1
|
Josa-Culleré L, Cogswell TJ, Georgiou I, Jay-Smith M, Jackson TR, Bataille CJR, Davies SG, Vyas P, Milne TA, Wynne GM, Russell AJ. Identification and Preliminary Structure-Activity Relationship Studies of 1,5-Dihydrobenzo[ e][1,4]oxazepin-2(3 H)-ones That Induce Differentiation of Acute Myeloid Leukemia Cells In Vitro. Molecules 2021; 26:6648. [PMID: 34771052 PMCID: PMC8588310 DOI: 10.3390/molecules26216648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most aggressive type of blood cancer, and there is a continued need for new treatments that are well tolerated and improve long-term survival rates in patients. Induction of differentiation has emerged as a promising alternative to conventional cytotoxic chemotherapy, but known agents lack efficacy in genetically distinct patient populations. Previously, we established a phenotypic screen to identify small molecules that could stimulate differentiation in a range of AML cell lines. Utilising this strategy, a 1,5-dihydrobenzo[e][1,4]oxazepin-2(3H)-one hit compound was identified. Herein, we report the hit validation in vitro, structure-activity relationship (SAR) studies and the pharmacokinetic profiles for selected compounds.
Collapse
Affiliation(s)
- Laia Josa-Culleré
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; (T.J.C.); (I.G.); (M.J.-S.); (C.J.R.B.); (S.G.D.); (G.M.W.)
| | - Thomas J. Cogswell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; (T.J.C.); (I.G.); (M.J.-S.); (C.J.R.B.); (S.G.D.); (G.M.W.)
| | - Irene Georgiou
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; (T.J.C.); (I.G.); (M.J.-S.); (C.J.R.B.); (S.G.D.); (G.M.W.)
| | - Morgan Jay-Smith
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; (T.J.C.); (I.G.); (M.J.-S.); (C.J.R.B.); (S.G.D.); (G.M.W.)
| | - Thomas R. Jackson
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; (T.R.J.); (P.V.); (T.A.M.)
| | - Carole J. R. Bataille
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; (T.J.C.); (I.G.); (M.J.-S.); (C.J.R.B.); (S.G.D.); (G.M.W.)
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Stephen G. Davies
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; (T.J.C.); (I.G.); (M.J.-S.); (C.J.R.B.); (S.G.D.); (G.M.W.)
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; (T.R.J.); (P.V.); (T.A.M.)
| | - Thomas A. Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; (T.R.J.); (P.V.); (T.A.M.)
| | - Graham M. Wynne
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; (T.J.C.); (I.G.); (M.J.-S.); (C.J.R.B.); (S.G.D.); (G.M.W.)
| | - Angela J. Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; (T.J.C.); (I.G.); (M.J.-S.); (C.J.R.B.); (S.G.D.); (G.M.W.)
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
2
|
Nasedkin A, Ermilova I, Swenson J. Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:927-940. [PMID: 34215900 PMCID: PMC8448678 DOI: 10.1007/s00249-021-01553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Microtubules are essential parts of the cytoskeleton that are built by polymerization of tubulin heterodimers into a hollow tube. Regardless that their structures and functions have been comprehensively investigated in a modern soft matter, it is unclear how properties of tubulin heterodimer influence and promote the self-assembly. A detailed knowledge of such structural mechanisms would be helpful in drug design against neurodegenerative diseases, cancer, diabetes etc. In this work atomistic molecular dynamics simulations were used to investigate the fundamental dynamics of tubulin heterodimers in a sheet and a short microtubule utilizing well-equilibrated structures. The breathing motions of the tubulin heterodimers during assembly show that the movement at the lateral interface between heterodimers (wobbling) dominates in the lattice. The simulations of the protofilament curvature agrees well with recently published experimental data, showing curved protofilaments at polymerization of the microtubule plus end. The tubulin heterodimers exposed at the microtubule minus end were less curved and displayed altered interactions at the site of sheet closure around the outmost heterodimers, which may slow heterodimer binding and polymerization, providing a potential explanation for the limited dynamics observed at the minus end.
Collapse
Affiliation(s)
- Alexandr Nasedkin
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| |
Collapse
|
3
|
Fees CP, Moore JK. A unified model for microtubule rescue. Mol Biol Cell 2019; 30:753-765. [PMID: 30672721 PMCID: PMC6589779 DOI: 10.1091/mbc.e18-08-0541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 11/23/2022] Open
Abstract
How microtubules transition from depolymerization to polymerization, known as rescue, is poorly understood. Here we examine two models for rescue: 1) an "end-driven" model in which the depolymerizing end stochastically switches to a stable state; and 2) a "lattice-driven" model in which rescue sites are integrated into the microtubule before depolymerization. We test these models using a combination of computational simulations and in vitro experiments with purified tubulin. Our findings support the "lattice-driven" model by identifying repeated rescue sites in microtubules. In addition, we discover an important role for divalent cations in determining the frequency and location of rescue sites. We use "wash-in" experiments to show that divalent cations inhibit rescue during depolymerization, but not during polymerization. We propose a unified model in which rescues are driven by embedded rescue sites in microtubules, but the activity of these sites is influenced by changes in the depolymerizing ends.
Collapse
Affiliation(s)
- Colby P. Fees
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
4
|
Morejohn LC, Bureau TE, Tocchi LP, Fosket DE. Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proc Natl Acad Sci U S A 2010; 81:1440-4. [PMID: 16593430 PMCID: PMC344851 DOI: 10.1073/pnas.81.5.1440] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have initiated immunological and drug-binding studies on the tubulins from different higher plant species. Antibodies were raised against electrophoretically separated rose (Rosa sp.) tubulin alpha- and beta-subunits and characterized by immunoblot autoradiographic assays. Each IgG preparation bound to its antigen and cross-reacted differentially with the respective tubulin subunits from an alga, sea urchin, rabbit, and cow. Antigenic determinants were shared more among the beta-subunits than among the alpha-subunits from these organisms. Tubulins were isolated from cultured cells of carrot (Daucus carota) and hibiscus (Hibiscus rosa-senensis). Immunoautoradiography and quantitation of cross-reactivity on blots showed nonidentity among homologous subunits from rose, carrot, hibiscus, and alga tubulins, with more antigenic differences among alpha-subunits than among beta-subunits. Comparative colchicine-binding assays showed that rose and hibiscus tubulins bound 33% and 65%, respectively, of the colchicine bound by carrot tubulin and that higher plant tubulins bound much less colchicine than bovine brain tubulin under identical conditions.
