1
|
Rudzite M, O’Toole GA. An energy coupling factor transporter of Streptococcus sanguinis impacts antibiotic susceptibility as well as metal and membrane homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603315. [PMID: 39026867 PMCID: PMC11257530 DOI: 10.1101/2024.07.12.603315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Streptococcus sanguinis is a prevalent member of human microbiome capable of acting as a causative agent of oral and respiratory infections. S. sanguinis competitive success within the infection niche is dependent on acquisition of metal ions and vitamins. Among the systems that bacteria use for micronutrient uptake is the energy coupling factor (ECF) transporter system EcfAAT. Here we describe physiological changes arising from EcfAAT transporter disruption. We found that EcfAAT contributes to S. sanguinis antibiotic sensitivity as well as metal and membrane homeostasis. Specifically, our work found that disruption of EcfAAT results in increased polymyxin susceptibility. We performed assessment of cell-associated metal content and found depletion of iron, magnesium, and manganese. Furthermore, membrane composition analysis revealed significant enrichment in unsaturated fatty acid species resulting in increased membrane fluidity. Our results demonstrate how disruption of a single EcfAAT transporter can have broad consequences on bacterial cell homeostasis. ECF transporters are of interest within the context of infection biology in bacterial species other than streptococci, hence work described here will further the understanding of how micronutrient uptake systems contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Marta Rudzite
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Yang Z, Wei Y, Wu W, Zhang L, Wang J, Shan A. Characterization of simplified nonapeptides with broad-spectrum antimicrobial activities as potential food preservatives, and their antibacterial mechanism. Food Funct 2023; 14:3139-3154. [PMID: 36892465 DOI: 10.1039/d2fo03861g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Antimicrobial peptides (AMPs) have attracted attention in the field of food preservatives due to their favorable biosafety and potential antimicrobial activity. However, high synthetic cost, systemic toxicity, a narrow antimicrobial spectrum, and poor antimicrobial activity become the main bottlenecks for their practical applications. To address these questions, a set of derived nonapeptides were designed based on a previously discovered ultra-short peptide sequence template (RXRXRXRXL-NH2) and screened to identify an optimal peptide-based food preservative with excellent antimicrobial properties. Among these nonapeptides, the designed peptides 3IW (RIRIRIRWL-NH2) and W2IW (RWRIRIRWL-NH2) presented a membrane-disruptive and reactive oxygen species (ROS) accumulation mechanism to execute potent and rapid broad-spectrum antimicrobial activity without observed cytotoxicity. Moreover, they exhibited favorable antimicrobial stability regardless of high ionic strength, heat, and excessive acid-base conditions, retaining potent antimicrobial effects for chicken meat preservation. Collectively, their ultra-short sequence length and potent broad-spectrum antimicrobial capacity may be beneficial for the further development of green and safe peptide-based food preservatives.
Collapse
Affiliation(s)
- Zhanyi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Yingxin Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Wanpeng Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
DelMauro MA, Kalberer DC, Rodgers IR. Infection prophylaxis in periorbital Mohs surgery and reconstruction: a review and update to recommendations. Surv Ophthalmol 2020; 65:323-347. [DOI: 10.1016/j.survophthal.2019.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023]
|
4
|
Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Appl Microbiol Biotechnol 2020; 104:3771-3780. [PMID: 32157424 DOI: 10.1007/s00253-020-10525-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.Key Points• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.• Polymyxins have potential as a treatment for Gram-positive bacterial infection.
Collapse
|
5
|
Rabanal F, Cajal Y. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep 2017. [PMID: 28628170 DOI: 10.1039/c7np00023e] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 1947-early 2017, particularly from 2005-early 2017The rise of bacterial pathogens with acquired resistance to almost all available antibiotics is becoming a serious public health issue. Polymyxins, antibiotics that were mostly abandoned a few decades ago because of toxicity concerns, are ultimately considered as a last-line therapy to treat infections caused by multi-drug resistant Gram-negative bacteria. This review surveys the progress in understanding polymyxin structure, and their chemistry, mechanisms of antibacterial activity and nephrotoxicity, biomarkers, synergy and combination with other antimicrobial agents and antibiofilm properties. An update of recent efforts in the design and development of a new generation of polymyxin drugs is also discussed. A novel approach considering the modification of the scaffold of polymyxins to integrate metabolism and detoxification issues into the drug design process is a promising new line to potentially prevent accumulation in the kidneys and reduce nephrotoxicity.
Collapse
Affiliation(s)
- Francesc Rabanal
- Organic Chemistry Section, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Spain.
| | | |
Collapse
|
6
|
Abstract
Covering: 1975 up to the end of 2016The decline in the discovery and development of novel antibiotics has resulted in the emergence of bacteria that are resistant to almost all available antibiotics. Currently, polymyxin B and E (colistin) are being used as the last-line therapy against life-threatening infections, unfortunately resistance to polymyxins in both the community and hospital setting is becoming more common. Octapeptins are structurally related non-ribosomal lipopeptide antibiotics that do not exhibit cross-resistance with polymyxins and have a broader spectrum of activity that includes Gram-positive bacteria. This makes them a precious and finite resource for the development of new antibiotics against these problematic polymyxin-resistant Gram-negative pathogens, in particular Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. This review surveys the progress in understanding octapeptin chemistry, mechanisms of antibacterial activity and biosynthesis. With the lack of cross-resistance and their broad antibacterial activity, the octapeptins represent ideal candidates for the development of a new generation of polymyxin-like lipopeptide antibiotics targeting polymyxin-resistant 'superbugs'.
Collapse
Affiliation(s)
- Tony Velkov
- Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Australia.
| | - Kade D Roberts
- Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Australia. and Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC, 3800, Australia.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC, 3800, Australia.
| |
Collapse
|
7
|
López-Pérez PM, Grimsey E, Bourne L, Mikut R, Hilpert K. Screening and Optimizing Antimicrobial Peptides by Using SPOT-Synthesis. Front Chem 2017; 5:25. [PMID: 28447030 PMCID: PMC5388751 DOI: 10.3389/fchem.2017.00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
Peptide arrays on cellulose are a powerful tool to investigate peptide interactions with a number of different molecules, for examples antibodies, receptors or enzymes. Such peptide arrays can also be used to study interactions with whole cells. In this review, we focus on the interaction of small antimicrobial peptides with bacteria. Antimicrobial peptides (AMPs) can kill multidrug-resistant (MDR) human pathogenic bacteria and therefore could be next generation antibiotics targeting MDR bacteria. We describe the screen and the result of different optimization strategies of peptides cleaved from the membrane. In addition, screening of antibacterial activity of peptides that are tethered to the surface is discussed. Surface-active peptides can be used to protect surfaces from bacterial infections, for example implants.
