1
|
Interacting polymer-modification enzymes in heparan sulfate biosynthesis. Carbohydr Polym 2023; 299:120191. [PMID: 36876765 DOI: 10.1016/j.carbpol.2022.120191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Glucuronyl 5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) into L-iduronic acid (IdoA) units, through a mechanism involving reversible abstraction of a proton at C5 of hexuronic acid residues. Incubations of a [4GlcAβ1-4GlcNSO3α1-]n precursor substrate with recombinant enzymes in a D2O/H2O medium enabled an isotope exchange approach to the assessment of functional interactions of Hsepi with hexuronyl 2-O-sulfotransferase (Hs2st) and glucosaminyl 6-O-sulfotransferase (Hs6st), both involved in the final polymer-modification steps. Enzyme complexes were supported by computational modeling and homogeneous time resolved fluorescence. GlcA and IdoA D/H ratios related to product composition revealed kinetic isotope effects that were interpreted in terms of efficiency of the coupled epimerase and sulfotransferase reactions. Evidence for a functional Hsepi/Hs6st complex was provided by selective incorporation of D atoms into GlcA units adjacent to 6-O-sulfated glucosamine residues. The inability to achieve simultaneous 2-O- and 6-O-sulfation in vitro supported topologically separated reactions in the cell. These findings provide novel insight into the roles of enzyme interactions in heparan sulfate biosynthesis.
Collapse
|
2
|
Bearne SL. Through the Looking Glass: Chiral Recognition of Substrates and Products at the Active Sites of Racemases and Epimerases. Chemistry 2020; 26:10367-10390. [DOI: 10.1002/chem.201905826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/09/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Stephen L. Bearne
- Department of Biochemistry & Molecular BiologyDepartment of ChemistryDalhousie University Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
3
|
Cress BF, Bhaskar U, Vaidyanathan D, Williams A, Cai C, Liu X, Fu L, M‐Chari V, Zhang F, Mousa SA, Dordick JS, Koffas MAG, Linhardt RJ. Heavy Heparin: A Stable Isotope‐Enriched, Chemoenzymatically‐Synthesized, Poly‐Component Drug. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Brady F. Cress
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
| | - Ujjwal Bhaskar
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
| | - Deepika Vaidyanathan
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
| | - Asher Williams
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
| | - Chao Cai
- CBIS, RPI 110 8th St. Troy NY 12180 USA
| | | | - Li Fu
- CBIS, RPI 110 8th St. Troy NY 12180 USA
| | - Vandhana M‐Chari
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences 106 New Scotland Ave. Albany NY 12208 USA
- PRI Albany College of Pharmacy and Health Sciences 106 New Scotland Ave. Albany NY 12208 USA
| | | | - Shaker A. Mousa
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences 106 New Scotland Ave. Albany NY 12208 USA
- PRI Albany College of Pharmacy and Health Sciences 106 New Scotland Ave. Albany NY 12208 USA
| | - Jonathan S. Dordick
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
- Department of Biological Sciences RPI 110 8th St. Troy NY 12180 USA
| | - Mattheos A. G. Koffas
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
- Department of Biological Sciences RPI 110 8th St. Troy NY 12180 USA
| | - Robert J. Linhardt
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
- Department of Biological Sciences RPI 110 8th St. Troy NY 12180 USA
- Department of Chemistry and Chemical Biology RPI 110 8th St. Troy NY 12180 USA
| |
Collapse
|
4
|
Cress BF, Bhaskar U, Vaidyanathan D, Williams A, Cai C, Liu X, Fu L, M-Chari V, Zhang F, Mousa SA, Dordick JS, Koffas MAG, Linhardt RJ. Heavy Heparin: A Stable Isotope-Enriched, Chemoenzymatically-Synthesized, Poly-Component Drug. Angew Chem Int Ed Engl 2019; 58:5962-5966. [PMID: 30870573 PMCID: PMC6461503 DOI: 10.1002/anie.201900768] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/07/2022]
Abstract
Heparin is a highly sulfated, complex polysaccharide and widely used anticoagulant pharmaceutical. In this work, we chemoenzymatically synthesized perdeuteroheparin from biosynthetically enriched heparosan precursor obtained from microbial culture in deuterated medium. Chemical de-N-acetylation, chemical N-sulfation, enzymatic epimerization, and enzymatic sulfation with recombinant heparin biosynthetic enzymes afforded perdeuteroheparin comparable to pharmaceutical heparin. A series of applications for heavy heparin and its heavy biosynthetic intermediates are demonstrated, including generation of stable isotope labeled disaccharide standards, development of a non-radioactive NMR assay for glucuronosyl-C5-epimerase, and background-free quantification of in vivo half-life following administration to rabbits. We anticipate that this approach can be extended to produce other isotope-enriched glycosaminoglycans.