Collapse
Affiliation(s)
- L C Morejohn
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92717
| | | | | | | |
Collapse
|
5
|
Seeger MA, Rice SE. Microtubule-associated protein-like binding of the kinesin-1 tail to microtubules. J Biol Chem 2010; 285:8155-62. [PMID: 20071331 DOI: 10.1074/jbc.m109.068247] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The kinesin-1 molecular motor contains an ATP-dependent microtubule-binding site in its N-terminal head domain and an ATP-independent microtubule-binding site in its C-terminal tail domain. Here we demonstrate that a kinesin-1 tail fragment associates with microtubules with submicromolar affinity. Binding is largely electrostatic in nature, and is facilitated by a region of basic amino acids in the tail and the acidic E-hook at the C terminus of tubulin. The tail binds to a site on tubulin that is independent of the head domain-binding site but overlaps with the binding site of the microtubule-associated protein Tau. Surprisingly, the kinesin tail domain stimulates microtubule assembly and stability in a manner similar to Tau. The biological function of this strong kinesin tail-microtubule interaction remains to be seen, but it is likely to play an important role in kinesin regulation due to the close proximity of the microtubule-binding region to the conserved regulatory and cargo-binding domains of the tail.
Collapse
Affiliation(s)
- Mark A Seeger
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
6
|
Moseley JB, Bartolini F, Okada K, Wen Y, Gundersen GG, Goode BL. Regulated binding of adenomatous polyposis coli protein to actin. J Biol Chem 2007; 282:12661-8. [PMID: 17293347 DOI: 10.1074/jbc.m610615200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenomatous polyposis coli (APC) protein is a large tumor suppressor that is truncated in most colorectal cancers. The carboxyl-terminal third of APC protein mediates direct interactions with microtubules and the microtubule plus-end tracking protein EB1. In addition, APC has been localized to actin-rich regions of cells, but the mechanism and functional significance of this localization have remained unclear. Here we show that purified carboxyl-terminal basic domain of human APC protein (APC-basic) bound directly to and bundled actin filaments and associated with actin stress fibers in microinjected cells. Actin filaments and microtubules competed for binding to APC-basic, but APC-basic also could cross-link actin filaments and microtubules at specific concentrations, suggesting a possible role in cytoskeletal cross-talk. APC interactions with actin in vitro were inhibited by its ligand EB1, and co-microinjection of EB1 prevented APC association with stress fibers. Point mutations in EB1 that disrupted APC binding relieved the inhibition in vitro and restored APC localization to stress fibers in vivo, demonstrating that EB1-APC regulation is direct. Because tumor formation and metastasis involve coordinated changes in the actin and microtubule cytoskeletons, this novel function for APC and its regulation by EB1 may have direct implications for understanding the molecular basis of tumor suppression.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
7
|
Usui T. Actin- and microtubule-targeting bioprobes: their binding sites and inhibitory mechanisms. Biosci Biotechnol Biochem 2007; 71:300-8. [PMID: 17284862 DOI: 10.1271/bbb.60516] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Actin filaments and microtubules play important biological functions in mammalian cells, such as mitosis, cytokinesis, cell signaling, intracellular transport, and cell motility. Therefore, small molecules that interact with these cytoskeletons are expected to be useful not only as antitumor agents, but also as tools for understanding a wide variety of the cellular functions of cytoskeletons. A large number of compounds have been reported as anti-microtubule or anti-actin agents, but only a few compounds have been clarified as to their binding sites on target molecules and their inhibition mechanisms. Here, I describe our recent research into anti-actin and anti-microtubule natural products. Some inhibitors contain active moieties, such as alpha,beta-unsaturated delta-lactone or allely epoxide, in their structure, and covalently bind to their target molecules. Furthermore, some compounds show new inhibition mechanisms by binding on novel sites in target molecules.
Collapse
Affiliation(s)
- Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan. usui@sakura@.cc.tsukuba.ac.jp
| |
Collapse
|
8
|
Terry BJ, Purich DL. Nucleotide-dependent enzymes associated with microtubule systems. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 53:113-61. [PMID: 6120628 DOI: 10.1002/9780470122983.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Sontag CA, Stafford WF, Correia JJ. A comparison of weight average and direct boundary fitting of sedimentation velocity data for indefinite polymerizing systems. Biophys Chem 2004; 108:215-30. [PMID: 15043931 DOI: 10.1016/j.bpc.2003.10.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of sedimentation velocity data for indefinite self-associating systems is often achieved by fitting of weight average sedimentation coefficients (s(20,w)) However, this method discriminates poorly between alternative models of association and is biased by the presence of inactive monomers and irreversible aggregates. Therefore, a more robust method for extracting the binding constants for indefinite self-associating systems has been developed. This approach utilizes a set of fitting routines (SedAnal) that perform global non-linear least squares fits of up to 10 sedimentation velocity experiments, corresponding to different loading concentrations, by a combination of finite element simulations and a fitting algorithm that uses a simplex convergence routine to search parameter space. Indefinite self-association is analyzed with the software program isodesfitter, which incorporates user provided functions for sedimentation coefficients as a function of the degree of polymerization for spherical, linear and helical polymer models. The computer program hydro was used to generate the sedimentation coefficient values for the linear and helical polymer assembly mechanisms. Since this curve fitting method directly fits the shape of the sedimenting boundary, it is in principle very sensitive to alternative models and the presence of species not participating in the reaction. This approach is compared with traditional fitting of weight average data and applied to the initial stages of Mg(2+)-induced tubulin self-associating into small curved polymers, and vinblastine-induced tubulin spiral formation. The appropriate use and limitations of the methods are discussed.