Collapse
Affiliation(s)
| | - Elizabeth Grimsey
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| | - Luc Bourne
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| | - Ralf Mikut
- Karlsruhe Institute of Technology (KIT), Institute for Applied Computer Science (IAI)Eggenstein-Leopoldshafen, Germany
| | - Kai Hilpert
- TiKa Diagnostics LtdLondon, UK
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| |
Collapse
|
8
|
De Zoysa GH, Sarojini V. Feasibility Study Exploring the Potential of Novel Battacin Lipopeptides as Antimicrobial Coatings. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1373-1383. [PMID: 27992168 DOI: 10.1021/acsami.6b15859] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colonization of medical implant surfaces by pathogenic microorganisms causes implant failure and undermines their clinical applicability. Alarming increase in multidrug-resistant bacteria poses serious concerns with the use of medical implants. Antimicrobial peptides (AMPs) that form part of the innate immune system in all forms of life are attractive alternatives to conventional antibiotics to treat multidrug-resistant bacterial biofilms. The aim of this study was to assess the in vitro antibacterial potency of our recently discovered lipopeptides from the battacin family upon immobilization to various surfaces. To achieve this, glass, silicon, and titanium surfaces were functionalized through silanization followed by addition of the heterobifunctional cross-linker, succinimidyl-[N-maleimidopropionamido]-poly(ethylene glycol) ester to generate maleimide-functionalized surfaces. The lipopeptide, GZ3.27, with an added N-terminal cysteine was covalently coupled to the surfaces via a thioether bond through a Michael-type addition between the cysteine sulfhydryl group and the maleimide moiety. Success of surface immobilization and antimicrobial activity of the coated surfaces was assessed using water contact angle measurements, X-ray photoelectron spectroscopy, ellipsometry, scanning electron microscopy, colony forming unit assays and biofilm analysis. The lipopeptide-coated surfaces caused significant damage to the cellular envelop of Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) upon contact and prevented surface colonization by P. aeruginosa and E. coli biofilms. The lipopeptides investigated in this study were not hemolytic to mouse blood cells in solution. Findings from this study indicate that these lipopeptides have the potential to be developed as promising antimicrobial coatings on medical implants.
Collapse
Affiliation(s)
- Gayan Heruka De Zoysa
- School of Chemical Sciences, The University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland , Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
9
|
Trimble MJ, Mlynárčik P, Kolář M, Hancock REW. Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025288. [PMID: 27503996 DOI: 10.1101/cshperspect.a025288] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antibiotic resistance among pathogenic bacteria is an ever-increasing issue worldwide. Unfortunately, very little has been achieved in the pharmaceutical industry to combat this problem. This has led researchers and the medical field to revisit past drugs that were deemed too toxic for clinical use. In particular, the cyclic cationic peptides polymyxin B and colistin, which are specific for Gram-negative bacteria, have been used as "last resort" antimicrobials. Before the 1980s, these drugs were known for their renal and neural toxicities; however, new clinical practices and possibly improved manufacturing have made them safer to use. Previously suggested to primarily attack the membranes of Gram-negative bacteria and to not easily select for resistant mutants, recent research exploring resistance and mechanisms of action has provided new perspectives. This review focuses primarily on the proposed alternative mechanisms of action, known resistance mechanisms, and how these support the alternative mechanisms of action.
Collapse
Affiliation(s)
- Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Patrik Mlynárčik
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Kolpen M, Appeldorff CF, Brandt S, Mousavi N, Kragh KN, Aydogan S, Uppal HA, Bjarnsholt T, Ciofu O, Høiby N, Jensen PØ. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions. Pathog Dis 2015; 74:ftv086. [PMID: 26458402 PMCID: PMC4655427 DOI: 10.1093/femspd/ftv086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/19/2022] Open
Abstract
Tolerance towards antibiotics of Pseudomonas aeruginosa biofilms is recognized as a major cause of therapeutic failure of chronic lung infection in cystic fibrosis (CF) patients. This lung infection is characterized by antibiotic-tolerant biofilms in mucus with zones of O2 depletion mainly due to polymorphonuclear leukocytic activity. In contrast to the main types of bactericidal antibiotics, it has not been possible to establish an association between the bactericidal effects of colistin and the production of detectable levels of OH ˙ on several strains of planktonic P. aeruginosa. Therefore, we propose that production of OH ˙ may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wild-type PAO1, a catalase-deficient mutant (ΔkatA) and a colistin-resistant CF isolate cultured in microtiter plates in normoxic- or anoxic atmosphere with 1 mM nitrate. The killing of bacteria during colistin treatment was measured by CFU counts, and the OH⋅ formation was measured by 3(')-(p-hydroxylphenyl fluorescein) fluorescein (HPF) fluorescence. Validation of the assay was done by hydrogen peroxide treatment. OH⋅ formation was undetectable in aerobic PAO1 biofilms during 3 h of colistin treatment. Interestingly, we demonstrate increased susceptibility of P. aeruginosa biofilms towards colistin during anaerobic conditions. In fact, the maximum enhancement of killing by anaerobic conditions exceeded 2 logs using 4 mg L(-1) of colistin compared to killing at aerobic conditions.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Sarah Brandt
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nabi Mousavi
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sevtap Aydogan
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Haleema A Uppal
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
North SH, Taitt CR. Application of circular dichroism for structural analysis of surface-immobilized cecropin A interacting with lipoteichoic acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10791-10798. [PMID: 26362347 DOI: 10.1021/acs.langmuir.5b02600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of biomaterials integrating antimicrobial peptides (AMPs) for improved pathogen detection or use as therapeutic agents requires an understanding of how a peptide may behave once immobilized. Here, we use a combination of circular dichroism and capture assays to assess the structure-function relationship of the cationic amphipathic AMP, cecropin A (cecA), upon interaction with Gram-positive lipoteichoic acids (LTAs). In solution, cecA peptides underwent a change from a largely unstructured conformation in water to structures with significant α-helical content in the presence of both Bacillus subtilis and Staphylococcus aureus LTAs. After surface immobilization, cecA peptides attached by either C- or N-terminus were able to capture both LTAs as well as to undergo conformational changes in the presence of SDS similar to those observed in solution. However, in spite of demonstrated LTA binding activity and the ability to undergo conformational changes (i.e., with SDS), no structural changes were observed when cecA immobilized by its N-terminus was treated with either LTA preparation. On the other hand, cecA immobilized by its C-terminus underwent a conformational change in the presence of S. aureus, but not B. subtilis, LTA. These results indicate that after immobilization recognition of different targets by cationic AMPs may occur by mechanisms quite different from those in solution and that selectivity of these mechanisms is further dependent on the orientation of the immobilized peptide.
