1
|
Gómez-Fernández JC, Goñi FM. The Myth of The Annular Lipids. Biomedicines 2022; 10:2672. [PMID: 36359192 PMCID: PMC9687668 DOI: 10.3390/biomedicines10112672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/08/2023] Open
Abstract
In the early 1970s, the existence of a "lipid annulus" stably surrounding the individual intrinsic protein molecules was proposed by several authors. They referred to a number of lipid molecules in slow exchange with the bulk lipid in the bilayer, i.e., more or less protein-bound, and more ordered than the bulk lipid. The annular lipids would control enzyme activity. This idea was uncritically accepted by most scientists working with intrinsic membrane proteins at the time, so that the idea operated like a myth in the field. However, in the following decade, hard spectroscopic and biochemical evidence showed that the proposed annular lipids were not immobilized for a sufficiently long time to influence enzyme or transporter activity, nor were they ordered by the protein. Surprisingly, forty years later, the myth survives, and the term 'annular lipid' is still in use, in a different, but even more illogical sense.
Collapse
Affiliation(s)
- Juan C. Gómez-Fernández
- Department of Biochemistry and Molecular Biology (A), Faculty of Veterinary Science, Universidad de Murcia, 30100 Murcia, Spain;
| | - Félix M. Goñi
- Instituto Biofisika (CSIC, UPV/EHU), Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| |
Collapse
|
2
|
Pichler H, Emmerstorfer-Augustin A. Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods 2018; 147:50-65. [DOI: 10.1016/j.ymeth.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
|
3
|
Goñi FM. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1467-76. [PMID: 24440423 DOI: 10.1016/j.bbamem.2014.01.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 01/03/2023]
Abstract
The fluid mosaic model of Singer and Nicolson (1972) is a commonly used representation of the cell membrane structure and dynamics. However a number of features, the result of four decades of research, must be incorporated to obtain a valid, contemporary version of the model. Among the novel aspects to be considered are: (i) the high density of proteins in the bilayer, that makes the bilayer a molecularly "crowded" space, with important physiological consequences; (ii) the proteins that bind the membranes on a temporary basis, thus establishing a continuum between the purely soluble proteins, never in contact with membranes, and those who cannot exist unless bilayer-bound; (iii) the progress in our knowledge of lipid phases, the putative presence of non-lamellar intermediates in membranes, and the role of membrane curvature and its relation to lipid geometry, (iv) the existence of lateral heterogeneity (domain formation) in cell membranes, including the transient microdomains known as rafts, and (v) the possibility of transient and localized transbilayer (flip-flop) lipid motion. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain; Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
4
|
Abstract
The sarcoplasmic (SERCA 1a) Ca2+-ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an indispensable component of the excitation-contraction coupling, being at the expense of ATP hydrolysis involved in Ca2+/H+ exchange with a high thermodynamic efficiency across the sarcoplasmic reticulum membrane. The transporter serves as a prototype of a whole family of cation transporters, the P-type ATPases, which in addition to Ca2+ transporting proteins count Na+, K+-ATPase and H+, K+-, proton- and heavy metal transporting ATPases as prominent members. The ability in recent years to produce and analyze at atomic (2·3-3 Å) resolution 3D-crystals of Ca2+-transport intermediates of SERCA 1a has meant a breakthrough in our understanding of the structural aspects of the transport mechanism. We describe here the detailed construction of the ATPase in terms of one membraneous and three cytosolic domains held together by a central core that mediates coupling between Ca2+-transport and ATP hydrolysis. During turnover, the pump is present in two different conformational states, E1 and E2, with a preference for the binding of Ca2+ and H+, respectively. We discuss how phosphorylated and non-phosphorylated forms of these conformational states with cytosolic, occluded or luminally exposed cation-binding sites are able to convert the chemical energy derived from ATP hydrolysis into an electrochemical gradient of Ca2+ across the sarcoplasmic reticulum membrane. In conjunction with these basic reactions which serve as a structural framework for the transport function of other P-type ATPases as well, we also review the role of the lipid phase and the regulatory and thermodynamic aspects of the transport mechanism.