Collapse
Affiliation(s)
- C A Sontag
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | |
Collapse
|
10
|
Vaillant AR, Zanassi P, Walsh GS, Aumont A, Alonso A, Miller FD. Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 2002; 34:985-98. [PMID: 12086645 DOI: 10.1016/s0896-6273(02)00717-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuronal activity and neurotrophins play a central role in the formation, maintenance, and plasticity of dendritic arbors. Here, we show that neuronal activity, mediated by electrical stimulation, KCl depolarization, or cholinergic receptor activation, promotes reversible dendrite formation in sympathetic neurons and that this effect is enhanced by NGF. Activity-dependent dendrite formation is accompanied by increased association of HMW MAP2 with microtubules and increased microtubule stability. Inhibition of either CaMKII or the MEK-ERK pathway, both of which phosphorylate MAP2, inhibits dendrite formation, but inhibition of both pathways simultaneously is required for dendrites to retract. These data indicate that neuronal activity signals via CamKII and the ERKs to regulate MAP2:microtubule interactions and hence reversible dendrite stability, and to provide a mechanism whereby activity and neurotrophins converge intracellularly to dynamically regulate dendritic morphology.
Collapse
Affiliation(s)
- Andrew R Vaillant
- Center for Neuronal Survival, Brain Tumor Research Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | |
Collapse
|
11
|
Usui T, Kondoh M, Cui CB, Mayumi T, Osada H. Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 1998; 333 ( Pt 3):543-8. [PMID: 9677311 PMCID: PMC1219615 DOI: 10.1042/bj3330543] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated the cell cycle inhibition mechanism and primary target of tryprostatin A (TPS-A) purified from Aspergillus fumigatus. TPS-A inhibited cell cycle progression of asynchronously cultured 3Y1 cells in the M phase in a dose- and time-dependent manner. In contrast, TPS-B (the demethoxy analogue of TPS-A) showed cell-cycle non-specific inhibition on cell growth even though it inhibited cell growth at lower concentrations than TPS-A. TPS-A treatment induced the reversible disruption of the cytoplasmic microtubules of 3Y1 cells as observed by indirect immunofluorescence microscopy in the range of concentrations that specifically inhibited M-phase progression. TPS-A inhibited the assembly in vitro of microtubules purified from bovine brains (40% inhibition at 250 microM); however, there was little or no effect on the self-assembly of purified tubulin when polymerization was induced by glutamate even at 250 microM TPS-A. TPS-A did not inhibit assembly promoted by taxol or by digestion of the C-terminal domain of tubulin. However, TPS-A blocked the tubulin assembly induced by inducers interacting with the C-terminal domain, microtubule-associated protein 2 (MAP2), tau and poly-(l-lysine). These results indicate that TPS-A is a novel inhibitor of MAP-dependent microtubule assembly and, through the disruption of the microtubule spindle, specifically inhibits cell cycle progression at the M phase.
Collapse
Affiliation(s)
- T Usui
- Antibiotics Laboratory, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-01, Japan
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- J A Schellman
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA
| | | |
Collapse
|
13
|
Ward LD, Seckler R, Timasheff SN. Energy transfer studies of the distances between the colchicine, ruthenium red, and bisANS binding sites on calf brain tubulin. Biochemistry 1994; 33:11900-8. [PMID: 7522553 DOI: 10.1021/bi00205a028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fluorescence energy transfer experiments were performed in order to measure the spatial separation between the colchine and Ruthenium Red binding sites, the high-affinity bisANS and Ruthenium Red sites, and the allocolchicine and high-affinity bisANS sites on calf brain tubulin. Energy transfer was observed between both colchicine and allocolchicine and Ruthenium Red, resulting in a distance of 40-45 A between these sites on the tubulin molecule. No detectable energy transfer could be observed when allocolchicine was used as fluorescence donor and bisANS as acceptor or when bisANS was used as donor and Ruthenium Red as acceptor. This indicates that the distance of separation between the allocolchicine and bisANS sites is greater than 50 A, while that between the bisANS and Ruthenium Red sites is greater than 72 A. On the basis of these and previous distance measurements (Ward & Timasheff, 1988), two triangles of binding sites have been defined (colchicine-bisANS-E-site and colchicine-bisANS-Ruthenium Red). Since the dihedral angle between them is not known, a schematic model has been drawn with all the sites located in a single plane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L D Ward
- Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | |
Collapse
|
14
|
Moraga DM, Nuñez P, Garrido J, Maccioni RB. A tau fragment containing a repetitive sequence induces bundling of actin filaments. J Neurochem 1993; 61:979-86. [PMID: 8360695 DOI: 10.1111/j.1471-4159.1993.tb03611.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Much indirect evidence suggests that the interconnections of actin microfilaments with the microtubule system are mediated by microtubule-associated proteins (MAPs). In this study we provide new data to support the interaction of a specific tubulin-binding domain on tau with actin in vitro. In actin polymerization assays, the synthetic peptide VRSKIGSTENLKHQPGGG, corresponding to the first repetitive sequence of tau protein, increased turbidity at 320 nm in a dose-dependent fashion. A salient feature of the tau peptide-induced assembly process is the formation of a large amount of actin filament bundles, as revealed by electron microscopic analysis. An increase in the tau peptide concentration resulted in a proportional increase in the bundling of actin filaments. It is interesting that a gradual decrease of pH within the range 7.6-4.7 resulted in a higher effect of tau peptide in promoting bundles of actin filaments. A similar pH-dependent effect was observed for tau protein-induced bundling. An analysis of the mechanisms that operate in the peptide induction of actin filament bundles suggests the involvement of electrostatic forces, because the neutralization of epsilon-aminolysyl residues by selective carbamoylation resulted in a complete loss of the peptide induction of actin bundles. The data suggest that a tau repetitive sequence (also found in MAP-2 and MAP-4) containing a common tubulin binding motif may constitute a functional domain on tau for the dynamics of the interconnections between actin filaments and microtubules.