Collapse
Affiliation(s)
- Stella H North
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - Chris R Taitt
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| |
Collapse
|
12
|
Phospholipase A1 modulates the cell envelope phospholipid content of Brucella melitensis, contributing to polymyxin resistance and pathogenicity. Antimicrob Agents Chemother 2015; 59:6717-24. [PMID: 26282427 DOI: 10.1128/aac.00792-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022] Open
Abstract
A subset of bacterial pathogens, including the zoonotic Brucella species, are highly resistant against polymyxin antibiotics. Bacterial polymyxin resistance has been attributed primarily to the modification of lipopolysaccharide; however, it is unknown what additional mechanisms mediate high-level resistance against this class of drugs. This work identified a role for the Brucella melitensis gene bveA (BMEII0681), encoding a predicted esterase, in the resistance of B. melitensis to polymyxin B. Characterization of the enzymatic activity of BveA demonstrated that it is a phospholipase A1 with specificity for phosphatidylethanolamine (PE). Further, lipidomic analysis of B. melitensis revealed an excess of PE lipids in the bacterial membranes isolated from the bveA mutant. These results suggest that by lowering the PE content of the cell envelope, BveA increases the resistance of B. melitensis to polymyxin B. BveA was required for survival and replication of B. melitensis in macrophages and for persistent infection in mice. BveA family esterases are encoded in the genomes of the alphaproteobacterial species that coexist with the polymyxin-producing bacteria in the rhizosphere, suggesting that maintenance of a low PE content in the bacterial cell envelope may be a shared persistence strategy for association with plant and mammalian hosts.
Collapse
|
13
|
Soares JW, Kirby R, Doherty LA, Meehan A, Arcidiacono S. Immobilization and orientation-dependent activity of a naturally occurring antimicrobial peptide. J Pept Sci 2015; 21:669-79. [DOI: 10.1002/psc.2787] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Jason W. Soares
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| | - Romy Kirby
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| | - Laurel A. Doherty
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| | - Alexa Meehan
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| | - Steven Arcidiacono
- U.S. Army Natick Soldier Research, Development and Engineering Center; Natick MA 01760 USA
| |
Collapse
|
14
|
Zemke AC, Shiva S, Burns JL, Moskowitz SM, Pilewski JM, Gladwin MT, Bomberger JM. Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radic Biol Med 2014; 77:307-16. [PMID: 25229185 PMCID: PMC4278422 DOI: 10.1016/j.freeradbiomed.2014.08.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is the major pathogenic bacteria in cystic fibrosis and other forms of bronchiectasis. Growth in antibiotic-resistant biofilms contributes to the virulence of this organism. Sodium nitrite has antimicrobial properties and has been tolerated as a nebulized compound at high concentrations in human subjects with pulmonary hypertension; however, its effects have not been evaluated on biotic biofilms or in combination with other clinically useful antibiotics. We grew P. aeruginosa on the apical surface of primary human airway epithelial cells to test the efficacy of sodium nitrite against biotic biofilms. Nitrite alone prevented 99% of biofilm growth. We then identified significant cooperative interactions between nitrite and polymyxins. For P. aeruginosa growing on primary CF airway cells, combining nitrite and colistimethate resulted in an additional log of bacterial inhibition compared to treating with either agent alone. Nitrite and colistimethate additively inhibited oxygen consumption by P. aeruginosa. Surprisingly, whereas the antimicrobial effects of nitrite in planktonic, aerated cultures are nitric oxide (NO) dependent, antimicrobial effects under other growth conditions are not. The inhibitory effect of nitrite on bacterial oxygen consumption and biofilm growth did not require NO as an intermediate as chemically scavenging NO did not block growth inhibition. These data suggest an NO-radical independent nitrosative or oxidative inhibition of respiration. The combination of nebulized sodium nitrite and colistimethate may provide a novel therapy for chronic P. aeruginosa airway infections, because sodium nitrite, unlike other antibiotic respiratory chain "poisons," can be safely nebulized at high concentration in humans.
Collapse
Affiliation(s)
- Anna C Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sruti Shiva
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jane L Burns
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Samuel M Moskowitz
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, PA 15219, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
15
|
Kinetic microplate assay for determining immobilized antimicrobial peptide activity. Anal Biochem 2011; 414:163-5. [DOI: 10.1016/j.ab.2011.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/23/2022]
|
16
|
Wilchek M, Miron T. Mechanism of activation of hydroxyl-containing polymers with N-hydroxysuccinimide and carbodiimides: Reason for leakage. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.19880170115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Hilpert K, Elliott M, Jenssen H, Kindrachuk J, Fjell CD, Körner J, Winkler DFH, Weaver LL, Henklein P, Ulrich AS, Chiang SHY, Farmer SW, Pante N, Volkmer R, Hancock REW. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. ACTA ACUST UNITED AC 2009; 16:58-69. [PMID: 19171306 DOI: 10.1016/j.chembiol.2008.11.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/14/2008] [Accepted: 11/24/2008] [Indexed: 11/28/2022]
Abstract
There is an urgent need to coat the surfaces of medical devices, including implants, with antimicrobial agents to reduce the risk of infection. A peptide array technology was modified to permit the screening of short peptides for antimicrobial activity while tethered to a surface. Cellulose-amino-hydroxypropyl ether (CAPE) linker chemistry was used to synthesize, on a cellulose support, peptides that remained covalently bound during biological assays. Among 122 tested sequences, the best surface-tethered 9-, 12-, and 13-mer peptides were found to be highly antimicrobial against bacteria and fungi, as confirmed using alternative surface materials and coupling strategies as well as coupling through the C and N termini of the peptides. Structure-activity modeling of the structural features determining the activity of tethered peptides indicated that the extent and positioning of positive charges and hydrophobic residues were influential in determining activity.
Collapse
Affiliation(s)
- Kai Hilpert
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yuan Z, Tam VH. Polymyxin B: a new strategy for multidrug-resistant Gram-negative organisms. Expert Opin Investig Drugs 2008; 17:661-8. [PMID: 18447592 DOI: 10.1517/13543784.17.5.661] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND There has been a renewed interest in using polymyxin B as a last resort therapeutic option, due to emergence of multidrug-resistant Gram-negative bacteria. Despite being available for clinical use for decades, there is still a very limited understanding on many aspects of this agent. OBJECTIVE To review what is known about polymyxin B and to identify missing information or gaps for future investigations. METHODS Pertinent information was reviewed from published literature in English. RESULTS/CONCLUSION For optimal use of polymyxin B, a more thorough understanding is needed on standardized susceptibility testing, serum and tissue concentrations achieved, antibacterial activity when polymyxin B is combined with other agents, and mechanisms of resistance. A more precise characterization of the relationship between drug concentration and toxicity is also required.