Collapse
Affiliation(s)
- Brady F. Cress
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Ujjwal Bhaskar
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Deepika Vaidyanathan
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Asher Williams
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Chao Cai
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Xinyue Liu
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Li Fu
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Vandhana M-Chari
- PRI, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, NY, 12208 (USA); Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, NY, 12208 (USA)
| | | | - Shaker A. Mousa
- PRI, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, NY, 12208 (USA); Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, NY, 12208 (USA)
| | - Jonathan S. Dordick
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Biological Sciences, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Mattheos A. G. Koffas
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Biological Sciences, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Robert J. Linhardt
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemistry and Chemical Biology, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Biological Sciences, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| |
Collapse
|
5
|
Substrate binding mode and catalytic mechanism of human heparan sulfate d-glucuronyl C5 epimerase. Proc Natl Acad Sci U S A 2019; 116:6760-6765. [PMID: 30872481 DOI: 10.1073/pnas.1818333116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparan sulfate (HS) is a linear, complex polysaccharide that modulates the biological activities of proteins through binding sites made by a series of Golgi-localized enzymes. Of these, glucuronyl C5-epimerase (Glce) catalyzes C5-epimerization of the HS component, d-glucuronic acid (GlcA), into l-iduronic acid (IdoA), which provides internal flexibility to the polymer and forges protein-binding sites to ensure polymer function. Here we report crystal structures of human Glce in the unbound state and of an inactive mutant, as assessed by real-time NMR spectroscopy, bound with a (GlcA-GlcNS)n substrate or a (IdoA-GlcNS)n product. Deep infiltration of the oligosaccharides into the active site cleft imposes a sharp kink within the central GlcNS-GlcA/IdoA-GlcNS trisaccharide motif. An extensive network of specific interactions illustrates the absolute requirement of N-sulfate groups vicinal to the epimerization site for substrate binding. At the epimerization site, the GlcA/IdoA rings are highly constrained in two closely related boat conformations, highlighting ring-puckering signatures during catalysis. The structure-based mechanism involves the two invariant acid/base residues, Glu499 and Tyr578, poised on each side of the target uronic acid residue, thus allowing reversible abstraction and readdition of a proton at the C5 position through a neutral enol intermediate, reminiscent of mandelate racemase. These structures also shed light on a convergent mechanism of action between HS epimerases and lyases and provide molecular frameworks for the chemoenzymatic synthesis of heparin or HS analogs.
Collapse
|
6
|
Mochizuki H, Yamagishi K, Suzuki K, Kim YS, Kimata K. Heparosan-glucuronate 5-epimerase: Molecular cloning and characterization of a novel enzyme. Glycobiology 2015; 25:735-44. [DOI: 10.1093/glycob/cwv013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/05/2015] [Indexed: 02/04/2023] Open
|
7
|
Rogée S, Grellier E, Bernard C, Colin M, D'Halluin J. Non-heparan sulfate GAG-dependent infection of cells using an adenoviral vector with a chimeric fiber conserving its KKTK motif. Virology 2008; 380:60-8. [DOI: 10.1016/j.virol.2008.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/06/2008] [Accepted: 07/21/2008] [Indexed: 01/19/2023]
|
8
|
Mulrooney EF, Poon KKH, McNally DJ, Brisson JR, Lam JS. Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J Biol Chem 2005; 280:19535-42. [PMID: 15778500 DOI: 10.1074/jbc.m500612200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-N-acetyl-L-fucosamine is a precursor to l-fucosamine in the lipopolysaccharide of Pseudomonas aeruginosa serotype O11 and the capsule of Staphylococcus aureus type 5. We have demonstrated previously the involvement of three enzymes, WbjB, WbjC, and WbjD, in the biosynthesis of UDP-2-acetamido-2,6-dideoxy-L-galactose or UDP-N-acetyl-L-fucosamine (UDP-l-FucNAc). An intermediate compound from the coupled-reaction of WbjB-WbjC with the initial substrate UDP-2-acetamido-2-deoxy-alpha-D-glucose or UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) was purified, and the structure was determined by NMR spectroscopy to be UDP-2-acetamido-2,6-dideoxy-L-talose (UDP-L-PneNAc). WbjD could then convert this intermediate into a new product with the same mass, consistent with a C-2 epimerization reaction. Those results led us to propose a pathway for the biosynthesis of UDP-L-FucNAc; however, the exact enzymatic activity of each of these proteins has not been defined. Here, we describe a fast protein liquid chromatography (FPLC)-based anion-exchange procedure, which allowed the separation and purification of the products of C-2 epimerization due to WbjD. Also, the application of a cryogenically cooled probe in NMR spectrometry offers the greatest sensitivity for determining the structures of minute quantities of materials, allowing the identification of the final product of the pathway. Our results showed that WbjB is bifunctional, catalyzing firstly C-4, C-6 dehydration and secondly C-5 epimerization in the reaction with the substrate UDP-D-GlcNAc, producing two intermediates. WbjC is also bifunctional, catalyzing C-3 epimerization of the second intermediate followed by reduction at C-4. The FPLC-based procedure provided good resolution of the final product of WbjD reaction from its epimer/substrate UDP-l-PneNAc, and the use of the cryogenically cooled probe in NMR revealed unequivocally that the final product is UDP-L-FucNAc.