Collapse
Affiliation(s)
- D M Moraga
- International Center for Cancer and Developmental Biology, Universidad de Chile, Santiago
| | | | | | | |
Collapse
|
15
|
Novella IS, Andreu JM, Andreu D. Chemically synthesized 182-235 segment of tau protein and analogue peptides are efficient in vitro microtubule assembly inducers of low apparent sequence specificity. FEBS Lett 1992; 311:235-40. [PMID: 1397321 DOI: 10.1016/0014-5793(92)81110-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 54-amino acid peptide reproducing the first and second repeats and intervening spacer sequence of the tubulin binding motif (residues 182-235) of murine tau protein, and several congeners representing different degrees of sequence scrambling have been prepared by solid phase methods and fully characterized chemically. These double-repeat peptides have been shown to induce microtubule formation at concentrations about one order of magnitude lower than single-repeat controls, under conditions close to the critical concentration needed for tubulin self-assembly. On the other hand, partial loss of microtubule-inducing capacity was observed for peptides with primary structures increasingly disorganized with respect to the canonical peptide. These results call into question the assumption that a high degree of primary structure specificity is involved in the tau-tubulin interaction leading to in vitro microtubule formation.
Collapse
Affiliation(s)
- I S Novella
- Departament de Química Orgànica, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
16
|
Birgbauer E, Solomon F. A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins. J Biophys Biochem Cytol 1989; 109:1609-20. [PMID: 2677023 PMCID: PMC2115795 DOI: 10.1083/jcb.109.4.1609] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The marginal band of nucleated erythrocytes is a microtubule organelle under rigorous quantitative and spatial control, with properties quite different from those of the microtubule organelles of cultured cells. Previous results suggest that proteins other than tubulin may participate in organizing the marginal band, and may interact with elements of the erythrocyte cytoskeleton in addition to microtubules. To identify such species, we raised mAbs against the proteins that assemble from chicken brain homogenates with tubulin. One such antibody binds to a single protein in chicken erythrocytes, and produces an immunofluorescence pattern colocalizing with marginal band microtubules. Several properties of this protein are identical to those of ezrin, a protein isolated from brush border and localized to motile elements of cultured cells. A significant proportion of the antigen is not soluble in erythrocytes, as determined by extraction with nonionic detergent. This cytoskeleton-associated fraction is unaffected by treatments that solubilize the marginal band microtubules. The protein has properties of both microtubule- and microfilament-associated proteins. In the accompanying manuscript (Goslin, K., E. Birgbauer, G. Banker, and F. Solomon. 1989. J. Cell Biol. 109:1621-1631), we show that the same antibody recognizes a component of growth cones with a similar dual nature. In early embryonic red blood cells, the antigen is dispersed throughout the cell and does not colocalize with assembled tubulin. Its confinement to the marginal band during development follows rather than precedes that of microtubules. These results, along with previous work, suggest models for the formation of the marginal band.
Collapse
Affiliation(s)
- E Birgbauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
17
|
Abstract
Tau protein is a microtubule-associated protein implicated in the spatial and temporal specification of microtubules and has been found in the neurofibrillary tangles of Alzheimer's disease. Determination of tau protein structure has revealed three 18 amino acid repeated sequences hypothesized to be tubulin binding sites. Using tau cDNA clones from human fetal brain, we employed E. coli expression systems to synthesize tau protein and fragments of tau protein in order to identify the microtubule binding site. A fragment containing the three repeated sequences binds microtubules, while the amino-terminal half of the protein does not bind. Fragments containing two or one repeat are also capable of binding, indicating that the basic tubulin interacting unit is one repeat.
Collapse
Affiliation(s)
- G Lee
- Department of Neurology (Neuroscience), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | | |
Collapse
|
18
|
Kanazawa K, Timasheff SN. Preparation and characterization of des-C-terminal tubulin. JOURNAL OF PROTEIN CHEMISTRY 1989; 8:131-47. [PMID: 2669814 DOI: 10.1007/bf01025084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tubulin, from which the C-terminal peptide had been removed by limited proteolysis was compared to intact native tubulin. Des-C-terminal tubulin (with a nominal molecular weight of 48,000) was prepared by digestion with 1% subtilisin carlsberg at 25 degrees C for 16 min, and the product was purified by ion-exchange chromatography on cellulose DE-52 followed by Sephadex G-50 chromatography. The purified product was composed of the cores of both the alpha- and beta-subunits of tubulin and was free from other proteins and peptides containing the COOH-terminal moiety as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) Sephadex G-50 and ion exchange DE-52 cellulose chromatographies, and ultracentrifugation analysis. The ultraviolet (UV) absorption and fluorescence spectra of des-C-terminal tubulin were the same as those of native tubulin. The sedimentation coefficient of des-C-terminal tubulin (5.9S) was slightly higher than that of native tubulin reflecting a decrease in axial ratio. The change in circular dichroism in the far UV indicated a decrease of alpha-helical contents by 10-15%. These optical properties of des-C-terminal tubulin indicate that the elimination of the COOH-terminal region from tubulin did not change the conformation of the core tubulin molecule significantly, the decrease in alpha-helix being due to the elimination of the C-terminal peptide. des-C-terminal tubulin bound 2 moles/mole of GTP and 1 mole/mole of cholchicine, just as intact tubulin, but its binding ability of ruthenium red was reduced.