Collapse
Affiliation(s)
- Zhe Yuan
- Chongqing Medical University, The First Affiliated Hospital, Department of Infectious Diseases, Chongqing 400016, China
| | | |
Collapse
|
19
|
Roy D, Knapp JS, Guthrie JT, Perrier S. Antibacterial Cellulose Fiber via RAFT Surface Graft Polymerization. Biomacromolecules 2007; 9:91-9. [DOI: 10.1021/bm700849j] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debashish Roy
- Department of Colour and Polymer Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K., and Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Jeremy S. Knapp
- Department of Colour and Polymer Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K., and Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - James T. Guthrie
- Department of Colour and Polymer Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K., and Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Sébastien Perrier
- Department of Colour and Polymer Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K., and Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
20
|
Meehl M, Herbert S, Götz F, Cheung A. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2007; 51:2679-89. [PMID: 17502406 PMCID: PMC1932546 DOI: 10.1128/aac.00209-07] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/19/2007] [Accepted: 05/07/2007] [Indexed: 11/20/2022] Open
Abstract
Current treatment for serious infections caused by methicillin-resistant Staphylococcus aureus relies heavily upon the glycopeptide antibiotic vancomycin. Unfortunately, this practice has led to an intermediate resistance phenotype that is particularly difficult to treat in invasive staphylococcal diseases, such as septicemia and its metastatic complications, including endocarditis. Although the vancomycin-intermediate resistance phenotype has been linked to abnormal cell wall structures and autolytic rates, the corresponding genetic changes have not been fully elucidated. Previously, whole-genome array studies listed numerous genes that are overexpressed in vancomycin-intermediate sensitive strains, including graRS (SACOL0716 to -0717), encoding a two-component regulatory system (TCRS), as well as the adjacent vraFG (SACOL0718 to -0720), encoding an ATP-binding cassette (ABC) transporter; but the exact contribution of these genes to increased vancomycin resistance has not been defined. In this study, we showed that isogenic strains with mutations in genes encoding the GraRS TCRS and the VraFG ABC transporter are hypersensitive to vancomycin as well as polymyxin B. Moreover, GraRS regulates the expression of the adjacent VraFG pump, reminiscent of gram-positive bacteriocin-immunity regulons. Mutations of graRS and vraFG also led to increased autolytic rates and a more negative net surface charge, which may explain, in part, to their increased sensitivity to cationic antimicrobial peptides. Taken together, these data reveal an important genetic mediator to the vancomycin-intermediate S. aureus phenotype and may hold clues to the selective pressures on staphylococci upon exposure to selective cationic peptide antibiotics used in clinical practice.
Collapse
Affiliation(s)
- Michael Meehl
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
21
|
Xiong YQ, Mukhopadhyay K, Yeaman MR, Adler-Moore J, Bayer AS. Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:3114-21. [PMID: 16048912 PMCID: PMC1196293 DOI: 10.1128/aac.49.8.3114-3121.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perturbation of the Staphylococcus aureus cytoplasmic membrane (CM) is felt to play a key role in the microbicidal mechanism of many antimicrobial peptides (APs). However, it is not established whether membrane permeabilization (MP) alone is sufficient to kill susceptible staphylococci or if the cell wall (CW) and/or intracellular targets contribute to AP-induced lethality. We hypothesized that the relationships between MP and killing may differ for distinct APs. In this study, we investigated the association between AP-induced MP and lethality in S. aureus whole cells versus CW-free protoplasts, and in comparison to the MP of liposomes modeled after whole CMs in terms of phospholipid composition, fluidity and charge. Four APs with different structure-activity relationships were examined: thrombin-induced platelet microbicidal protein 1 (tPMP-1), human neutrophil protein 1 (hNP-1), gramicidin D, and polymyxin B. MP was quantified fluorometrically by calcein release. All APs tested, except polymyxin B, caused concentration-dependent MP and killing of whole cells, but not of protoplasts. The reduced AP susceptibility of protoplasts was associated with increased cardiolipin and lysyl-phosphatidylglycerol content and reduced fluidity of their CMs. However, liposomal MP induced by tPMP-1, hNP-1, and gramicidin D paralleled that of whole cells. Collectively, these results indicate that (i) structurally distinct APs likely exert their staphylocidal effects by differing mechanisms, (ii) MP is not the sole event leading to AP-induced staphylocidal activity, (iii) a complex interrelationship exists between the CM and CW in AP-induced killing, and (iv) liposomes modeled upon whole cell or protoplast CMs can recapitulate the respective susceptibilities to killing by distinct APs.
Collapse
Affiliation(s)
- Yan Q Xiong
- LA Biomedical Research Institute at Harbor-UCLA St. John's Cardiovascular Research Center, RB-2, 1124 West Carson Street, Torrance, CA 90502, USA.
| | | | | | | | | |
Collapse
|
22
|
Hada T, Inoue Y, Shiraishi A, Hamashima H. Leakage of K+ ions from Staphylococcus aureus in response to tea tree oil. J Microbiol Methods 2003; 53:309-12. [PMID: 12689708 DOI: 10.1016/s0167-7012(02)00248-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The leakage of K(+) ions from Staphylococcus aureus in response to tea tree oil (TTO) was investigated with an ion-selective electrode. The amount of leaked K(+) ions and the rate of leakage of K(+) ions induced by TTO were dependent on the concentration of TTO. Measurements of initial rates required less time than measurements of total amounts and provided an index of the interaction between TTO and the cell membrane. Thus, the initial rate of leakage might be a more useful measure of the antibacterial activity of TTO than the total amount.