Collapse
|
5
|
Torrecillas A, Martínez-Senac MM, Goormaghtigh E, de Godos A, Corbalán-García S, Gómez-Fernández JC. Modulation of the Membrane Orientation and Secondary Structure of the C-Terminal Domains of Bak and Bcl-2 by Lipids. Biochemistry 2005; 44:10796-809. [PMID: 16086582 DOI: 10.1021/bi0503192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infrared spectroscopy was used to study the secondary structure of peptides which imitate the amino acid sequences of the C-terminal domains of the pro-apoptotic protein Bak (Bak-C) and the anti-apoptotic protein Bcl-2 (Bcl-2-C) when incorporated into different lipid vesicles. Whereas beta-pleated sheet was the predominant type of secondary structure of Bak-C in the absence of membranes, the same peptide adopted different structures depending on lipid composition when incorporated into membranes, with the predominance of the alpha-helical structure in the case of DMPC and other phospholipids, such as POPC and POPG. However, beta-pleated sheet was the predominant structure in other membranes containing phospholipids with longer fatty acyl chains and cholesterol, as well as in a mixture which imitates the composition of the outer mitochondrial membrane (OMM). Similarly, Bcl-2-C adopted a structure with a predominance of intermolecularly bound pleated beta-sheet in the absence of membranes, with alpha-helix as the main component in the presence of DMPC and POPG, but intermolecular beta-sheet in the presence of EYPC and cholesterol. Using ATR-IR, it was found that the orientation of the alpha-helical components of both domains was nearly perpendicular to the plane of the membrane in the presence of DMPC membranes, but not in EYPC or OMM membranes. (2)H NMR spectroscopy of DMPC-d(54) confirmed the transmembrane disposition of the domains, revealing that they broadened the phase transition temperature, although the order parameter of the C-D bonds was not affected, as might have been expected for intrinsic peptides. When all these results are taken together, it was concluded that the domains only form transmembrane helices in membranes of reduced thickness and that hydrophobic mismatching occurs in thicker membranes, as happens in the membrane imitating the composition of the OMM, where the peptides were partially located outside the membranes.
Collapse
Affiliation(s)
- Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Universidad de Murcia, Apartado 4021, E-30080 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Smondyrev AM, Berkowitz ML. Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. Biophys J 1999; 77:2075-89. [PMID: 10512828 PMCID: PMC1300489 DOI: 10.1016/s0006-3495(99)77049-9] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
By using molecular dynamics simulation technique we studied the changes occurring in membranes constructed of dipalmitoylphosphatidylcholine (DPPC) and cholesterol at 8:1 and 1:1 ratios. We tested two different initial arrangements of cholesterol molecules for a 1:1 ratio. The main difference between two initial structures is the average number of nearest-neighbor DPPC molecules around the cholesterol molecule. Our simulations were performed at constant temperature (T = 50 degrees C) and pressure (P = 0 atm). Durations of the runs were 2 ns. The structure of the DPPC/cholesterol membrane was characterized by calculating the order parameter profiles for the hydrocarbon chains, atom distributions, average number of gauche defects, and membrane dipole potentials. We found that adding cholesterol to membranes results in a condensing effect: the average area of membrane becomes smaller, hydrocarbon chains of DPPC have higher order, and the probability of gauche defects in DPPC tails is lower. Our results are in agreement with the data available from experiments.
Collapse
Affiliation(s)
- A M Smondyrev
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | | |
Collapse
|
7
|
Zhang X, Min X, Yang F. Conformational basis of the phospholipid requirement for the activity of SR Ca(2+)-ATPase. Chem Phys Lipids 1998; 97:55-64. [PMID: 10081149 DOI: 10.1016/s0009-3084(98)00092-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The delipidated sarcoplasmic reticulum (SR) Ca(2+)-ATPase was reconstituted into proteoliposomes containing different phospholipids. The result demonstrated the necessity of phosphatidylcholine (PC) for optimal ATPase activity and phosphatidylethanolamine (PE) for the optimal calcium transport activity. Fluorescence intensity of Fluorescein 5-isothiocyanate (FITC)-labeled enzyme at Lys515 as well as the measurement of the distance between 5-((2-[(iodoacetyl) amino] ethyl) amino)naphthalene-1-sulphonic acid (IAEDANS) label sites (Cys674/670) and Pr3+ demonstrated a conformational change of cytoplasmic domain, consequently, leading to the variation of the enzyme function with the proteoliposomes composition. Both the intrinsic fluorescence of Trp and its dynamic quenching by HB decreased with increasing PE content, revealing the conformational change of transmembrane domain. Time-resolved fluorescence study characterized three classes of Trp residues, which showed distinctive variation with the change in phospholipid composition. The phospholipid headgroup size caused the conformational change of SR Ca(2+)-ATPase, subsequent the ATPase activity and Ca2+ uptake.