Collapse
Affiliation(s)
- K Kanazawa
- Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254
| | | |
Collapse
|
19
|
Lacey E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol 1988; 18:885-936. [PMID: 3066771 DOI: 10.1016/0020-7519(88)90175-0] [Citation(s) in RCA: 393] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Howard WD, Timasheff SN. Linkages between the effects of taxol, colchicine, and GTP on tubulin polymerization. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57307-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Szasz J, Yaffe MB, Elzinga M, Blank GS, Sternlicht H. Microtubule assembly is dependent on a cluster of basic residues in alpha-tubulin. Biochemistry 1986; 25:4572-82. [PMID: 3768299 DOI: 10.1021/bi00364a018] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous studies have shown that tubulin, a major protein component of the microtubule, is rendered assembly incompetent when a highly reactive lysine residue (HRL) in the alpha polypeptide of tubulin dimer is reductively methylated [cf. Sherman, G., Rosenberry, T. L., & Sternlicht, H. (1983) J. Biol. Chem. 258, 2148-2156]. In this study we demonstrate that the HRL in bovine brain tubulin is Lys-394, a residue proximal in the alpha-tubulin sequence to the highly negatively charged carboxy-terminus region (residues 412-450) previously implicated in assembly. pH studies were undertaken to probe the local environment of Lys-394. These studies indicated that Lys-394 reactivity toward HCHO is sensitive to the titration of a pKa 6.3 group presumed to be a histidine residue. This assignment is supported by our finding that histidine modification via diethyl pyrocarbonate strongly affects Lys-394 reactivity toward HCHO as well as microtubule assembly. We propose on the basis of secondary structure considerations and published sequence data for a variety of tubulins that Lys-394 is part of an evolutionarily conserved cluster of basic residues (effective charge: 2+ to 2.5+ at neutral pH) composed of Lys-394, His-393, and Arg-390, which is important for tubulin function and which renders Lys-394 reactive as a nucleophile.
Collapse
|
22
|
McLean WG, Beahon SJ, Casson IF. Diabetic rat serum has an increased capacity to inhibit brain microtubule formation in vitro. NEUROCHEMICAL PATHOLOGY 1986; 4:165-76. [PMID: 3561892 DOI: 10.1007/bf02834356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The assembly of pig brain microtubule proteins was measured in vitro in the presence of serum from control rats and rats that had been rendered diabetic with 50 mg/kg streptozotocin 14 d previously. Control serum inhibited total microtubule assembly and increased the lag time before assembly commenced. Serum from diabetic animals was significantly more potent in both respects. The effect on lag time was reproduced in a predominantly albumin-containing fraction of serum that had been fractionated by affinity chromatography. Glycosylation of rat albumin in vitro led to an increase in its ability to increase polymerization lag time, but the concentration of albumin required was greater than that found in the serum fractions. The results indicate that diabetic serum contains factors that can adversely affect microtubule formation and that part of this effect may be caused by the presence of glycosylated albumin. This phenomenon may underlie some of the complications associated with diabetes.
Collapse
|
23
|
Sackett DL, Bhattacharyya B, Wolff J. Promotion of tubulin assembly by carboxyterminal charge reduction. Ann N Y Acad Sci 1986; 466:460-6. [PMID: 3460425 DOI: 10.1111/j.1749-6632.1986.tb38424.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Blank GS, Yaffe MB, Szasz J, George E, Rosenberry TL, Sternlicht H. The role of Lys 394 in microtubule assembly. Ann N Y Acad Sci 1986; 466:467-81. [PMID: 3089112 DOI: 10.1111/j.1749-6632.1986.tb38425.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Asai DJ, Thompson WC, Purich DL, Wilson L. Microtubule-associated proteins. In vitro isolation versus in vivo function. Ann N Y Acad Sci 1986; 466:410-2. [PMID: 3089110 DOI: 10.1111/j.1749-6632.1986.tb38409.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
|
27
|
Pillus L, Solomon F. Components of microtubular structures in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1986; 83:2468-72. [PMID: 3517870 PMCID: PMC323319 DOI: 10.1073/pnas.83.8.2468] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Most studies of cytoskeletal organelles have concentrated on molecular analyses of abundant and biochemically accessible structures. In many of the classical cases, however, the nature of the system chosen has precluded a concurrent genetic analysis. The mitotic spindle of the yeast Saccharomyces cerevisiae is one example of an organelle that can be studied by both classical and molecular genetics. We show here that this microtubule structure also can be examined biochemically. The spindle can be isolated by selective extractions of yeast cells by using adaptations of methods successfully applied to animal cells. In this way, microtubule-associated proteins of the yeast spindle are identified.
Collapse
|
28
|
Abstract
During mouse brain maturation cellular transglutaminase specific activity increases 2.5 fold from day 3 to adulthood. A more pronounced increase is seen during morphological differentiation of mouse neuroblastoma cells, where serum withdrawal induces neurite outgrowth concomitant with a 10 fold increase in transglutaminase specific activity. In contrast, non-dividing neuroblastoma cells lacking neurites show only a 1.5 fold increase in enzyme specific activity. Transglutaminase activity does not reach maximal levels until extensive neurite formation has occurred. More than 80% of the transglutaminase activity is found in the soluble component of brain and neuroblastoma homogenates. Using [3H]-putrescine as the acyl acceptor, endogenous acyl donor substrates in the neuroblastoma cells included proteins that comigrated on SDS-PAGE with tubulin and actin; however, very high molecular weight crosslinked material is the major reaction product in vitro. When purified brain tubulin, microtubule associated proteins and microtubules were compared as exogenous substrates, only the polymeric microtubules were a good acyl donor substrate. Furthermore, preincubation of purified tubulin with transglutaminase and putrescine stimulated both the rate and extent of microtubule assembly. These findings suggest that transglutaminase may mediate covalent crosslinking of microtubules to other cellular components, or the post-translational modification of tubulin by the formation of gamma-glutamylamines.