Collapse
Affiliation(s)
- Toshiko Hada
- Department of Microbiology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | |
Collapse
|
23
|
Tzoris A, Hall EAH, Besselink GAJ, Bergveld P. Testing the Durability of Polymyxin B Immobilization on a Polymer Showing Antimicrobial Activity: A Novel Approach with the Ion-Step Method. ANAL LETT 2003. [DOI: 10.1081/al-120023614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Saugar JM, Alarcón T, López-Hernández S, López-Brea M, Andreu D, Rivas L. Activities of polymyxin B and cecropin A-,melittin peptide CA(1-8)M(1-18) against a multiresistant strain of Acinetobacter baumannii. Antimicrob Agents Chemother 2002; 46:875-8. [PMID: 11850277 PMCID: PMC127505 DOI: 10.1128/aac.46.3.875-878.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymyxin B (PXB) and the cecropin A-melittin hybrid CA(1-8)M(1-18) (KWKLFKKIGIGAVLKVLTTGLPALIS-NH2) were compared for antibiotic activity on reference and multiresistant Acinetobacter baumannii strains. Significant differences for both peptides were observed on their inner membrane interaction and inhibition by environmental factors, supporting the use of CA(1-8)M(1-18) as a potential alternative to PXB against ACINETOBACTER:
Collapse
|
25
|
Ebi N, Imazato S, Noiri Y, Ebisu S. Inhibitory effects of resin composite containing bactericide-immobilized filler on plaque accumulation. Dent Mater 2001; 17:485-91. [PMID: 11567685 DOI: 10.1016/s0109-5641(01)00006-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Previously, we have reported that incorporation of the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide (MDPB) was effective in immobilizing bactericide in the resin matrix, and an antibacterial composite without release of the agent could be achieved. In this study, an attempt was made to increase the density of bactericide immobilized in composite, and the inhibitory effects of this modified antibacterial composite on plaque accumulation were determined, focusing on the reliability of the effects and the mechanisms to affect the plaque formation. METHODS An experimental composite containing immobilized bactericide at 2.83% was prepared by the incorporation of MDPB into a prepolymerized resin filler of control composite, and elution of antibacterial components and inhibition of in vitro plaque accumulation by Streptococcus mutans were determined. The inhibitory effects of the experimental composite on the attachment, glucan synthesis and growth of S. mutans on the surface were also examined in addition to the comparison of surface roughness and hydrophobicity with controls. The results were analyzed using the Student's t-test. RESULTS The experimental composite had reproducible inhibitory effects against plaque accumulation compared with control (p<0.05), although it showed no elution of unpolymerized MDPB. The plaque-inhibitory effect of the experimental composite was found to depend upon the ability to inhibit the attachment, glucan synthesis, and growth of bacteria on its surface as no significant differences in the surface characteristics were obtained between control and experimental composites (p>0.05). SIGNIFICANCE It was indicated that the experimental composite containing bactericide-immobilized filler has the possibility to be used clinically with an effective anti-plaque property.
Collapse
Affiliation(s)
- N Ebi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | | | |
Collapse
|
26
|
Daugelavicius R, Bakiene E, Bamford DH. Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrob Agents Chemother 2000; 44:2969-78. [PMID: 11036008 PMCID: PMC101588 DOI: 10.1128/aac.44.11.2969-2978.2000] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of polymyxin B (PMB) on the Escherichia coli outer (OM) and cytoplasmic membrane (CM) permeabilities were studied by monitoring the fluxes of tetraphenylphosphonium, phenyldicarbaundecaborane, and K(+) and H(+) ions. At concentrations between 2 and 20 microgram/ml, PMB increased the OM permeability to lipophilic compounds and induced a leakage of K(+) from the cytosol and an accumulation of lipophilic anions in the cellular membranes but did not cause the depolarization of the CM. At higher concentrations, PMB depolarized the CM, forming ion-permeable pores in the cell envelope. The permeability characteristics of PMB-induced pores mimic those of bacteriophage- and/or bacteriocin-induced channels. However, the bactericidal effect of PMB took place at concentrations below 20 microgram/ml, indicating that this effect is not caused by pore formation. Under conditions of increased ionic strength, PMB made the OM permeable to lipophilic compounds and decreased the K(+) gradient but was not able to depolarize the cells. The OM-permeabilizing effect of PMB can be diminished by increasing the concentration of Mg(2+). The major new findings of this work are as follows: (i) the OM-permeabilizing action of PMB was dissected from its depolarizing effect on the CM, (ii) the PMB-induced ion-permeable pores in bacterial envelope were registered, and (iii) the pore formation and depolarization of the CM are not obligatory for the bactericidal action of PMB and dissipation of the K(+) gradient on the CM.
Collapse
Affiliation(s)
- R Daugelavicius
- Department of Biochemistry and Biophysics, Vilnius University, Ciurlionio 21, LT-2009 Vilnius, Lithuania.
| | | | | |
Collapse
|
27
|
Toennes SW, Maurer HH. Efficient Cleavage of Conjugates of Drugs or Poisons by Immobilized β-Glucuronidase and Arylsulfatase in Columns. Clin Chem 1999. [DOI: 10.1093/clinchem/45.12.2173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Background: Cleavage of conjugates is an important step in toxicological analysis, especially of urine samples. The aim of this study was to combine the advantages and to reduce the disadvantages of acid hydrolysis and conventional enzymatic hydrolysis procedures.
Methods: β-Glucuronidase (GRD; EC 3.2.1.31) and arylsulfatase (ARS; EC 3.1.6.1) were purified and coimmobilized on an agarose gel matrix and packed into columns.
Results: In columns packed with GRD and ARS, the test conjugates 4-nitrophenyl glucuronide and 4-nitrophenyl sulfate added into urine could be completely cleaved within 25 min. Even the relatively stable morphine conjugates could be completely hydrolyzed within 60 min in authentic urine samples. Therefore, an incubation time of 1 h is recommended. Enzyme inhibition by matrix or by rather high concentrations of acetaminophen conjugates was tested and found to be up to 50%. However, a large excess of GRD and ARS was used. The immobilizate columns could be reused for at least 70 incubations and had a storage stability of at least 12 weeks. Carryover of analytes in reused columns could be avoided by rinsing with 200 mL/L methanol in acetate buffer. Thus, five drugs known to be contaminants added in very high concentrations into urine could be completely removed from the columns. A study on the applicability in systematic toxicological analysis showed that 120 different drugs and/or their metabolites could be detected in 35 different authentic urine samples.
Conclusions: Use of immobilized and column-packed GRD and ARS is an efficient alternative for the cleavage of urinary conjugates in clinical toxicology.
Collapse
Affiliation(s)
- Stefan W Toennes
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Saarland, D-66421 Homburg (Saar), Germany
| | - Hans H Maurer
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Saarland, D-66421 Homburg (Saar), Germany
| |
Collapse
|
28
|
Evans ME, Feola DJ, Rapp RP. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 1999; 33:960-7. [PMID: 10492501 DOI: 10.1345/aph.18426] [Citation(s) in RCA: 391] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Polymyxin B sulfate and colistin, also known as colistimethate, have not been used for many years because less toxic antimicrobials are available. Gram-negative bacteria that are resistant to the aminoglycosides, beta-lactams, and fluoroquinolones are becoming more common. These bacteria are often susceptible to the polymyxins. OBJECTIVE To present a review of the chemistry, antibacterial spectrum, dosing, pharmacokinetics, toxicity, and indications for polymyxin B sulfate and colistin. DATA SOURCE A MEDLINE search (1966-1998) of the English-language literature was performed to identify primary literature on the polymyxins. Older citations ( 1949-1965) were identified through the bibliographies of these articles. STUDY SELECTION All available reports of in vitro antibacterial activity, animal and clinical trials, and case reports were reviewed. DATA SYNTHESIS The polymyxins are amphipathic molecules that interact with lipopolysaccharide in the bacterial outer membrane. They have potent antiendotoxic properties and antibacterial activity against Pseudomonas aeruginosa and many of the Enterobacteriaceae. Polymyxin B and colistin are usually given at a dose of 1.5-2.5 and 5 mg/kg/d, respectively, in two divided doses. Dosing must be altered in renal failure since the kidney is the primary route of elimination. Distribution into pleural fluid, joints, and cerebrospinal fluid is poor. Toxic effects involve the kidney and central nervous system. The polymyxins are recommended for serious systemic infections caused by gram-negative bacteria that are resistant to other agents. CONCLUSIONS Polymyxin B sulfate and colistin have a role in the therapy of multidrug-resistant gram-negative bacterial infections.