Collapse
Affiliation(s)
- X Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, People's Republic of China
| | | | | |
Collapse
|
8
|
Abstract
The consensus view of biomembrane structure is outlined. The present model is built upon a fluid lipid matrix, usually two molecules in length, into which the proteins are embedded. The lipid bilayer organization is discussed, such as their phase transition and fluid character and the effect of cholesterol upon the chain organization. The non-lamellar arrangement which some lipids adopt is described. The use of new physical techniques for obtaining information about the structure and dynamics of membrane proteins are described. These techniques include electron diffraction, electron microscopy and FTIR spectroscopy. Models of the structures of the Ca2+-ATPase and the glucose transporter from erythrocytes are shown, indicating the putative helices embedded in the lipid bilayer and the groups of amino acids in the aqueous environment. These models are based upon biochemical methods to obtain amino acid sequences using DNA cloning techniques. Finally, an experimental method using triplet probes is described for the study of the rotational dynamics of membrane proteins. Labelled monoclonal antibodies for studying the dynamics of the glucose transporter have been used.
Collapse
Affiliation(s)
- D Chapman
- Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, London
| |
Collapse
|
9
|
Chen CH, Guard-Friar D, Yu CA. Thermotropic behavior of dimyristoylphosphatidylcholine in the presence of cytochrome c oxidase. Biopolymers 1985; 24:883-95. [PMID: 2990587 DOI: 10.1002/bip.360240511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Quinn PJ. The fluidity of cell membranes and its regulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1981; 38:1-104. [PMID: 7025092 DOI: 10.1016/0079-6107(81)90011-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Fellmann P, Andersen J, Devaux PF, le Maire M, Bienvenue A. Photoaffinity spin-labeling of the Ca2+ ATPase in sarcoplasmic reticulum: evidence for oligomeric structure. Biochem Biophys Res Commun 1980; 95:289-95. [PMID: 6251805 DOI: 10.1016/0006-291x(80)90737-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Abstract
Membranes are the most common cellular structures in both plants and animals. They are now recognized as being involved in almost all aspects of cellular activity ranging from motility and food entrapment in simple unicellular organisms, to energy transduction, immunorecognition, nerve conduction and biosynthesis in plants and higher organisms. This functional diversity is reflected in the wide variety of lipids and particularly of proteins that compose different membranes. An understanding of the physical principles that govern the molecular organization of membranes is essential for an understanding of their physiological roles sincestructureandfunctionare much more interdependent in membranes than in, say, simple chemical reactions in solution. We must recognize, however, that the word ‘understanding’ means different things in different disciplines, and nowhere is this more apparent than in this multidisciplinary area where biology, chemistry and physics meet.
Collapse
|
13
|
Abstract
Protein molecules in solution or in protein crystals are characterized by rather well-defined structures in which α-helical regions, β-pleated sheets, etc., are the key features. Likewise, the double helix of nucleic acids has almost become the trademark of molecular biology as such. By contrast, the structural analysis of lipids has progressed at a relatively slow pace. The early X-ray diffraction studies by V. Luzzati and others firmly established the fact that the lipids in biological membranes are predominantly organized in bilayer structures (Luzzati, 1968). V. Luzzati was also the first to emphasize the liquid-like conformation of the hydrocarbon chains, similar to that of a liquid paraffin, yet with the average orientation of the chains perpendicular to the lipid–water interface. This liquid–crystalline bilayer is generally observed in lipid–water systems at sufficiently high temperature and water content, as well as in intact biological membranes under physiological conditions (Luzzati & Husson, 1962; Luzzati, 1968; Tardieu, Luzzati & Reman, 1973; Engelman, 1971; Shipley, 1973). In combination with thermodynamic and other spectroscopic observations these investigations culminated in the formulation of the fluid mosaic model of biological membranes (cf. Singer, 1971). However, within the limits of this model the exact nature of lipid conformation and dynamics was immaterial, the lipids were simply pictured as circles with two squiggly lines representing the polar head group and the fatty acyl chains, respectively. No attempt was made to incorporate the well-established chemical structure into this picture. Similarly, membrane proteins were visualized as smooth rotational ellipsoids disregarding the possibility that protruding amino acid side-chains and irregularities of the backbone folding may create a rather rugged protein surface.
Collapse
|