Collapse
Affiliation(s)
- Erin F Mulrooney
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Abstract
Virtually every cell type in metazoan organisms produces heparan sulfate. These complex polysaccharides provide docking sites for numerous protein ligands and receptors involved in diverse biological processes, including growth control, signal transduction, cell adhesion, hemostasis, and lipid metabolism. The binding sites consist of relatively small tracts of variably sulfated glucosamine and uronic acid residues in specific arrangements. Their formation occurs in a tissue-specific fashion, generated by the action of a large family of enzymes involved in nucleotide sugar metabolism, polymer formation (glycosyltransferases), and chain processing (sulfotransferases and an epimerase). New insights into the specificity and organization of the biosynthetic apparatus have emerged from genetic studies of cultured cells, nematodes, fruit flies, zebrafish, rodents, and humans. This review covers recent developments in the field and provides a resource for investigators interested in the incredible diversity and specificity of this process.
Collapse
Affiliation(s)
- Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, California, 92093-0687, USA.
| | | |
Collapse
|
10
|
|
11
|
Mourão PA, Assreuy AM. Trehalose as a possible precursor of the sulfated L-galactan in the ascidian tunic. J Biol Chem 1995; 270:3132-40. [PMID: 7852395 DOI: 10.1074/jbc.270.7.3132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Among sulfated polysaccharides, those in the tunic of ascidians are unique: their major constituent sugar is galactose, which occurs exclusively in the L-enantiomeric form. Incorporation of D-[14C]glucose into tunic slices in vitro revealed that the cells epimerize D-glucose into L-galactose during biosynthesis of the sulfated polysaccharides. The interconversion of these two sugars involves exchange of hydrogen atoms at the epimerization sites with protons of the medium. Tunic cells also synthesize trehalose, although this disaccharide is not a prominent constituent of the tissue. Pulse-chase experiments using D-[14C]glucose reveal that incorporation of label into trehalose precedes the synthesis of the sulfated L-galactan. In addition, the loss of label from trehalose coincides with the appearance of label in the sulfated L-galactan. Based on these results, we speculate that trehalose in the ascidian tunic may be a precursor of the sulfated L-galactan.
Collapse
Affiliation(s)
- P A Mourão
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Biosynthesis of heparin/heparan sulfate. Purification of the D-glucuronyl C-5 epimerase from bovine liver. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47111-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
|
14
|
Finke A, Roberts I, Boulnois G, Pzzani C, Jann K. Activity of CMP-2-keto-3-deoxyoctulosonic acid synthetase in Escherichia coli strains expressing the capsular K5 polysaccharide implication for K5 polysaccharide biosynthesis. J Bacteriol 1989; 171:3074-9. [PMID: 2542215 PMCID: PMC210017 DOI: 10.1128/jb.171.6.3074-3079.1989] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The activity of the cytoplasmic CMP-2-keto-3-deoxyoctulosonic acid synthetase (CMP-KDO synthetase), which is low in Escherichia coli rough strains such as E. coli K-12 and in uncapsulated strains such as E. coli O111, was significantly elevated in encapsulated E. coli O10:K5 and O18:K5. This enzyme activity was even higher in an E. coli clone expressing the K5 capsule. This and the following findings suggest a correlation between elevated CMP-KDO synthetase activity and the biosynthesis of the capsular K5 polysaccharide. (i) Expression of the K5 polysaccharide and elevated CMP-KDO synthetase activity were observed with bacteria grown at 37 degrees C but not with cells grown at 20 degrees C or below. (ii) The recovery kinetics of capsule expression of intact bacteria, in vitro K5 polysaccharide-synthesizing activity of bacteria, and CMP-KDO synthetase activity of bacteria after temperature upshift from 18 to 37 degrees C were the same. (iii) Chemicals which inhibit capsule (polysaccharide) expression also inhibited the elevation of CMP-KDO synthetase activity. The chromosomal location of the gene responsible for the elevation of this enzyme activity was narrowed down to the distal segment of the transport region of the K5 expression genes.