Collapse
Affiliation(s)
- M E Evans
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington 40536, USA.
| | | | | |
Collapse
|
29
|
Carlsson A, Nyström T, de Cock H, Bennich H. Attacin--an insect immune protein--binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2179-2188. [PMID: 9720039 DOI: 10.1099/00221287-144-8-2179] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attacin is a 20 kDa antibacterial protein, originally isolated from the immune haemolymph of Hyalophora cecropia. It has been demonstrated previously that attacin causes increased permeability of the outer membrane of Escherichia coli and inhibition of outer-membrane protein synthesis at the transcriptional level. This is accompanied by inhibition of growth. Here, LPS is shown to serve as the receptor for attacin and evidence is presented that attacin does not need to enter the cell to exert its activity. The increase in outer-membrane permeability precedes any increase in inner-membrane permeability by at least one generation time (approximately 45 min), and the inhibiting effect of attacin on synthesis of outer-membrane proteins is detectable after only 10 min. It is also shown that attacin causes induction of several stress proteins and increased synthesis of LPS within, respectively, 25 and 60 min of treatment. Based on the results presented, it is proposed that attacin has the unique ability to specifically interfere with synthesis of outer-membrane proteins without entering the inner membrane or cytoplasm.
Collapse
Affiliation(s)
- Anette Carlsson
- Department of Medical Biochemistry & Microbiology, Uppsala UniversityBox 582, S-75123 UppsalaSweden
| | - Thomas Nyström
- Department of Microbiology, Lund UniversitySölveg. 12, S-22362 LundSweden
| | - Hans de Cock
- Department of Molecular Cell Biology, Institute of Biomembranes, Utrecht UniversityPadualaan 8, 3584 CH UtrechtThe Netherlands
| | - Hans Bennich
- Department of Medical Biochemistry & Microbiology, Uppsala UniversityBox 582, S-75123 UppsalaSweden
| |
Collapse
|
30
|
Shoji H, Tani T, Hanasawa K, Kodama M. Extracorporeal endotoxin removal by polymyxin B immobilized fiber cartridge: designing and antiendotoxin efficacy in the clinical application. THERAPEUTIC APHERESIS : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR APHERESIS AND THE JAPANESE SOCIETY FOR APHERESIS 1998; 2:3-12. [PMID: 10227782 DOI: 10.1111/j.1744-9987.1998.tb00066.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed an extracorporeal hemoadsorption cartridge, the PMX cartridge, to eliminate endotoxin from peripheral blood circulation. As an adsorbent, a polymyxin B covalently immobilized fiber (PMX-F) was developed. After the optimization of the condition of immobilization, fixed polymyxin B maintained its ability to adsorb endotoxin and its bactericidal activity. PMX-F could detoxify many kinds of endotoxin in vitro. Fixed polymyxin B was estimated to interact with the lipid A portion of endotoxin. Utilization of fibrous adsorbents enabled us to design the PMX cartridge with a large surface area and low blood pressure drop in the blood flow compartment and to apply it safely to the direct hemoperfusion procedure. In Japan, the PMX cartridge is now being clinically applied as one of the therapeutical interventions for sepsis, septic shock, and septic multiple organ failure. In multicenter clinical studies, the blood endotoxin level has been significantly decreased. Accompanied with elimination of endotoxin, hemodynamic abnormalities such as low blood pressure and low systemic vascular resistance were significantly improved. In more recent multicenter studies, the average number of failed organs; severity of illness score, such as Goris score; and vasopressor dosage were significantly decreased. The PMX cartridge is expected to be effective in the intervention for the treatment of septic shock. Endotoxin may be one of the therapeutical targets for the treatment of sepsis.
Collapse
|
31
|
Allen NE. Biochemical mechanisms of resistance to non-cell wall antibacterial agents. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:157-238. [PMID: 8577918 DOI: 10.1016/s0079-6468(08)70454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N E Allen
- Infectious Disease Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
32
|
Fujita Y, Yasuda Y, Tochikubo K. Permeability of gentamicin and polymyxin B into the inside of Bacillus subtilis spores. Microbiol Immunol 1990; 34:1013-23. [PMID: 2129132 DOI: 10.1111/j.1348-0421.1990.tb01523.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The penetration of gentamicin and polymyxin B into the inside of Bacillus subtilis spores was examined by an immunoelectron microscopy method with colloidal gold--immunoglobulin G (IgG) complex. The colloidal gold particles were located predominantly in the coat region of both gentamicin-treated and polymyxin B-treated spores and were hardly observed in the other regions, i.e., the cortex and core regions. When these antibiotic-treated spores were subsequently treated with CaCl2, the number of gold particles bound to the coat region was greatly decreased. These results suggest that these two antibiotics are able to penetrate into the spore coat but not into the cortex or core, that is, the primary permeability barrier to them exists between the coat and the cortex regions.
Collapse
Affiliation(s)
- Y Fujita
- Department of Microbiology, Nagoya City University Medical School, Aichi
| | | | | |
Collapse
|
33
|
Mechanism and improvement of complex formation between LPS and polymyxin B that is immobilized on an ion exchanger. Appl Biochem Biotechnol 1989. [DOI: 10.1007/bf02922699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Abstract
The chemical complexity of peptides limits the choice of coupling procedures which can be used in the preparation of gel-peptide conjugates. Several immunoadsorbents have been investigated, in order to select those that permit the isolation of antipeptide antibodies in the highest yield and with optimal specific activity.
Collapse
Affiliation(s)
- A Chersi
- Regina Elena Institute for Cancer Research, Rome, Italy
| | | | | |
Collapse
|
35
|
Birnbaum S, Bülow L, Hardy K, Mosbach K. Production and release of human proinsulin by recombinant Escherichia coli immobilized in agarose microbeads. Enzyme Microb Technol 1988. [DOI: 10.1016/0141-0229(88)90106-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Hoffman WL, O'Shannessy DJ. Site-specific immobilization of antibodies by their oligosaccharide moieties to new hydrazide derivatized solid supports. J Immunol Methods 1988; 112:113-20. [PMID: 2457052 DOI: 10.1016/0022-1759(88)90041-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This report describes a new method for immobilization of antibodies to solid supports. Antibodies are bound to the solid supports by covalent bonds between aldehydes generated on the carbohydrate side chains of the antibody and hydrazide groups on the solid support. The hydrazone bonds that are formed are stable at least from pH 2-10, permitting the acid elution of antigens from the affinity column. Over 25 mg of affinity-purified rabbit IgG binds per ml of solid support, with most of the bound antibodies retaining biological activity. Advantages of this new affinity support over existing technology are discussed along with procedures for the preparation and use of affinity columns containing monoclonal or polyclonal antibodies.