Collapse
|
29
|
Solomon F. Direct identification of microtubule-associated proteins by selective extraction of cultured cells. Methods Enzymol 1986; 134:139-47. [PMID: 3821557 DOI: 10.1016/0076-6879(86)34082-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Williams RC, Correia JJ, DeVries AL. Formation of microtubules at low temperature by tubulin from antarctic fish. Biochemistry 1985; 24:2790-8. [PMID: 4027227 DOI: 10.1021/bi00332a029] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tubulin was isolated from two species of antarctic fish, Pagothenia borchgrevinki and Dissostichus mawsoni, by cycles of temperature-dependent assembly, centrifugation, disassembly, and centrifugation. The preparations were found to consist almost entirely of tubulin and to contain negligibly small amounts of microtubule-associated proteins. This tubulin polymerized to make microtubules of ordinary dimensions. The formed microtubules appear to be in labile equilibrium with free tubulin dimer at all temperatures observed. In a buffer consisting of 0.1 M 1,4-piperazinediethanesulfonic acid, 2 mM dithioerythritol, 1 mM MgSO4, 2 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, and 1 mM guanosine 5'-triphosphate, pH 6.9, the tubulin of P. borchgrevinki has a critical concentration for assembly of 0.046 (+/- 0.008) mg/mL at 35 degrees C and 0.74 (+/- 0.15) mg/mL at the habitat temperature of the fish, -1.8 degrees C. The critical concentration measured at the lower temperature is quite small relative to the critical concentration for formation of mammalian microtubules from pure tubulin at the same temperature, which must be at least 2 orders of magnitude larger. The antarctic fish microtubules may thus be called "cold stable" by comparison with mammalian microtubules. They do not fully dissociate at temperatures near 0 degree C because they are composed of tubulin that assembles more readily at these temperatures than does mammalian tubulin. There is no evidence for the presence of a cold-stabilizing factor in association with the tubulin. These findings suggest that alteration of tubulin may be a means by which some poikilotherms can adapt to a cold environment.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
31
|
Arakawa T, Frieden C. The use of the fluorescence photobleaching recovery technique to study the self-assembly of tubulin. Anal Biochem 1985; 146:134-42. [PMID: 3922241 DOI: 10.1016/0003-2697(85)90407-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorescently labeled microtubule-associated proteins or poly-L-lysine (13,000 MW) were prepared by reaction with fluorescein isothiocyanate. The labeled compounds were used as probes of the assembly of calf brain tubulin using fluorescence photobleaching recovery techniques which allow measurement of the diffusion coefficient and percentage mobility of the fluorescent probe. When unfractionated tubulin (defined as material containing tubulin and microtubule-associated proteins) was polymerized at room temperature or 37 degrees C, either probe could be incorporated into microtubules, since the observed diffusion coefficient (approximately 1.7 X 10(-8) cm2/s) was much slower than that for either probe free in solution. The microtubules formed in the presence of labeled microtubule-associated proteins were free to diffuse while those formed in the presence of labeled polylysine were partially immobilized. Thus the fluorescence photobleaching recovery technique can be used to measure crosslinking of microtubules as well as assembly or interactions with other structures. When unfractionated tubulin was incubated with labeled polylysine in the presence of Ca2+ at room temperature, the observed diffusion coefficient (approximately 5.1 X 10(-8) cm2/s) probably represents the formation of rings of tubulin. The effect of mild and vigorous shearing, of cholchicine, and of different Mg2+ concentrations on the properties of the system were examined.
Collapse
|
32
|
Asai DJ, Thompson WC, Wilson L, Dresden CF, Schulman H, Purich DL. Microtubule-associated proteins (MAPs): a monoclonal antibody to MAP 1 decorates microtubules in vitro but stains stress fibers and not microtubules in vivo. Proc Natl Acad Sci U S A 1985; 82:1434-8. [PMID: 3883359 PMCID: PMC397276 DOI: 10.1073/pnas.82.5.1434] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A monoclonal antibody (mAb 7-1.1) was produced against a bovine brain microtubule-associated protein (MAP) preparation that had been separated from tubulin after initial purification by cycles of microtubule assembly and disassembly in vitro. The antibody reacted specifically with two high molecular weight polypeptides of the MAP 1 class, designated MAP 1.1 and MAP 1.2, and also with the surfaces of MAP 1-containing microtubules that had been assembled in vitro. Double immunofluorescence microscopy using mAb 7-1.1 and a well-characterized rabbit anti-tubulin antibody revealed that mAb 7-1.1 stained stress fibers in fixed and permeabilized cultured mammalian cells rather than microtubules. The antibody also stained cell nuclei in a punctate fashion. mAb 7-1.1 is one of a number of monoclonal antibodies that react with presumptive MAP 1 polypeptides. Some of the MAP 1 antibodies have been found to bind specifically to microtubules in fixed and permeabilized cells, while others have been reported to react with nonmicrotubule structures. Our results, together with the results of other investigations, indicate that "MAP 1" may be a family of several high molecular weight polypeptides that adventitiously behave as MAPs by the criterion of in vitro coassembly with tubulin through cycles of polymerization and depolymerization but whose cellular distributions, and perhaps functions, are varied.
Collapse
|
33
|
Mithieux G, Alquier C, Roux B, Rousset B. Interaction of tubulin with chromatin proteins. H1 and core histones. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42580-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
34
|
Interaction of microtubule-associated proteins with actin filaments. Studies using the fluorescence-photobleaching recovery technique. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(20)71271-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Pepper DA, Kim HY, Berns MW. Studies of a microtubule-associated protein using a monoclonal antibody elicited against mammalian mitotic spindles. J Cell Biol 1984; 99:503-11. [PMID: 6204993 PMCID: PMC2113281 DOI: 10.1083/jcb.99.2.503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have devised a procedure for the identification of individual molecules which are associated with the mitotic spindle apparatus and cytoskeleton in mammalian cells. We prepared monoclonal antibody-producing hybridomas by immunizing mice with mitotic spindles isolated from cultured HeLa cells. Among several antibody-producing clones obtained, one hybridoma (22MA2) produced an antibody that recognizes a putative microtubule-associated protein which exhibits unusual distribution characteristics in cultured cells. Immunofluorescence studies showed that during mitosis the 22MA2 antigen is distributed in parallel with the spindle fibers of the mitotic apparatus, and that during interphase the antigen is always associated to a limited extent with cytoplasmic microtubules. Also, the co-distribution of the antigen with microtubules was found to be Colcemid sensitive. However, the 22MA2 antibody immunofluorescently stained the nuclei of cells in the exponential growth phase, but did not stain the nuclei of cells that had grown to confluence. This nuclear fluorescence appears to be directly related to cell density rather than nutritional (serum) factors in the growth medium. The results suggest that the antigen undergoes some change in structure or distribution in response to changes in the proliferative capacity of the cell. Biochemical analyses of cytoplasmic, nuclear, and mitotic spindle subcellular fractions show that the antigen exhibits a polypeptide molecular weight of 240,000 is found in various mammalian cells ranging from marsupial to human, and is particularly susceptible to proteolysis.