Collapse
Affiliation(s)
- A Finke
- Max-Planck-Institut für Immunbiologie, Freiburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
15
|
Rodriguez ML, Jann B, Jann K. Structure and serological characteristics of the capsular K4 antigen of Escherichia coli O5:K4:H4, a fructose-containing polysaccharide with a chondroitin backbone. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:117-24. [PMID: 2460347 DOI: 10.1111/j.1432-1033.1988.tb14351.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chemical structure of the K4-specific capsular polysaccharide (K4 antigen) of Escherichia coli O5:K4:H4 was elucidated by composition, carboxyl reduction periodate oxidation methylation nuclear-magnetic-resonance spectroscopy and enzymatic cleavage. The polysaccharide consists of a backbone with the structure----3)-beta-D-glucuronyl-(1,4)-beta-D-N-acetylgalactosaminyl(1- to which beta-fructofuranose is linked at C-3 of glucuronic acid. Mild acid hydrolysis liberated fructose and converted the K4 antigen into a polysaccharide which has the same structure as chondroitin. The defructosylated polysaccharide was a substrate for hyaluronidase and chondroitinase. The serological reactivity of the K4 polysaccharide was markedly reduced after defructosylation.
Collapse
Affiliation(s)
- M L Rodriguez
- Max-Planck-Institut für Immunobiologie, Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Feingold DS, Bentley R. Conformational aspects of the reaction mechanisms of polysaccharide lyases and epimerases. FEBS Lett 1987; 223:207-11. [PMID: 3311811 DOI: 10.1016/0014-5793(87)80290-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- D S Feingold
- Department of Microbiology, Biochemistry, and Molecular Biology, University of Pittsburgh, PA 15261
| | | |
Collapse
|
17
|
Biosynthesis of heparin. Substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43565-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Kimura M. Proteins of the Bacillus stearothermophilus ribosome. The amino acid sequences of proteins S5 and L30. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43564-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Jensen JW, Rodén L, Jacobsson I, Lindahl U, Prihar H, Feingold DS. Biosynthesis of heparin. A new substrate for heparosan-N-sulfate-d-glucopyranosyluronate 5-epimerase. Carbohydr Res 1983. [DOI: 10.1016/0008-6215(83)88090-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Abstract
Simple assays have been developed for the two uronosyl 5-epimerases which participate in the biosynthesis of heparin and dermatan sulfate (heparosan N-sulfate D-glucuronosyl 5-epimerase and chondroitin D-glucuronosyl 5-epimerase, respectively). Following previously published procedures, substrates labeled with tritium in the C-5 positions of the D-glucuronosyl and L-iduronosyl residues were prepared enzymatically by incubation of O-desulfated heparin and dermatan with 3H2O and crude epimerase preparations from bovine liver and human skin fibroblasts, respectively. In the new assays, 3H2O generated from these substrates during the epimerase reactions was quantitated by the method of Pollard et al. (Anal. Biochem. (1981) 110, 424-430). In this procedure, 3H2O in the aqueous reaction mixture is extracted into a toluene-based organic phase containing 25% isoamyl alcohol, while the polysaccharide substrate remains in the aqueous phase and does not generate scintillations. This procedure is much simpler than that used previously which involves distillation of each reaction mixture and quantitation of the radioactivity in the distillate. The new assays have been validated by the demonstration that conditions of linearity with time and enzyme concentration can be established for both epimerase reactions. Assays of this type should be useful in the study of any enzymatic reaction where 3H2O is formed from a 3H-labeled substrate and the unreacted substrate is not appreciably soluble in the organic phase.