Collapse
Affiliation(s)
- W L Hoffman
- Department of Internal Medicine, Southwestern Medical School, Dallas, TX 75235
| | | |
Collapse
|
37
|
Zidovetzki R, Banerjee U, Harrington DW, Chan SI. NMR study of the interactions of polymyxin B, gramicidin S, and valinomycin with dimyristoyllecithin bilayers. Biochemistry 1988; 27:5686-92. [PMID: 2460131 DOI: 10.1021/bi00415a044] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interactions of three polypeptide antibiotics (polymyxin B, gramicidin S, and valinomycin) with artificial lecithin membranes were studied by nuclear magnetic resonance (NMR). Combination of 31P and 2H NMR allowed observation of perturbations of the bilayer membrane structure induced by each of the antibiotics in the regions of the polar headgroups and acyl side chains of the phospholipids. The comparative study of the effects of these membrane-active antibiotics and the lipid bilayer structure demonstrated distinct types of antibiotic-membrane interactions in each case. Thus, the results showed the absence of interaction of polymyxin B with the dimyristoyllecithin membranes. In contrast, gramicidin S exhibited strong interaction with the lipid above the gel to liquid-crystalline phase transition temperature: disordering of the acyl side chains was evident. Increasing the concentration of gramicidin S led to disintegration of the bilayer membrane structure. At a molar ratio of 1:16 of gramicidin S to lecithin, the results are consistent with coexistence of gel and liquid-crystalline phases of the phospholipids near the phase transition temperature. Valinomycin decreased the phase transition temperature of the lipids and increased the order parameters of the lipid side chains. Such behavior is consistent with penetration of the valinomycin molecule into the interior of the lipid bilayers.
Collapse
Affiliation(s)
- R Zidovetzki
- Department of Biology, University of California, Riverside 92521
| | | | | | | |
Collapse
|
38
|
in't Veld G, Mannion B, Weiss J, Elsbach P. Effects of the bactericidal/permeability-increasing protein of polymorphonuclear leukocytes on isolated bacterial cytoplasmic membrane vesicles. Infect Immun 1988; 56:1203-8. [PMID: 3281903 PMCID: PMC259784 DOI: 10.1128/iai.56.5.1203-1208.1988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The bactericidal/permeability-increasing protein (BPI) of polymorphonuclear leukocytes is a potent bactericidal agent specific for gram-negative bacteria. The protein blocks bacterial multiplication without substantially inhibiting the uptake and incorporation of macromolecular precursors, suggesting that the cytoplasmic membrane escapes early injury. Because greater than 90% of bound BPI can be removed from the bacterial surface sites after irreversible loss of viability, it was uncertain whether BPI reaches the cytoplasmic membrane and, if so, affects its functions. This study shows that BPI caused similar dose-dependent inhibition of O2 consumption and metabolic energy-dependent amino acid transport by cytoplasmic membrane vesicles of both gram-negative (Escherichia coli) and gram-positive (Bacillus subtilis) bacteria. Near maximal inhibition occurred at BPI doses that caused complete killing of an equivalent number of intact E. coli, with binding of BPI to membrane vesicles that was less than or equal to 10% of binding to intact (BPI-sensitive) bacteria. The effects of BPI and of the membrane-disruptive peptide antibiotic polymyxin B on membrane vesicles were distinctly different, indicating that the two agents affect membrane function by different mechanisms. BPI also rapidly inhibited O2 consumption by intact E. coli, with minimal impairment of bacterial protein synthesis. Thus, BPI is capable of damaging the cytoplasmic membrane of both gram-negative and gram-positive bacteria and of inhibiting at least one cytoplasmic membrane-associated function in intact E. coli. The relationship between these effects and the mechanism of bacterial killing by BPI remains to be established.
Collapse
Affiliation(s)
- G in't Veld
- Department of Medicine, New York University Medical Center, New York 10016
| | | | | | | |
Collapse
|
39
|
Endo Y, Tani T, Kodama M. Antimicrobial activity of tertiary amine covalently bonded to a polystyrene fiber. Appl Environ Microbiol 1987; 53:2050-5. [PMID: 3314703 PMCID: PMC204056 DOI: 10.1128/aem.53.9.2050-2055.1987] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tertiary amine was covalently bonded to a polystyrene fiber and examined for antibacterial activity. The tertiary amine covalently bonded to a polystyrene fiber (TAF) showed a high antimicrobial activity against Escherichia coli. TAF exhibited a stronger antibacterial activity against gram-negative bacteria (E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, and Serratia marcescens) than against gram-positive bacteria (Staphylococcus aureus and Streptococcus faecalis) or Candida albicans. This activity against E. coli was accentuated by 0.1% deoxycholate or 10 mg of actinomycin D per ml, to which E. coli is normally not susceptible. This implies that TAF causes an increase of the bacterial outer membrane permeability. On the other hand, the antimicrobial activity was inhibited by adding Mg2+ or by lowering the pH. This suggest an electrostatic interaction between the bacterial cell wall and TAF. Scanning electron microscopy showed that E. coli cells were initially attached to TAF, with many projections on the cell surface, but then were apparently lysed after contact for 4 h. Taken together, these results imply that bacteria initially interact with TAF by an electrostatic force between the anionic bacterial outer membrane and the cationic tertiary amine residues of TAF and that longer contact with TAF damages the bacterial outer membrane structure and increases its permeability.
Collapse
Affiliation(s)
- Y Endo
- Department of Surgery, Shiga University of Medical Science, Japan
| | | | | |
Collapse
|
40
|
Abstract
Polymyxin B is often added to in vitro samples to 'ensure' that endotoxin activity is removed. We present data, from the standard rabbit pyrogen test and the Limulus amebocyte lysate assay, that polymyxin B bound to a gel support will bind some, but not all, endotoxin. These data, in conjunction with previously published data by Morrison and Curry (1979), indicate that those studies that have relied on polymyxin B to inactivate endotoxin must be re-evaluated.
