as that of the incorporation of [3H]thymidine into intact cells, corresponding to approximately 30% of the rate in vivo. Synthesis in permeable cells reflects DNA replication shown by inhibitors such as 1-beta-D-arabinofuranosylcytosine 5'-triphosphate (aCTP), nalidixic acid and novobiocin and by density shift experiments. More than 80% of the newly synthesized low-molecular-mass DNA, 8-60 nucleotides in length, consists of RNA-linked DNA. This conclusion is based on phosphorylation with [gamma-32]ATP and polynucleotide kinase and rephosphorylation after alkaline hydrolysis. The 5' end of RNA consists of adenylate, guanylate, cytidylate and uridylate residues in a ratio of 4:3:1.5:1.5.
Collapse
|
17
|
Banfalvi G, Sarkar N. Analysis of the 5'-termini of nascent DNA chains synthesized in permeable cells of Bacillus subtilis. J Mol Biol 1983; 163:147-69. [PMID: 6188836 DOI: 10.1016/0022-2836(83)90001-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nascent DNA synthesized by permeable cells of Bacillus subtilis in the presence of 5'-mercurideoxycytidine triphosphate and 2',3'-dideoxyATP has been isolated and characterized. The newly synthesized DNA was isolated free from other cellular nucleic acids by affinity chromatography on thiol-substituted agarose. The number average chain length of the nascent DNA synthesized in one minute at 25 degrees C was 33 nucleotide residues, due to the chain-terminating action of 2',3'-dideoxyATP. Several lines of evidence indicated that at least 90% of the DNA thus isolated carried a terminally phosphorylated RNA moiety at its 5'-end: (1) the nascent DNA was resistant to exonucleolytic degradation by spleen phosphodiesterase unless first hydrolyzed by strong alkali or ribonuclease; (2) the 5'-termini of nascent DNA could not be phosphorylated by polynucleotide kinase unless first treated with alkaline phosphatase or subjected to hydrolysis by strong alkali or ribonuclease; (3) alkaline hydrolysis of nascent DNA labeled with 32P at the 5'-end released unlabeled DNA with a free 5'-terminus and 32P-labeled ribonucleoside 3',5'-bisphosphates; (4) ribonuclease degradation of similarly labeled material produced an unlabeled DNA-containing polynucleotide fraction and 32P-labeled ribo-oligonucleotides; (5) chromatography on dihydroxyboryl cellulose showed that the RNA moiety lacked a 3'-terminal cis-diol grouping (even after treatment with alkaline phosphatase) unless first subjected to the 3'-exonucleolytic action of bacteriophage T4 DNA polymerase. The sequence of the ribonucleotide chains was elucidated by end-group labeling with polynucleotide kinase and digestion with various ribonucleases. The ribonucleotide moiety was primarily three and four residues in length with the predominant sequence (pp)pApG(pC)1-2pDNA. The possibility that it represents a primer for discontinuous DNA synthesis is discussed.
Collapse
|
18
|
|
19
|
Bhattacharya S, Sarkar N. Transforming activity of mercury-substituted DNA synthesized in vitro by permeable cells of Bacillus subtilis. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)68080-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|