Collapse
|
36
|
Arakawa T, Timasheff SN. The mechanism of action of Na glutamate, lysine HCl, and piperazine-N,N'-bis(2-ethanesulfonic acid) in the stabilization of tubulin and microtubule formation. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42942-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Purich DL, Kristofferson D. Microtubule assembly: a review of progress, principles, and perspectives. ADVANCES IN PROTEIN CHEMISTRY 1984; 36:133-212. [PMID: 6382962 DOI: 10.1016/s0065-3233(08)60297-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Abstract
Microtubule-associated proteins (MAP) have been identified in cultures of rat sympathetic neurons. In all of the experiments performed here, the cultures consisted of greater than 97% neurons. 26 proteins were identified in these neuronal cultures that (a) remained associated with cytoskeletons prepared with a Triton X-100-containing microtubule-stabilizing buffer, (b) were released from such cytoskeletons by incubation in microtubule-depolymerizing buffers, (c) were not detected in cytoskeletons prepared from cultures depleted of microtubules by treatment with podophyllotoxin, and (d) co-cycled with rat brain microtubule proteins. We conclude that these 26 proteins are associated with microtubules in sympathetic neurons. Two of these proteins have molecular weights of approximately 30,000 and isoelectric points of approximately 6.2; the rest of the proteins range in molecular weight from 60,000 to 76,000 and isoelectric point from 6.3 to 6.9. This latter group of MAPs was heat labile. Several other proteins in the neuronal cultures had the solubility properties and drug-lability expected of MAP. All of these proteins had apparent molecular weights greater than 200,000; one of these putative MAP co-migrated with rat brain MAP-1. We did not detect any putative MAP in these cultures that co-migrated with rat brain MAP-2. In isoelectric focusing-SDS PAGE, the 24 MAP with molecular weights of 60,000-76,000 appeared to comprise four distinct molecular weight classes. Each molecular weight class was in turn composed of several proteins that varied in isoelectric point. In peptide mapping experiments, the isoelectric variants of each molecular weight class gave rise to very similar peptide maps. These observations suggest that each molecular weight class consists of several closely related proteins. It was also determined that all except the most basic member of the four MAP classes could be phosphorylated in vivo, raising the possibility that differential phosphorylation contributed to the variation in the isoelectric points of the members of each MAP class. We performed pulse-chase experiments to further evaluate the contribution of posttranslational modification to the generation of the complex population of MAP in the molecular weight range of 60,000 to 76,000. In cultures labeled for 20 min, only the more basic members of each MAP class were detectably labeled, while in cultures labeled for 20 min and then chased for 220 min the more acidic members of the MAP classes became labeled.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
39
|
Lambeir A, Engelborghs Y. A quantitative description of microtubule formation in the presence of tubulin-colchicine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 132:369-73. [PMID: 6840093 DOI: 10.1111/j.1432-1033.1983.tb07372.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The overall polymerization of microtubule protein in the presence of tubulin-colchicine is described by competition between an intrinsically unaltered nucleation process and the process of propagation inhibited by the binding of tubulin-colchicine to the microtubule ends. The inhibition of propagation can be quantified with the binding constant previously determined [Lambeir and Engelborghs (1980) Eur. J. Biochem. 109, 619-624]. A quantitative description of the competition between nucleation and propagation follows from the kinetic theory of Oosawa. Comparison of several subsequent cycles of polymerization/depolymerization shows that a fraction of cold-stable complexes are formed. An equilibrium derivation is presented which shows the enhanced nucleation upon binding of inhibiting proteins, by the increase of the nucleation parameter A [Oosawa and Asakura (1975) Thermodynamics of the Polymerization of Protein, Academic Press, London, New York]. The kinetic and equilibrium derivations presented here are generally applicable to all capping factors, e.g. some of the actin-binding proteins.
Collapse
|
40
|
Andreu JM, Wagenknecht T, Timasheff SN. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly. Biochemistry 1983; 22:1556-66. [PMID: 6849866 DOI: 10.1021/bi00276a006] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The polymerization of purified tubulin-colchicine complex, which results in polymers different from microtubules under microtubule-promoting conditions, has been characterized. It proceeds as a nucleated condensation polymerization, requires Mg2+, and is inhibited by small concentrations of Ca2+. Polymerization requires GTP binding, but GDP is inhibitory. The GTPase activity proceeds, but it is unlinked to polymerization. The thermodynamic characteristics of the growth reaction, namely, the apparent changes of free energy, enthalpy, entropy, heat capacity, and preferential interaction with H+ and Mg2+, are very similar to those of microtubule assembly. It is proposed that the interactions responsible for the two types of polymerization are very similar and that the molecular mechanism of microtubule inhibition by colchicine may consist in a drug-induced distortion of the normal protomer bonding geometry.
Collapse
|
41
|
Doenges KH, Zimmermann HP, Flemming M, Schroeter D. In vitro formation of different tubulin polymers from purified tubulin of Ehrlich ascites tumor cells. FEBS Lett 1983; 151:286-90. [PMID: 6832357 DOI: 10.1016/0014-5793(83)80088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Preparations of cycled tubulin from Ehrlich ascites tumor cells contain several accessory proteins; once or twice cycled microtubule preparations are usually composed of fibers 10 nm in diameter, but lack vimentin. Highly purified tubulin consists of alpha- and beta-tubulin and a minor component which was identified by peptide mapping as a second beta-chain. This pure tubulin is able to form in vitro at low concentrations (1 mg protein/ml) fibers of about 10 nm width, and at higher concentrations (3.5 mg protein/ml) normal microtubules.