Collapse
|
41
|
|
42
|
Nakagawa Y, Hayashi H, Tawaratani T, Kourai H, Horie T, Shibasaki I. Disinfection of Water with Quaternary Ammonium Salts Insolubilized on a Porous Glass Surface. Appl Environ Microbiol 1984; 47:513-8. [PMID: 16346491 PMCID: PMC239712 DOI: 10.1128/aem.47.3.513-518.1984] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insoluble quaternary ammonium salts bound to porous glass showed antibacterial activity. An agent designated as G
12
, which had a dodecyl alkyl chain, was selected for some antibacterial tests on comparison of it with the agent reported previously. The antibacterial activity of G
12
toward
Escherichia coli
was mainly due to the adsorption of cells and therefore gradually decreased during continuous treatment of a cell suspension. The lost G
12
activity was completely recovered by washing with ethanol, and the activity of refreshed G
12
decreased in the same manner as that of fresh G
12
. The lost activity was, however, always recovered only by ethanol treatment. This indicated that G
12
might interact with cells more strongly by means of a hydrophobic force than an electrostatic one. The antimicrobial spectrum showed that G
12
was effective against not only bacteria but also yeasts.
Collapse
Affiliation(s)
- Y Nakagawa
- Department of Fermentation Technology, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565, and Department of Applied Chemistry, Technical College of Tokushima University, Tokushima 770, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Nakagawa Y, Tawaratani T, Kourai H, Horie T, Shibasaki I. Adsorption of Escherichia coli onto insolubilized lauryl pyridinium iodide and its bacteriostatic action. Appl Environ Microbiol 1984; 47:88-93. [PMID: 6364973 PMCID: PMC239617 DOI: 10.1128/aem.47.1.88-93.1984] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insoluble lauryl pyridinium iodide [C12(50)] was synthesized as an antimicrobial agent. Escherichia coli cells were not killed by C12(50) but only adsorbed onto it. Though cells on C12(50) could not grow in nutrient agar, they possessed the ability to develop once they were liberated from C12(50). The adsorption of cells onto C12(50) was inhibited by iodide anions released from C12(50) itself. The ability of C12(50) to adsorb was decreased by the adsorbed cells, but C12(50) could be reactivated by washing with alkaline solutions. It was, therefore, suggested that this adsorption was mainly due to the electrostatic interaction between cells and C12(50). The adsorption of cells onto C12(50) was confirmed by scanning electron microscopy.
Collapse
|
44
|
Abstract
Endotoxins liberated by gram-negative bacteria are frequent contaminants of aqueous and physiological solutions. Because of their potent biological effects in vivo and in vitro, it is often necessary to eliminate even minute quantities of endotoxin from such solutions. A process is described which exploits the high binding affinity of polymyxin B for the lipid A moiety of most endotoxins in order to remove endotoxins from solutions by chromatography on polymyxin B Sepharose 4B. This method was simple, very effective, resulting in essentially complete removal of several endotoxins from heavily contaminated solutions (1-10 micrograms/ml by Limulus amoebocyte lysate assay) and employed mild physiological conditions.
Collapse
|
45
|
|
46
|
Nakagawa Y, Yamano Y, Tawaratani T, Kourai H, Horie T, Shibasaki I. Antimicrobial characteristic of insoluble alkylpyridinium iodide. Appl Environ Microbiol 1982; 43:1041-50. [PMID: 6808918 PMCID: PMC244183 DOI: 10.1128/aem.43.5.1041-1050.1982] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Insoluble and soluble alkylpyridinium iodides (C8 to C18) were synthesized. The insoluble agents were quaternized 4-vinylpyridine-divinylbenzene copolymers. The insoluble agent [C12(50)] that contained 50% divinylbenzene and had a C12 alkyl chain was selected as the most suitable insoluble agent. C12(50) showed poor durability of the antibacterial activity, but C12(50), which had lost the activity, was refreshed by washing with ethanol. This washing became ineffective after a few cycles of antibacterial treatment and refreshment. Such C12(50) recovered the activity upon 1.0 N NaOH treatment. The antibacterial activity of C12(50) depended on its surface area. It showed high antimicrobial activity against gram-positive bacteria and also showed activity against gram-negative bacteria and yeasts. But the activities of C12(50) and laurylpyridinium iodide solution were different against some microbes. The antibacterial activities of the agents were investigated against Escherichia coli and Micrococcus luteus under various conditions. The activity of C12(50) was higher at a higher temperature or at a lower cell concentration. The activity of C12(50) decreased on addition of NaCl, glucose, or bovine albumin to the cell suspension or in 0.01 M sodium-potassium phosphate buffer. C12(50) showed less activity when cells were mixed with dead cells or the supernatant of dead cells killed in an autoclave. The mode of action of the laurylpyridinium iodide solution against E. coli and M. luteus was similar to that of C12(50) except for the influence of E. coli cell concentration.
Collapse
|
47
|
|
48
|
|
49
|
Frost RG, Monthony JF, Engelhorn SC, Siebert CJ. Covalent immobilization of proteins to N-hydroxysuccinimide ester derivatives of agarose. Effect of protein charge on immobilization. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 670:163-9. [PMID: 6170343 DOI: 10.1016/0005-2795(81)90004-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An uncharged N-hydroxysuccinimide ester derivative of agarose, Affi-Gel 10, exhibited excellent capacity for immobilization, at pH 7.5, of proteins having isoelectric points of 6.5--11.0. Under identical conditions, acidic proteins with isoelectric points of 3.3--5.9 did not couple well to this activated gel. Immobilization of acidic proteins increased in the presence of 80 mM CaCl2, or at a pH equal to or less than the isoelectric point. Affi-Gel 15, a new N-hydroxysuccinimide ester derivative of agarose containing a tertiary amine in the spacer arm, coupled acidic proteins efficiently at pH 7.5 but basic proteins coupled poorly. The immobilization of basic proteins to Affi-Gel 15 was increased to useful levels by increasing the ionic strength, or the pH, of the reaction medium. The lectin concanavalin A was efficiently immobilized using either activated gel, and the concanavalin A-agarose derivatives bound 3.9--4.1 mg ovalbumin/ml gel. These studies demonstrate that the charge of the protein relative to the charge of the gel is an important factor affecting the level of protein immobilization to active ester gels.
Collapse
|
50
|
Hancock RE, Raffle VJ, Nicas TI. Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1981; 19:777-85. [PMID: 6794444 PMCID: PMC181521 DOI: 10.1128/aac.19.5.777] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Induction of a major outer membrane protein, H1, in Pseudomonas aeruginosa resulted in decreased susceptibility to gentamicin and streptomycin. Mutants which overproduce protein H1 and cells in which H1 is induced in response to growth conditions had altered kinetics of uptake and killing. It was further demonstrated that gentamicin and streptomycin interact with the outer membrane to permeabilize it to lysozyme and to increase the permeation of a chromogenic beta-lactam, nitrocefin. Experiments with inhibitors of aminoglycoside uptake showed that uptake was not required to increase permeability. Mg2+ at 1 mM totally inhibited aminoglycoside-mediated outer membrane permeabilization. We propose that the uptake and killing by these aminoglycosides requires interaction with an Mg2+ binding site at the outer membrane, permitting aminoglycoside uptake into the periplasm.
Collapse
|