Collapse
|
21
|
Delaney SR, Conrad HE. Changes in disaccharide composition of heparan sulphate fractions with increasing degrees of sulphation. Biochem J 1983; 209:315-22. [PMID: 6221718 PMCID: PMC1154096 DOI: 10.1042/bj2090315] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heparan sulphate by-products from the commercial manufacture of pig mucosal heparin were freed of chondroitin sulphate and fractionated according to anionic density. The fractions were treated with HNO2 at pH 1.5, and the resulting mixtures of oligosaccharides were reduced with NaB3H4 and analysed for their disaccharide composition by paper chromatography and by high-pressure liquid chromatography. The results show that the molar ratio of 2-O-sulpho-alpha-L-iduronosylanhydromannose to 6-O-sulpho-(2-O-sulpho-alpha-L-iduronosyl)anhydromannose decreased from 2.5 to 0.04 as the degree of sulphation of the fractions increased. In contrast, the molar ratio of 6-O-sulpho-(beta-D-glucuronosyl)anhydromannose to 6-O-sulpho-(alpha-L-iduronosyl)anhydromannose was approx. 2.4 in all heparan sulphate fractions and decreased to only half of this value in the most highly sulphated heparin fractions. These results are consistent with biosynthetic studies, which have shown that the N-sulpho-(2-O-sulpho-alpha-L-iduronosyl)D-glucosamine disaccharide is the metabolic precursor of the NO-disulpho-(2-O-sulpho-alpha-L-iduronosyl)-D-glucosamine disaccharide in heparin biosynthesis. The high-pressure liquid chromatography of the heparan sulphate oligosaccharides also revealed a number of unidentified oligosaccharides in the deamination mixtures.
Collapse
|
22
|
Malmström A, Aberg L. Biosynthesis of dermatan sulphate. Assay and properties of the uronosyl C-5 epimerase. Biochem J 1982; 201:489-93. [PMID: 7092807 PMCID: PMC1163673 DOI: 10.1042/bj2010489] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During biosynthesis of dermatan sulphate D-glucuronate (GlcA) residues are converted to L-iduronate (IdoA) residues via the reaction [Formula: see text]. The reaction occurs on the polymer level and is catalysed by a C-5 uronosyl epimerase. The reversible release of the C-5 hydrogen was utilized as a measure of the enzyme activity with 5-3H-labelled chondroitin as a substrate. 3H released during incubation was distilled and quantified by liquid-scintillation counting. The epimerase has a low pH optimum (5.6) and requires divalent cations, Mn2+ being the most efficient for activity. The Km for chondroitin is 1.2 x 10(-4) M. The epimerase is largely associated with the microsomal fractions (90%). Two-thirds of the activity can be solubilized by detergents. Microsomes from cultured fibroblasts contain two different uronosyl epimerases, one for the biosynthesis of heparan sulphate and one for that of dermatan sulphate. The two epimerases have different cofactor and pH requirements.
Collapse
|
23
|
Riesenfeld J, Höök M, Lindahl U. Biosynthesis of heparin. Concerted action of early polymer-modification reactions. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)68381-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Vann WF, Schmidt MA, Jann B, Jann K. The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. A polymer similar to desulfo-heparin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 116:359-64. [PMID: 7018909 DOI: 10.1111/j.1432-1033.1981.tb05343.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The capsular polysaccharide was isolated from Escherichia coli 010:K5:H4; it could not be obtained from a uncapsulated (K5-) mutant. It contains N-acetylglucosamine and glucuronic acid in a molar ratio of 1:1. Acid hydrolysis of the acidic polysaccharide as well as Smith degradation and degradation by deamination of the carboxyl-reduced polysaccharide suggested that the polysaccharide is composed of a disaccharide repeating unit. The data obtained by methylation analysis and nuclear magnetic resonance spectroscopy indicated that the repeating sequence of the capsular polysaccharide is the 4-beta-glucuronyl-1,4-alpha-N-acetylglucosaminyl unit. This structure is similar to that of desulfo-heparin.
Collapse
|
25
|
Larsen B, Grasdalen H. Investigation by n.m.r. spectroscopy of the site of proton exchange catalysed by poly(mannuronic acid) C-5 epimerase. Carbohydr Res 1981. [DOI: 10.1016/s0008-6215(00)85994-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Prihar HS, Sidney Feingold D. Synthesis of d-[5-3H]mannose. Carbohydr Res 1980. [DOI: 10.1016/s0008-6215(00)85908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Prihar HS, Feingold DS. Preparation of GDP-D-mannose specifically labeled with tritium in the D-mannosyl moiety. Anal Biochem 1980; 106:123-6. [PMID: 6158275 DOI: 10.1016/0003-2697(80)90127-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
|