Collapse
|
42
|
|
43
|
Job D, Rauch CT, Fischer EH, Margolis RL. Recycling of cold-stable microtubules: evidence that cold stability is due to substoichiometric polymer blocks. Biochemistry 1982; 21:509-15. [PMID: 7066303 DOI: 10.1021/bi00532a015] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A substantial subpopulation of mammalian brain crude extract microtubules is resistant to cold-temperature disassembly. We propose here that microtubules are rendered cold stable by rare substoichiometric blocks. Mild shearing of rat brain cold-stable microtubules makes them largely cold labile. In addition, cold-stable microtubules can be destabilized by exposure to low concentrations of calmodulin (5 microM) in the presence of calcium at 0 degree C. Cold-disassembled microtubule protein, obtained from sheared or calmodulin-treated cold-stable preparations, re-forms a cold-stable subpopulation upon reassembly. These observations allow strategies for the recycling purification of cold-stable microtubules. Comparison of purified cold-labile and cold-stable material by gel electrophoresis shows enrichment for a few unique polypeptides, of 135, 70-82, and 56 kilodaltons, in the cold-stable preparation. The 64-kilodalton "switch protein", previously identified as uniquely dephosphorylated in cold-stable microtubules, is equally represented in recycled cold-stable and cold-labile microtubule preparations. Furthermore, when disassembled, cold-stable microtubule proteins are passed through a calmodulin affinity column on which the polypeptides characteristic of cold-stable microtubules are specifically retained, the breakthrough (unbound) material repolymerizes into cold-labile microtubules only. Based on the above data, a model is presented in which microtubules are rendered cold stable by the presence of substoichiometric, calmodulin-sensitive blocks that randomly reshuffle upon reassembly of cold-stable microtubules.
Collapse
|
44
|
Vallee RB. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Biophys Biochem Cytol 1982; 92:435-42. [PMID: 6120944 PMCID: PMC2112074 DOI: 10.1083/jcb.92.2.435] [Citation(s) in RCA: 465] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The effect of the antimitotic drug taxol on the association of MAPs (microtubule-associated proteins) with microtubules was investigated. Extensive microtubule assembly occurred in the presence of Taxol at 37 degrees C. at 0 degrees C, and at 37 degrees C in the presence of 0.35 M NaCl, overcoming the inhibition of assembly normally observed under the latter two conditions. At 37 degrees C and at 0 degrees C, complete assembly of both tubulin and the MAPs was observed in the presence of Taxol. However, at elevated ionic strength, only tubulin assembled, forming microtubules devoid of MAPs. The MAPs could also be released from the surface of preformed microtubules by exposure to elevated ionic strength. These properties provided the basis for a rapid new procedure for isolating microtubules and MAPs of high purity from small amounts of biological material. The MAPs could be recovered by exposure of the microtubules to elevated ionic strength and subjected to further analysis. Microtubules and MAPs were prepared from bovine cerebral cortex (gray matter) and from HeLa cells. MAP 1, MAP2, and the tau MAPs, as well as species of Mr = 28,000 and 30,000 (LMW, or low molecular weight, MAPs) and a species of Mr = 70,000 were isolated from gray matter. Species identified as the 210,000 and 125,000 mol wt HeLa MAPs were isolated from HeLa cells. Microtubules were also prepared for the first time from white matter. All of the MAPs identified in gray matter preparations were identified in white matter, but the amounts of individual MAP species differed. The most striking difference in the two preparations was a fivefold lower level of MAP 2 relative to tubulin in white matter than in gray. The high molecular weigh MAP, MAP1, was present in equal ratio to tubulin in white and gray matter. These results indicate that MAP 1 and MAP2, as well as other MAP species, may have a different cellular or subcellular distribution.
Collapse
|
45
|
Zieve G, Solomon F. Proteins specifically associated with the microtubules of the mammalian mitotic spindle. Cell 1982; 28:233-42. [PMID: 6120767 DOI: 10.1016/0092-8674(82)90341-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The molecular species that determine the unique structure and functions of the microtubules in the mitotic spindle are not known. We describe the results of two new approaches to the molecular structure of the spindle. Both approaches rely on detergent-extracted preparations of synchronized populations of cells metabolically labeled with 35S-methionine or 32P-phosphate. In these preparations, the original cellular microtubules are preserved. The microtubule components can be released from the detergent-extracted preparations by selective depolymerization with calcium ions. Alternatively, the microtubules can be stabilized by taxol, freed of chromatin by digestion with DNAase and freed of the surrounding cage of intermediate filaments by further extraction at low ionic strength. Gel electrophoresis of each of these preparations of mitotic microtubules demonstrates that they contain microtubule-associated proteins that we have previously shown to be present in interphase microtubules. They also contain a protein of 150,000 daltons, which is the first mitosis-specific microtubule-associated protein identified in mammalian cells.
Collapse
|
46
|
|
47
|
|
48
|
Karr TL, White HD, Coughlin BA, Purich DL. A brain microtubule protein preparation depleted of mitochondrial and synaptosomal components. Methods Cell Biol 1982; 24:51-60. [PMID: 7098996 DOI: 10.1016/s0091-679x(08)60647-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
|
50
|
Bennett V, Davis J. Erythrocyte ankyrin: immunoreactive analogues are associated with mitotic structures in cultured cells and with microtubules in brain. Proc Natl Acad Sci U S A 1981; 78:7550-4. [PMID: 6461004 PMCID: PMC349306 DOI: 10.1073/pnas.78.12.7550] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human erythrocyte ankyrin, the membrane attachment protein for spectrin, has been detected by radioimmunoassay in a variety of cells and tissues. This report identifies polypeptides crossreacting with ankyrin in brain and HeLa cells and demonstrates that one function of these ankyrin analogues involves association with microtubules. Ankyrin immunoreactivity was localized by indirect immunofluorescence in a colchicine- and detergent-sensitive cytoplasmic meshwork in interphase cells. There also was specific nuclear staining, localized in a bright spots, which was displaced entirely by ankyrin or by high molecular weight microtubule-associated proteins (MAPs) from brain. In dividing cells, the punctate nuclear staining and the meshwork disappeared. Fluorescence was localized at the spindle pole during metaphase and was redistributed to the cleavage furrow in later stages of mitosis. An immunoreactive Mr 370,000 polypeptide comigrating with MAP1 was identified in brain extracts and copolymerized with microtubules through repeated cycles of polymerization and depolymerization. Finally, erythrocyte ankyrin associated with microtubules prepared from pure tubulin, and this binding was displaced by brain MAPs.
Collapse
|